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Delayed gravitational collapse of colloidal gels is characterized by initially slow compaction that
gives way to rapid bulk collapse, posing interesting questions about the underlying mechanistic
origins. Here we study gel collapse utilizing large-scale dynamic simulation of a freely draining
gel of physically bonded particles subjected to gravitational forcing. The hallmark regimes of col-
lapse are recovered: slow compaction, transition to rapid collapse, and long-time densification.
Microstructural changes are monitored by tracking particle positions, coordination number, and
bond dynamics, along with volume fraction, osmotic pressure, and potential energy. Together
these reveal the surprising result that collapse can occur with a fully intact network, where the
tipping point arises when particle migration dissolves strands in a capillary-type instability. While
it is possible for collapse to rupture a gel network into clusters that then sediment, and hydrody-
namic interactions can make interesting contributions, neither is necessary. Rather, we find that
the “delay” arises from gravity-enhanced coarsening, which triggers the re-emergence of phase
separation. The mechanism of this transition is a leap toward lower potential energy of the gel,
driven by bulk negative osmotic pressure that condenses the particle phase: the gel collapses
in on itself under negative osmotic pressure allowing the gel, to tunnel through the equilibrium
phase diagram to a higher volume fraction “state”. Remarkably, collapse stops when condensa-
tion stops, when gravitational advection produces a positive osmotic pressure, re-arresting the
gel.

1 Introduction
Rapid and reversible transitions between solid-like and liquid-like
behavior in colloidal gels and other complex fluids underlie their
extraordinary utility as engineered materials. Such transitions
can be induced thermodynamically, kinetically, and mechanically
in applications as diverse as injectable pharmaceuticals, drilling
fluids, and flexible body armor. These “on-demand” macroscopic
transitions arise from the multiphase structure of the material:
microscopically small particles or chains suspended in a contin-
uum fluid form a microstructure that deforms and relaxes relative
to the fluid, over observable time scales. Bulk material deforma-
tion, phase separation, and other transformations are triggered
(or resisted) at the microscopic scale by entropic, hydrodynamic,
and other interactive forces that control particle rearrangements
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that ultimately cascade upward to the macroscopic length scale.
Colloidal gels form a particularly important class of complex

fluids, owing to their ability to simultaneously capture all three
mechanisms of phase transition: the thermodynamic and kinetic
phase transition that arrests to form the gel; and, as shown in
our recent work, mechanical yield, flow, and re-solidification that
strongly suggest non-equilibrium phase transitions.1

Hard-sphere colloids serve as an excellent model system for il-
lustrating all aspects of thermodynamic, kinetic, and mechanical
phase transitions. Distinct phases in a colloidal phase diagram
(cf Figure 1) can be sampled by moving “left to right” (increas-
ing colloid concentration) or “up and down” (strengthening in-
terparticle attractions). In either case, the strength of particle
diffusion is key to the ultimate fate of the material; weakening
it via interparticle attractions or steric hindrance promotes con-
densation and phase separation, but such transitions are sensi-
tively path dependent. For example, inducing interparticle at-
tractions of order several kT (where k is Boltzmann’s constant
and T is the absolute temperature) can both trigger the onset
of phase separation but also arrest it, leading to formation of a
bi-continuous network of condensed, glassy strands embedded

Journal Name, [year], [vol.],1–24 | 1

Page 1 of 24 Soft Matter



CP

49.4% 53.6% 58% 64%

2-phase region

fluid/
crystal

TP
gel / glass line

crystal

kT/V

liquid
liquid/
crystal

Colloid volume fraction, φ

colloidal 
fluid

repulsive 
glass

attractive 
glass

gas

pu
re

ly
 

re
pu

ls
iv

e
st

ro
ng

ly
 

at
tra

ct
iv

e
spinodal
binodal

re-entrant 
liquid

Fig. 1 Schematic picture of equilibrium phase behavior in colloidal sys-
tem with interparticle potential V and colloid volume fraction φ . A second
axis in the region V/kT � 1 shows approximate values of φ where tran-
sitions occur in systems of purely repulsive hard spheres. 2–4

