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Nematic elastomers dramatically change their shape in response to diverse stimuli including light
and heat. In this paper, we provide a systematic framework for the design of complex three di-
mensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets.
These sheets are composed of nonisometric origami building blocks which, when appropriately
linked together, can actuate into a diverse array of three dimensional faceted shapes. We demon-
strate both theoretically and experimentally that the nonisometric origami building blocks actuate
in the predicted manner, and that the integration of multiple building blocks leads to complex,
yet predictable and robust, shapes. We then show that this experimentally realized functionality
enables a rich design landscape for actuation using nematic elastomers. We highlight this land-
scape through examples, which utilize large arrays of these building blocks to realize a desired
three dimensional origami shape. In combination, these results amount to an engineering design
principle, which provides a template for the programming of arbitrarily complex three dimensional
shapes on demand.

Introduction
The seamless integration of function and form promises to spur
innovation in technologies ranging from MEMS and NEMS de-
vices (e.g., with novel electrical, electromagnetic and energy
functionality), reconfigurable and soft robotics, wearable elec-
tronics, and compliant bio-medical devices1–6. This integra-
tion can be facilitated by incorporating soft active materials into
thin or slender structures to program complex three dimensional
shapes not easily achieved by conventional means of manufactur-
ing. This is not without its challenges: The coupling of nonlin-
earities—at the material level and at the structural level—makes
a salient and general theory of design with these systems a trying
task. Even more, bridging the gap between an idealized theory
and what is possible (and practical) experimentally offers a dif-
ferent, but equally important, set of challenges. In this work, we
address these challenges in the context of active patterned sheets
capable of localized anisotropic distortion under stimuli. Specif-
ically, we identify the framework for designing these sheets to
achieve desired faceted shapes through actuation, and we lever-
age recent advances in the localized mechanical response of ne-
matic elastomers to realize the designed shape control.
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Fig. 1 A "humanoid" soft robot.

Nematic elastomers couple the elasticity of a soft and highly
deformable polymer network with the orientational ordering of
rod-like liquid crystal molecules (mesogens), which are either
incorporated into the main chains of the network or pendent
from them. This coupling results in a solid with dramatic shape-
changing response to temperature change and other stimuli7,8:
At low temperatures, the liquid crystals prefer being aligned (in
some average sense), with the orientation of this alignment de-
scribed locally by a unit vector n0 called the director. Upon heat-
ing, however, thermal fluctuations suppress this tendency towards
order, resulting in a nematic to isotropic phase transformation
within the solid. This gives rise to a strongly anisotropic macro-
scopic deformation since the polymer network is intrinsically cou-
pled to this order. Typically, the elastomer contracts along the
director and expands transversely.

Building on key ideas in the study of non-Euclidean plates9–11,
Modes et al.12,13 recognized that by programming the director
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Key result from Paul Plucinsky visit:  Consider two adjacent 
+1 defects with the director perfectly matched along the 
boundary.  The film actuates into one of two configurations 
that minimizes the crease at that boundary.  (20160422) 

Top view of director 
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Fig. 2 (a) The design and experimental realization for two linked symmetric four-faced building blocks (right and left respectively). (b) The sheet
actuates into either of two degenerate and mechanically bi-stable configurations. (c) These configurations are predicted by theory, as discussed below.

heterogeneously in the plane of a thin sheet, stimulation results in
inhomogeneous shape-change that in turn drives complex three
dimensional shapes. Indeed, they showed theoretically how pat-
terning azimuthal and radial director profiles about a defect en-
abled conical and saddle-like shapes upon actuation. These were
later realized experimentally—first by de Haan et al.14 in nematic
glass sheets and later by Ware et al.15 in nematic elastomers.
Even more, the latter work made possible the prescription of an
arbitrary planar director profile in a thin sheet (i.e., through vox-
elated LCEs), bringing questions of designable actuation to the
forefront. Further, since the entire sheet participates in the ac-
tuation, it is extremely robust and capable large actuation force
and energy. This has motivated the study of other more complex
patterns16–21.