in a dilute solvent – a colloidal gel.2–7 Thermal fluctuations are
strong enough to rupture interparticle bonds, permitting particles
on the surface of the network to migrate along strands, attracted
to energetically favorable morphology.8 Ongoing age-coarsening
thus ratchets particles into more deeply bonded states, simultane-
ously seeking complete phase separation and deepening the arrest
that bars it. The linear-response rheology of such gels is elastic
over all frequencies and they stiffen with age.8 However, they
can fluidize if subjected to sufficiently strong shear.1,9–14 Zia and
coworkers showed that particle rearrangements and microscopic
bond dynamics that permit yield under shear are consistent with
a release from kinetic arrest,1,9,10 and that ongoing deformation
can also produce re-solidification, itself suggestive of re-arrest.
A non-equilibrium phase diagram thus translates the mechanical
behavior of delayed shear yield to non-equilibrium phase behav-
ior, which we shall refer to as “phase mechanics”.

Delayed gravitational yield has been described as sudden, inex-
plicable collapse — owing to an initial period after gelation where
the network supports its own weight but that abruptly ends with
a sometimes quite rapid macroscopic collapse. The result is a
dense, structureless sediment at the bottom of a container, an
obviously bad outcome if one had hopes of creating a durably
suspended network. On the bright side, this behavior is a clar-
ion signal pointing to the trifecta of colloidal gel responsiveness:
thermodynamic, kinetic, and mechanical phase transition.

Three macroscopic deformation regimes typify gel col-
lapse.15–27 Soon after the gel has formed, it undergoes a rela-
tively slow reduction in macroscopic height, an “induction pe-
riod” that abruptly gives way to a fast-sedimentation regime —
gel collapse — during which as much as 70% of the original
height is lost.22 At long times, the sedimentation rate again de-
creases, ending with long-time compaction.19,23 Early studies of
this phenomenology focused primarily on understanding and de-
veloping predictive models for the connection between interpar-
ticle bond strength, particle density (weight), and particle con-
centration (volume fraction) to the “delay time” – the length of
the time separating gel formation and the onset of rapid collapse.
Visual inspection has suggested diverse structural changes during

collapse ranging from the appearance of “volcanoes” near the de-
taching surface,27 channels and streamers in the bulk,16,17 and
breakup of network into clusters.15,22,26,28 Approaches to formu-
lating such models are diverse, but can be classified broadly into
one of two perspectives.

In the first broad view, gel collapse is a consequence of evolving
boundary conditions of the gel with its container. The attractive
potential that promotes gelation (produced by e.g. non-adsorbing
polymer depletant or adhering polymer bridging chains) attaches
the particles to the surrounding container surfaces.29 Side walls
and a container bottom exert reaction forces that, along with
buoyant forces, support the gel against gravitational forces.18,30

A container ceiling can also permit attachment of the gel, counter-
acting to some extent the gravitational force acting on particles. If
such a ceiling is slippery or deformable, for example a meniscus,
particles embedded in it can slide along and deform it, permitting
descent of the gel, which has been identified as one mechanism
underlying the slow induction period;18 subsequent detachment
of the gel from the meniscus is then identified as the transition
point to fast collapse. The model for collapse is essentially that
the gel was never strong enough to support its own weight. In this
scenario, bond strength, meniscus surface tension, the container
dimensions and the shape of the meniscus can be connected to
the detachment (delay) time.17,18,30

An alternative viewpoint holds that collapse is correlated with
bulk rheological evolution.16,19,20,22,23 Because gelation typically
occurs within the context of at least weak gravitational effects,
one must first examine the interplay between gelation and sedi-
mentation. This can serve as a measure of the sensitivity of net-
work connectivity to fluid backflow, for example, an important
element in understanding which happens first: network rupture,
followed by sedimentation, compaction that drives e.g. backflow
that ruptures the network into a sedimenting suspension, or other
rheological changes. However, the role of backflow does not drive
the collapse, although it can certainly affect post-transition sedi-
mentation.