Of particular interest to this work is the class of nonisometric
origami patterns, in which the director is piecewise uniform in
the plane. These enable the design of complex faceted (origami)
shapes from simple building blocks20,21. However, there are two
significant open issues which need to be addressed before these
ideas can be used to reliably to realize designed shape control.

First, all the patterns described in the literature12–21 have mul-
tiple, energetically degenerate actuated configurations. For exam-
ple, the cone can actuate either up or down. This is compounded
by the fact that, as patterns are made more complex, the num-
ber of multi-stable configurations increases. We illustrate this in
Figure 2, showing a nonisometric origami pattern comprising a
joined pair of actuating pyramids. (The pyramid design is dis-
cussed in more detail later on). Briefly, this sample exhibits two
non-trivially distinct shapes, which are both stable as the pyra-
mids are free to actuate either up or down: If both actuate up (or
down), then the sample realizes the shape depicted at the top in
2(c). Alternatively, if one actuates up and the other down, then
the sample realizes the bottom shape. There is nothing inherent
to this design to break the up-down symmetry, and so both config-
uration are observed in the single sample shown. Thus, in order
to deterministically actuate a patterned sheet into a single desired
configuration, this degeneracy must be broken, ideally in a way
that allows us to arbitrarily program individual folds to actuate
up or down as prescribed.

We aim to introduced directional bias in the natural deforma-

tions of these sheets to break the degeneracy. One approach is
to introduce a hierarchical rotation in the director profile—where
the planar director varies through the thickness of the sheet—in
what is called a twisted nematic profile. These profiles are known
to generate a spontaneous curvature upon actuation which re-
sults in complex bending deformations both in isolated strips22–24

and when integrated into larger patterned sheets25–27. However,
twisted nematics induce a spontaneous Gauss curvature, which
can lead to undesirable anti-clastic bending. Even further, Gauss’
Theorema Egregium states that a change in Gauss curvature is
necessarily accompanied by a stretch. Consequently, this mode
of actuation always results in mechanical frustrations in the sheet
that influence the robustness of actuation28. So, this strategy has
proven effective only when applied in narrow regions. Unfortu-
nately, this restricts the actuation force and energy.

Our key idea is a hybrid approach in which we modify non-
isometric origami so that large regions of uniform director are
joined by narrow boundary regions of slight nematic twist. How-
ever, this is subtle and we provide explicit and quantitative design
guidance for introducing the bias but also suppressing unwanted
anti-clastic bending at the boundary regions. We then incorpo-
rate this bias into simple building blocks of nonisometric origami,
and show that this is an experimentally accessible design strategy;
specifically, in monolithic sheets of uniform composition, varying
only in director orientation in the faces and hinges. With these,
we achieve a robust actuation, with large actuation force and en-
ergy.

The second largely open issue concerns broad strategies for the
design complex shapes: While such strategies are emerging in
the recent literature for radial and smooth surfaces29,30, these re-
quire very precise control over the director field in the patterned
sheet. This can be difficult to achieve experimentally. Our key
idea, however, exploits the capability of nonisometric origami to
create simple building blocks that can be composed systematically
to achieve faceted shapes of arbitrary complexity using monolithic
but heterogeneously patterned sheets. This provides a design
landscape with vast potential; one such example is highlighted
in Figure 1.
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Materials and methods
Patterned LCE films are fabricated following procedures described
in15,36. In short, glass slides are spin-coated with a commercial
photoalignment material (PAAD-22, BEAM Co). Photoalignment
is performed by sequential exposures to a focused 445 nm laser
spot. By adjusting the laser’s linear polarization at each successive
exposure location, we build up the desired complex alignment
pattern. This pattern is then permanently fixed by spin-coating
with a thin layer of mesogenic monomer (RM257, Synthon, 3 wt
solution in dichloromethane) and flood-curing. Finally, two slides
are glued together to form an alignment cell, using glass beads to
ensure a 50 micron cell spacing.

A previously reported one-pot LCE formulation35 is then
capillary filled into the alignment cell in the isotropic phase.
Upon cooling to the nematic phase, it is flood-cured to form a
free-standing monolithic elastomer film. Heat-stimulated shape
change is quantitatively measured using a structured-illumination
optical 3D scanner with micron-scale height resolution (Keyence
VR-3200).

Notation
We will be dealing with vector quantities, both in two and three
dimensions. Sometimes these will be in the same equation. Thus,
we use tilde as a means of distinguishing these quantities. For
instance, we use v for a vector on R3 and ṽ for a vector on R2; we
define the standard basis on R3 as {e1,e2,e3} ∈ S2 and the stan-
dard basis on R2 as {ẽ1, ẽ2} ∈ S1; we set the Cartesian coordinates
x := x1e1 + x2e2 + x3e3 and x̃ := x1ẽ1 + x2ẽ2; we define the three
dimensional gradient as ∇ (with respect to x) and the planar gra-
dient as ∇̃ (with respect to x̃), etc. Here and throughout, the set
Rn denotes the n-dimensional real space with Sn−1 denoting the
set of unit vectors on Rn.

Results
Metric constraint
The fundamental idea of shape morphing is to write a heteroge-
neous pattern of director field on a thin sheet that when actu-
ated creates a pattern of spontaneous stretch that is not compat-
ible in the plane, thereby leading the sheet to a complex three-
dimensional shape. This can be described using a metric con-
straint17,20,31 that relates the three-dimensional deformation y of
the mid-plane of a thin sheet ω ⊂R2 to the induced metric due to
the actuation (described by a parameter r ≡ r(∆T )> 0 with r = 1
prior to actuation and ∈ (0,1) for heating) and a director pattern
n0 : ω → S2:

(∇̃y)T
∇̃y = r−1/3(I2×2 +(r−1)ñ0⊗ ñ0) =: ˜̀n0 , (1)

where ∇̃ is the in-plane gradient and ñ0 := (n0 · e1,n0 · e2) ∈ R2 is
the projection of the the director onto the plane. Note, this for-
mulation is for soft and lightly cross-linked nematic elastomers
(which are nearly incompressible), but it is easily adapted to
nematic glasses17,18,23 for which the incompressibility assump-
tion breaks down. Further, one can justify this metric constraint
rigorously21 on the basis of energy minimization of the well-
established free energy of nematic elastomers7,32. Finally, much

1

1 r1/3

r�1/6

(a)

�T

(b)

(c) (d)

Fig. 3 A simple example of a nonisometric origami. (a) The shape
change induced by actuation of this patterned design cannot be accom-
modated by a planar deformation of the sheet. Alternatively, the sheet
can form a pyramid to realize this shape change (metric). However, there
are many degeneracies: (b) the pyramid can actuation up or down; (c)
the folding angles need not be equal; (d) each triangle can curve so that
the actuation is conical.

of the work thus far has focused on identifying specific patterns
n0 that are consistent with interesting deformations (shapes) y.

There are two broadly open issues: The first is degeneracy, as
there often are many deformations that satisfy the metric con-
straint (1) for a given director pattern, and the second is the sys-
tematic design of complex shapes. In this paper, we propose a
strategy that involves nonisometric origami where both the direc-
tor and the deformation gradient are piecewise uniform to ad-
dress both these issues.

Nonisometric origami
We introduce nonisometric origami through a simple example
where a flat sheet is actuated into a pyramid. Consider a unit
square sheet made of equal triangles of base 1 and height 1/2
as depicted Figure 3(a). In each triangle the director is pro-
grammed in the plane and is parallel to the base of the triangle.
Thus upon heating, each triangle desires a spontaneous contrac-
tion r1/3 along its base and an expansion r−1/6 along its height,
consistent with (1). Notice, though, that it is not possible to sat-
isfy this shape changing distortion in the plane without breaking
up sheet along one of the interfaces distinguishing the four trian-
gles. Alternatively, notice that by rotating each of these triangles
out-of-plane, we can form a pyramid to accommodate the hetero-
geneous shape changing distortion while keeping the interfaces
intact. That is, through the pyramid actuation, we obtain a defor-
mation which satisfies the induced metric in (1). Thus, we realize
a three-dimensional faceted shape by patterning the directors to
be piecewise constant in polygonal regions. This is an example
of nonisometric origami. But this is only a simple example and
one can compose this and other simple examples∗ as building
blocks to achieve more complex shape20,21,33. Thus, nonisomet-
ric origami is a promising route to potentially arbitrary complexity