Gelation can compete with sedimentation, as pointed out by
Allain et al.16 who propose that gravitational settling outpaces
the lateral migration of particles required for their aggregation
into clusters; the role of gravity is thus to hinder the formation of
a space-spanning network, shifting the gelation boundary com-
pared to quiescent gelation. Gelation thence requires a higher-
than-predicted volume fraction of colloids, which can be achieved
when sedimentation increases local particle concentration. Al-
lain, Cloitre, and Wafra16 were the first to propose that the in-
duction period comprises this interplay, and that a transition to
fast sedimentation arises from subsequent network failure caused
by fluid backflow. In such a scenario, the initial sedimentation
rate depends on factors that influence the formation of the gel it-
self: the volume fraction of colloidal particles, and the strength of
interparticle attractions. While they focused on gels formed with
permanent interparticle bonds, Faers31 focused on reversible in-
terparticle bonds, i.e. gels formed via arrested phase separation.
His results led him to surmise that the induction period, while still
a matter of ongoing gelation, spanned the time required for spin-
odal decomposition to arrest, and was thus set primarily by the
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strength of interparticle bonds. However, the structural origins of
abrupt collapse remained an open question.

We pause here to identify that Allain et al.’s perspective in-
volves convolution of sedimentation with moving “left to right”
in a phase diagram, while Faers’ view involves moving “up and
down” in a phase diagram. Their initial insights led the way to
a rich body of subsequent literature interrogating the interplay
between sedimentation, reversible physical gelation, and hydro-
dynamic effects.

Hydrodynamic interactions in dense suspensions play an im-
portant role in sedimentation that can convolve with gelation
under flow. Gel formation accompanied by initial sedimentation
must produce fluid backflow due to the no-flux boundary at the
bottom of the container, but such backflow is hindered by the
initial structure of the gel.32,33 It has been proposed that early
sedimentation remains slow until subsequent structural evolution
produces a cascade of changes that eventually lead to large-scale
network rupture. The detailed failure mechanism proposed de-
pends on the strength of interparticle attractions.

To wit, when attractions are so strong that Brownian motion
plays no role at all, the convolution between sedimentation and
gelation is absent: particle rearrangements are negligibly slow
compared to the time scale of sedimentation. In such a scenario,
Buscall and coworkers15,32 proposed that the network breaks at
the bottom, densifying there first as the weight of the gel com-
pacts it to the floor. The theory put forth to support this view
is limited to very weak deformation and thus cannot predict be-
havior beyond the early induction period, and thus cannot tie the
onset of collapse to structural changes. At the other extreme,
poroelastic theory20,23,24,34,35 effectively models creeping sedi-
mentation (with no delay), or the compression of the gels during
later stages of sedimentation. No theory captures the behavior of
the gel from induction period through rapid sedimentation. Stud-
ies of permanent gels that do come closer to predicting collapse,
e.g. by Partridge15 and Allain et al.16, typically attribute it to
backflow that ruptures the network. Such mechanisms are lim-
ited to gels where bonds are nearly permanent. However, with no
detailed observations to support it, the mechanism for network
failure remains unknown.

Collapse mechanisms proposed for reversibly bonded gels in-
clude the idea that aging leads to structural and rheological
changes that weaken the gel. It has been argued that fluid back-
flow weakens the gel by further altering structure, eventually
leading to network rupture. Poon and coworkers were the first
to describe this perspective as a loss of ability to “heal” ruptured
bonds, allowing fluid backflow to create wide channels that fur-
ther increased backflow, in turn widening the channels even fur-
ther. Gopalakrishnan et al.21 extended this idea to relate bond
rupture and formation, modeled via a Kramers escape time, to
macroscopic delay time, but the connection between single par-
ticle dynamics and subsequent changes in structure at network
length scales beyond the transition to rapid sedimentation re-
mained unexplained. Yet another study by Kamp and Kilfoil22

measured height evolution in one container and elasticity in an-
other, by imposing oscillatory shear. They reported that the gel
loses its elastic modulus at some point before or during bulk col-

lapse, but rather than create channels of fluid backflow, the gel
underwent catastrophic network disintegration into clusters via
an unknown mechanism that subsequently fell rapidly. The idea
that elastic rigidity is lost prior to sedimentation is intriguing –
but the experiment required bulk oscillation of the gel to mea-
sure the moduli, which is sufficient to trigger earlier yield,1 thus
preventing reliable conclusion.