∗See supplementary material.
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Fig. 4 The design of a pyramid with bias. (a) The director pattern of non-isotropic origami pyramid and wedge-shaped region around an edge. (b)
Details of the wedge-shaped domain highlighted in (a). (c) The modification of the origami director pattern to introduce a twist. (d-f) The possible
actuated shape on heating of the triangular specimen shown in (c). (g) The director pattern for a biased pyramid. (h) The up pyramid is preferred over
the down pyramid.

in shape.
However, the examples suffer from degeneracy, which limits

their utility as building blocks. We highlight this degeneracy with
Figure 3(b-d) for the simple design to obtain the pyramid. Notice,
the pyramid can go up or down. Further, the folding angles do not
all have to be equal, as the symmetric pyramid can be deformed
without stretching the triangles into a range of pyramidal shapes.
Finally, the faces do not have to be flat; instead each triangle can
be deformed without stretch into a conical strip.

Strategy to bias the actuation
We seek a strategy to select amongst the various degenerate
shapes, and the basic idea is relatively simple. These shapes all
involve the same stretch, but differ by the curvature.† There-
fore, we can select a shape by a preferred curvature at each point.
We do this by introducing slight twist in the nematic director in
a monolithic sheet in the regions which form the hinges of the
origami‡. These twist profiles introduce a preferred spontaneous
curvature upon actuation, but this requires careful study. Indeed,
if the twist profile is not properly designed, then actuation can
lead to anti-clastic bending (i.e., negative Gauss curvature) and,
as a consequence, undesirable stretch which would compete with
the designed nonisometric origami.

To understand the various issues involved, we return to our ex-
ample of a pyramid and study in some detail the narrow wedge
around an edge. This wedge is highlighted in Figure 4(a) and
isolated in Figure 4(b). The director profile according to noniso-
metric origami is also marked in the figure. It is convenient to an-
alyze the triangular or wedge-like region indicated by the dashed
line. We introduce a twist in this region as shown in Figure 4(c).

†Note that the folding angle in idealized origami actuation will have finite curvature
in reality.
‡This is achieved experimentally by patterning the two sides of the alignment cell

slightly differently (see the material and methods section).

On the top surface of the sheet, we rotate the director slightly
towards being parallel to the edge, while on the bottom surface
we rotate the director slightly in the opposite sense towards be-
ing perpendicular to the edge. In other words, we introduce a
small twist while retaining the original nonisometric origami de-
sign in the mean profile averaged through the thickness. In what
follows, we show that the wedge deforms in one of three possi-
ble ways shown in Figure 4(d-f) depending on a non-dimensional
parameter g f defined in (8). If this parameter is small, then the
wedge deforms into the anti-clastic shape with two opposite cur-
vature shown Figure 4(d); conversely if the parameter is large,
then one of the curvatures is suppressed and it deforms in one of
the two ways shown in Figure 4(e,f). We incorporate this under-
standing of the deformation of the wedge to the actuation of the
pyramid in the next section.

To establish the result, let 〈n0〉 denote the director distribution
according to the nonisometric origami design shown in Figure
4(b) and 〈n0〉⊥ direction perpendicular to it in the plane. Then,
the twist profile of Figure 4(c) can be described as

nh
0(x) = cos

( τx3

h

)
〈n0〉(x2)+ sin

( τx3

h

)
〈n0〉⊥(x2). (2)

in the coordinate system shown in Figure 4(b). This director pro-
file leads to a spontaneous stretch described by the square-root of
the fully three-dimensional metric

`
1/2
nh

0
(x) := r−1/6(I3×3 +(r1/2−1)nh

0(x)⊗nh
0(x))

= r−1/6
(

I3×3− ε
(
AS(x2)+

(
τx3/h

)
AB +O(τ2)

))
,

(3)

where the second equality is obtained by a Taylor expansion in
the twist angle τ. Here,

AS(x2) = 〈n0〉(x2)⊗〈n0〉(x2),

AB = e1⊗ e1− e2⊗ e2

(4)
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are the spontaneous in-plane stretch and spontaneous curvature
respectively and the parameter ε ≡ ε(∆T ) := 1−r1/2 §. Notice that
the spontaneous curvature has eigenvalues (principal curvatures)
of opposite sign, or negative Gauss-curvature. Due to Gauss’ The-
orema Egregium, it is not possible for the wedge to have both
uniform stretch and uniform negative Gauss-curvature. Thus, this
twist nematic pattern will be internally stressed, and further anal-
ysis is required to understand the nature of equilibrium. The basic
idea in what follows is that the anti-clastic bending can be sup-
pressed completely in favor of singly-bent ridges if the wedge is
sufficiently wide.

We start from the total energy (according to the well-
established free energy of nematic elastomers7,32), and study the
asymptotics of this energy in thickness under the assumption that
we have moderate stretch or ε ∼ h2 similar to34). We obtain a
von Kármán theory described by the energy

EvK(ũ,v) =
∫ l

0

∫ wx1
2l

−wx1
2l

(
Q2
(
sym∇̃ũ+

1
2

∇̃v⊗ ∇̃v+ εÃS(x2)
)

+
h2

12
Q2
(
∇̃∇̃v− ετ

h
ÃB
))

dx1dx2,

(5)

where ũ, v are the in-plane and out-of-plane displacements of
the wedge, respectively, Q2(F̃) = µ(|F̃|2 +(Tr F̃)2) with µ > 0 the
shear modulus of the elastomer, and ÃS(x2) and ÃB are the 2×2
principal minors of the tensors in (4).

To minimize this energy, we set ũ(x̃) = ũ∗(x̃)+ε(x̃+ |x2|ẽ1). No-
tice that the latter term corresponds jump in the strain at the in-
terface and satisfies the (linearized) metric constraint sym∇̃(ε(x̃+
|x2|ẽ1)) = −εÃS(x2). We then minimize the energy amongst the
class of smooth polynomial displacements¶

v(x̃) =
ετ

h

(
κ̂1x2

1 + κ̂2x2
2

)
,

ũ∗(x̃) =

(
b1x3

1 +b2x1x2
2 +b3x1

c1x3
2 + c2x2x2

1 + c3x2

)
.

(6)

Minimizing out the coefficients associated with the in-plane dis-
placements, we find that

min
(bi,ci)

EvK(ũ,v) =
µ

12
lwε

2
θ

2
(

q(κ̂1, κ̂2)+g f κ̂
2
1 κ̂

2
2

)
(7)

where q(κ̂1, κ̂2) = 1+2κ̂2(κ̂2 +1)+2(κ̂1 + κ̂2)
2 +2κ̂1(κ̂1−1) and

g f =
( l4

l4 +(2/15)l2w2 +(7/240)w4

)( 1
15

ε2τ2

(h/w)4

)
. (8)

Here, κ̂i = h/(2ετ)κi are the normalized principal curvatures.
Since q(κ̂1, κ̂2) is minimized at κ̂1 = 1/2 = −κ̂2, the first term in
(7) prefers the deformation of the wedge to be anti-clastic bend-
ing as shown in Figure 4(d). In contrast, the second term in this

§ Prior to actuation, ε = 0 and the sheet is flat and undeformed. Upon heating though,
ε > 0 and this is the driver for shape change within the sample.
¶The terms absent to leading order in this expansion vanish identically when ac-

counted for in the energy minimization.