Overall, where gel collapse is viewed as a bulk phenomenon,
the role of interparticle attractions is central to analysis, but the
mechanism of transition in reversibly bonded gels still remains
murky. While many-body hydrodynamic interactions may also
play a role, we focus on the detailed evolution of bond dynam-
ics that, even in the absence of hydrodynamic interactions, play a
primary role in non-equilibrium phase transitions exhibiting de-
lay, triggered by shear stress1 and under flow startup.10

In the present study, we carry out large-scale simulation of a
freely-draining colloidal gel formed by arrested phase separation
subjected to gravitational forcing that, after delay, triggers col-
lapse. We show here that collapse bears the hallmarks of a “me-
chanical phase transition” from an arrested phase toward a more
dense structure. Surprisingly, we find that this can occur with a
fully intact network structure, and we show that the gel actually
collapses in on itself under the pull of negative osmotic pressure
arising from interparticle attractions. Overall, we argue that grav-
itational forcing triggers a temporary release from kinetic arrest
of the colloidal gel, allowing it to traverse (or tunnel through)
the equilibrium phase diagram toward a state with higher vol-
ume fraction. This non-equilibrium trajectory manifests as a leap
toward lower potential energy and is driven by bulk negative os-
motic pressure that condenses particles toward higher coordina-
tion number.

The remainder of the study is organized as follows: In section
2, the model system is presented. The methodology for the dy-
namic simulation is described in section 3, and along with the
method by which the macroscopic gel height is calculated from
particle positions. Results, presented in Section 4, are divided
into four parts: macroscopic behavior of the gel is characterized in
Section 4.1; its connection to microscopic structure are elucidated
in Section 4.2; bond dynamics are examined to provide quantita-
tive evidence for the mechanism of transition in Section 4.3; and
osmotic pressure is computed to connect collapse to bulk rheol-
ogy in Section 4.4. The study is concluded with a discussion in
Section 5.

2 Model system
We study a colloidal gel formed from a suspension of 750,000
nearly-hard Brownian spheres of mean radius a initially dispersed
in an implicit Newtonian solvent of viscosity η and density ρ. The
Reynolds number is much smaller than unity, Re = ρUa/η � 1,
owing to the small size of the particles, where U is the characteris-
tic velocity of a particle. Inertial forces in the fluid are thus much
weaker than viscous stress, and fluid motion is thus governed by
the Stokes equations. Crystallization is avoided by implementing
a polydisperse size distribution of five equally populated particle
sizes with mean a and variance 3.5%. The particles are initially
randomly distributed at a volume fraction φ = 4πa3n/3 = 20%.

Journal Name, [year], [vol.],1–24 | 3

Page 3 of 24 Soft Matter



V
0
/
k
T

(a) (b)

r

a

a

a(1 + �)

2�

-6

-4

-2

0

2

In
te

rp
ar

tic
le

 p
ot

en
tia

l, 
V(

r)
/k

T

2.42.32.22.12.01.9
Particle separation, r/a

Morse potential
 V0/kT = -6

2 2(1 + �)