(a)

(b)

Fig. 5 Experimental observation of the bias pyramid. (a) The actuated
shape (the colors indicate elevation). (b) A comparison of the observed
cross-sectional slice (solid curve) with the predicted cross-section for the
unbiased design (dashed blue line).

energy prefers one of the curvatures to be zero as shown in Fig-
ure 4(e,f). The balance is determined by the non-dimensional
parameter g f which incorporates all design variables. It is easy
to calculate that the exchange of stability happens at g f = 384.
Further, for g f � 384, either κ̂1 ≈ 1/4, κ̂2 ≈ 0 (Figure 4(e)) or
κ̂1 ≈ 0, κ̂ ≈−1/4 (Figure 4(f)) .

Pyramid by design
We now apply this idea to the pyramid. We imprint a mono-
lithic sample with a director pattern shown schematically in Fig-
ure 4(g). Note that this is the director pattern given by the non-
isometric origami in Figure 4(a), except for the small wedge-
shaped regions near the four interfaces where we introduce a
small twist following the considerations in the previous section. If
g f � 384, the wedges themselves favor being singly bent with ei-
ther κ2 ≈ 0 < κ1 (Figure 4(e)) or κ1 ≈ 0 > κ2 (Figure 4(f)). Notice
that the latter of these two configurations forms natural ridge con-
sistent with the actuation of pyramid along an interface. In con-
trast, the former imparts curvature along the interface and this
is not consistent with the overall metric constraint. Therefore, if
g f � 384, the latter configuration (κ1 ≈ 0 > κ2) is preferred since
these wedges are integrated into the overall pyramid design. This
breaks the up-down symmetry as shown in Figure 4(h). Further,
the ridges prefer curvature while the faces prefer to be flat.

We examine this experimentally in Figure 5. We consider a
nematic elastomer with molar composition .75 RM82, 1 RM2AE
and 1 EDT35 synthesized into a monolithic but patterned square
film of dimensions L = 17mm and thickness h = 30µm. We design
the twist wedges for this pattern as in 4(g) to bias the actuation
up while choosing the width w and twist angle τ so that negative
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(b)

(c)
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(a)

Fig. 6 Programmable actuation bias is demonstrated in a set of three
joined pyramidal junctions. (a) A schematic of the design. For the center
and right wedges, the twist is as in Figure 4(g). For the left, the top
and bottom director prescription is reversed (this is emphasized with the
change in color). (b) Intended shape, in which one pyramid actuates
down and the remaining two actuate up. The sheet is taken to rest on
a flat surface. (c) Top view of fabricated monolithic sample, patterned
with three of the biased pyramidal building blocks from Figure 5. Each
building block is 5mm×5mm. (d) Measured shape of sample upon heating
shows that each pyramid actuates in its programmed direction. False
color represents heights, with a span of 3 mm.

Gauss curvature is suppressed. In this direction, we note that the
composition above gives‖ r≈ 0.80 and ε = 1−r1/2 ≈ .11 when the
film is heated from room temperature to 160 C. Thus, we design

‖This value comes from the experimentally measured contraction data for this com-
position 35.

the bias so that τ = π/12 and width of the wedge is w ≈ 3.60mm.
Since l� w, this gives g f ≈ 10000� 384.

The measured shape on heating the sheet to 160 C is shown
in Figure 5. The fabricated sheet actuates in the programmed
direction when heated, and this is reproducible over dozens of
heat cycles. Further, as shown in the supplementary video, this
bias is sufficiently robust that the pyramid promptly returns to
its programmed direction even after being manipulated by hand
into the "wrong" configuration. Furthermore, the shape is in good
agreement with the theoretical prediction. The anisotropy param-
eter was measured to be r = 0.8 for this material and temperature
change35. This leads to a prediction of the cross-section indicated
by the dashed line in Figure 5(b) for a pyramid without any bias
and this agrees well with the observation. The observed actuation
is muted slightly in comparison since the twist nematic wedge re-
gions induce a metric which differs by O(ετ) from the induced
metric for the unbiased pyramid in these regions.

Nonisometric origami as building blocks
We now show how to link simple nonisometric origami patterns
together as building blocks to generate complex shape. For the
the efficacy of this design strategy, our ability to bias the simple
building blocks to achieve a unique actuation proves crucial. We
explain this by comparing experiments of designs composed of
both biased and unbiased nonisometric origami building blocks.

We first consider the simplest possible design composed of
building blocks of unbiased nonisometric origami. Figure 2 shows
a design satisfying the metric constraint (1) with two pyramids
linked across a region where the director is identical for each pat-
tern. In particular, the sample in 2(a) is patterned uniformly in
the region where the building blocks are linked.∗∗ Thus impor-
tantly, we expect the deformation to be uniform here (with no
interface), and consequently, we expect the total deformation to
be a complex three dimensional shape. In other words, we ex-
pect that the pyramids do not deform in isolation but rather as
an integrated structure. These expectations are exactly realized
in the experiments shown in Figure 2(b). However, since each
pyramid can actuate either up or down, this design is multi-stable
as observed. We can rectify this using biased building blocks.

To highlight this, we now modify the design in 2(a) by com-
posing together three simple but biased pyramid building blocks
as depicted in Figure 6(a). For each building block, we prescribe
twist nematic regions along the interfaces. These are designed to
break the up-down symmetry of the pyramid actuation, while en-
suring that unwanted anti-clastic bending is suppressed. Specifi-
cally, the center and right building block are designed to actuate
up into a pyramid, while the left is designed to actuate down. For
the latter, we simply flip the top and bottom prescription of the di-
rector to achieve the opposite bias. This design, in theory, results
in a unique energetically favorable actuation described by 6(b)
(this is simply a combination of the two actuations in 2(c)). The
corresponding experiment in 6(c-d) is in excellent agreement:
The pyramids are biased, and the entire structure rotates over

∗∗The grey dashed line in the figure is there simply to delineate the building blocks.
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(a) (b) (c)

2 > 0

2 < 0

Ridge  
Curvature

Fig. 7 Designing a humanoid soft robot by linking symmetric four-faced and five-faced building blocks. The figure described the design and actuation
of (a) a portion of the head and neck region, (b) the body region, and (c) one of the arms. The colored arcs represent the designed curvature along the
ridges of the origami; blue for a twist nematic wedge design to induce negative curvature transverse to the ridge, and red for a wedge design to induce
positive curvature.

during the actuation to avoid bending the faces of uniform direc-
tor. In doing all this, the patterned sheet achieves the predicted
origami actuation.

Conclusions
Designing complex shapes

We have demonstrated experimentally two capabilities in actu-
ating patterned nematic elastomer sheets: 1) Predictable three
dimensional origami shape can be realized through the design of
nonisometric origami building blocks. 2) These building blocks,
when linked together, can be used to produce robust complex yet
predictable, actuations.

This functionality enables a design landscape with striking pos-
sibilities. We showcase this through a pattern to achieve, upon
heating, the "humanoid" soft robot shown in Figure 1. The design
is composed of symmetric four and five-faced building blocks.
Each of the 27 total building blocks is independently compatible,
and these are linked across regions in which the director profile
is uniform. For example, in the head and neck region depicted in
Figure 7(a), we have two such linkages—one where a five-faced
building blocks merges with a four-faced building block to form
part of the neck and another where two five-faced building blocks
merge to build a portion of the head. To ensure that the design
actuates the desired shape, we have designed a bias at each of
the interfaces. The blue arcs describe an appropriately designed
wedge whose twist profile is prescribed at the top and bottom

of the wedge as depicted in Figure 4(a). This leads to symmet-
ric pyramids which actuates up just as in 4(c). In contrast, the
red arcs describe a wedge design 4(a) in which the top and bot-
tom directors of the twist profile are reversed. This leads to sym-
metric pyramids which actuate down. By controlling the shape
and direction of actuation for these simple nonisometric origami
building blocks and linking these together compatibly, we are able
to systematically build a design to achieve the desired humanoid
shape.
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