Morse potential
V0/kT = 6

<latexit sha1_base64="d0K08/eWFl1bn+hcoI53Eqcmgmk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU82K+HEQil48Vui2xXYp2TTbhmazS5IVytJ/4cWDild/jjf/jWm7B60+GHi8N8PMvCARXBuMv5zC0vLK6lpxvbSxubW9U97da+o4VZR5NBaxagdEM8El8ww3grUTxUgUCNYKRrdTv/XIlOaxbJhxwvyIDCQPOSXGSg/NHj4ZNdA1Ou+VK7iKZ0B/iZuTCuSo98qf3X5M04hJQwXRuuPixPgZUYZTwSalbqpZQuiIDFjHUkkipv1sdvEEHVmlj8JY2ZIGzdSfExmJtB5Hge2MiBnqRW8q/ud1UhNe+hmXSWqYpPNFYSqQidH0fdTnilEjxpYQqri9FdEhUYQaG1LJhuAuvvyXeKfVqyq+P6vUbvI0inAAh3AMLlxADe6gDh5QkPAEL/DqaOfZeXPe560FJ5/Zh19wPr4ByL+PNw==</latexit><latexit sha1_base64="d0K08/eWFl1bn+hcoI53Eqcmgmk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU82K+HEQil48Vui2xXYp2TTbhmazS5IVytJ/4cWDild/jjf/jWm7B60+GHi8N8PMvCARXBuMv5zC0vLK6lpxvbSxubW9U97da+o4VZR5NBaxagdEM8El8ww3grUTxUgUCNYKRrdTv/XIlOaxbJhxwvyIDCQPOSXGSg/NHj4ZNdA1Ou+VK7iKZ0B/iZuTCuSo98qf3X5M04hJQwXRuuPixPgZUYZTwSalbqpZQuiIDFjHUkkipv1sdvEEHVmlj8JY2ZIGzdSfExmJtB5Hge2MiBnqRW8q/ud1UhNe+hmXSWqYpPNFYSqQidH0fdTnilEjxpYQqri9FdEhUYQaG1LJhuAuvvyXeKfVqyq+P6vUbvI0inAAh3AMLlxADe6gDh5QkPAEL/DqaOfZeXPe560FJ5/Zh19wPr4ByL+PNw==</latexit><latexit sha1_base64="d0K08/eWFl1bn+hcoI53Eqcmgmk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU82K+HEQil48Vui2xXYp2TTbhmazS5IVytJ/4cWDild/jjf/jWm7B60+GHi8N8PMvCARXBuMv5zC0vLK6lpxvbSxubW9U97da+o4VZR5NBaxagdEM8El8ww3grUTxUgUCNYKRrdTv/XIlOaxbJhxwvyIDCQPOSXGSg/NHj4ZNdA1Ou+VK7iKZ0B/iZuTCuSo98qf3X5M04hJQwXRuuPixPgZUYZTwSalbqpZQuiIDFjHUkkipv1sdvEEHVmlj8JY2ZIGzdSfExmJtB5Hge2MiBnqRW8q/ud1UhNe+hmXSWqYpPNFYSqQidH0fdTnilEjxpYQqri9FdEhUYQaG1LJhuAuvvyXeKfVqyq+P6vUbvI0inAAh3AMLlxADe6gDh5QkPAEL/DqaOfZeXPe560FJ5/Zh19wPr4ByL+PNw==</latexit>

Fig. 2 (a) Plot of the Morse potential used in the present study. (b)
Colloid-depletant model system. Dashed lines enclose the volume ex-
cluded to the depletants.

Gelation follows introduction of a short-range attractive poten-
tial, as would be induced by the addition of non-adsorbing deple-
tant molecules,36 or attachment of bridging chains,37 for exam-
ple. A pairwise Morse potential Vi j provides a tunable model of
such interactions:

Vi j(ri j) =−V0

[
2e−κ(ri j−(ai+a j))− e−2κ(ri j−(ai+a j))

]
. (1)

Here, ri j is the distance separating particles i and j with radii
ai and a j. The characteristic strength of attraction, V0, is chosen
such that bonds are durable but reversible, 5kT ≤ V0 ≤ 6kT . The
range of the potential is set by κ = 30/a which corresponds to a
depletant-to-colloid size ratio, or bridging chain average radius of
gyration-to-colloid ratio37 ∆ = 0.1. Hydrodynamic interactions
between particles are neglected. This system was described in
detail in our previous study of age coarsening and its impact on
dynamics and linear-response rheology.8

The gel is replicated periodically in the x and y directions of
an orthogonal reference frame, whilst no-flux boundaries are im-
posed at the bottom (z = 0) and top (z = H) of the simulation
cell to model a hard, flat, and impermeable floor and ceiling. Par-
ticles are prevented from passing through the wall via a steep
repulsive potential, detailed in the Supplementary Materials.

To mimic experimental studies where the sample is typically
sealed in a tube and tumbled for several hours allowing the sam-
ple to gel to attach to the walls and menisci, we age the gel in
the presence of walls in the absence of gravity for 100 Brown-
ian times, 100 a2/D, where 1 a2/D is the time it takes an isolated
particle to diffuse its size in solvent.

3 Dynamic Simulation Method
Gravity is imposed by exerting a body force on all particles, which
mimics a density mismatch between colloids and solvent. Col-
loidal dynamics in Stokes flow are governed by the Langevin
equation, where particles are acted upon by hydrodynamic, Brow-
nian, interparticle, and buoyant forces:

m · dUUU
dt

= FFFH +FFFB +FFFP +FFFG. (2)

Here, m is the mass or moment of inertia tensor of the particle, UUU
is particle velocity, and FFFH , FFFB, FFFP, and FFFG are hydrodynamic,
Brownian, interparticle, and buoyant forces respectively. The hy-
drodynamic force on a particle i in a freely draining suspension is
given by Stokes’ drag law:

FFFH
i =−6πηaiUUU i, (3)

where UUU is the particle velocity. The stochastic Brownian force,
averaged over many collisions with solvent particles, obeys Gaus-
sian statistics with zero mean and co-variance set by the fluctua-
tion dissipation theorem:

FFFB
i = 0, FFFB

i (0)FFF
B
i (t) = 2kT (6πηai)Iδ (t), (4)

where the overbar denotes an average over times long compared
to the inertial relaxation of a particle. The Brownian impacts are
instantaneously correlated, where δ (t) is the Dirac delta function.
The interparticle force is derivable from the spherically symmetric
potential, FFFP = −∇V (r), (cf Equation 1), and is summed over
the contribution from all particles j interacting with particle i (or
a nearby wall):

FFFP
i =−∑

j

∂Vi j(ri j)

∂ ri j
r̂rri j−

∂Vi,w

∂ ri,w
r̂rri,w. (5)

Here, r̂rri j is the unit vector pointing from the center of particle j
to the center of particle i, and r̂rri,w is the unit vector pointing from
the wall to the center of particle i. The gravitational force on each
particle is given by:

FFFG
i =

4π

3
∆ρa3

i ggg, (6)

where ∆ρ is the density mismatch between colloids and solvent,
and ggg is the acceleration due to gravity.

The dynamic equations are integrated forward in time to obtain
instantaneous particle positions and velocities using velocity Ver-
let integration, implemented by the LAMMPS molecular dynamics
software package.38 Selection of a small time step enforces Stoke-
sian physics, the regime where both Reynolds and Stokes num-
bers are vanishingly small, as shown in our prior work.8 In this
overdamped regime of colloidal motion, inertia does not matter
and thus motion is set by a balance between gravitational, Brown-
ian, and interparticle forces. Bond durability is set by the strength
of attractions relative to diffusion, V0/kT . The strength of the
gravitational force relative to the entropic force, also influences
relative particle motion. We recall that gravitational settling of
purely repulsive hard spheres in a container creates a concentra-
tion gradient that drives diffusive flux upward that in turn resists
sedimentation, giving a natural force scaling: a gravitational Pé-
clet number Pe = (4π/3)∆ρa3g/(kT/a), a measure of the strength
of advective settling ∆ρa3g relative to entropic resistance kT/a. In
the present study, values were chosen to match those studied in
the experimental literature: 0.01 ≤ Pe ≤ 0.1. Together, Pe and
V0/kT determine particle-scale motion.

Detection of collapse and measurement of subsequent sedimen-
tation rate requires identification and tracking of an emergent
free surface. In experiments, dark field imaging17 is utilized to

4 | 1–24Journal Name, [year], [vol.],

Page 4 of 24Soft Matter



identify the height of the gel formed by a clearly distinguishable
interface between colloid-rich gel and colloid-poor supernatant.
One method for finding a free interface is to distinguish between
the low volume-fraction (colloid-poor) supernatant and the high
volume-fraction (colloid-rich) gel. However, as the gel detaches
from the container ceiling, the newly exposed surface in both
experiments and simulations is quite rough, comprising exposed
pores and dangling strands of highly heterogeneous volume frac-
tion. We developed an algorithm to interrogate spatial variation
in volume fraction, described in Appendix A to give an unam-
biguous measurement of the position of the bulk top surface of
the gel.

The total stress 〈σσσ〉 in the gel is averaged over the entire vol-
ume and can be separated into contributions from the solvent and
that due to the particles, 〈ΣΣΣ〉, following the approach of Batche-
lor.39,40 The particle-phase stress in general includes contribu-
tions from Brownian, interparticle, and externally driven hydro-
dynamic forces:

〈ΣΣΣ〉=−nkT I+ 〈ΣΣΣB〉+ 〈ΣΣΣP〉+ 〈ΣΣΣH,ext〉, (7)

where the first term is the ideal osmotic pressure arising from the
presence of the particles. Brownian motion contributes first to
the interparticle stress 〈ΣΣΣP〉 and, if hydrodynamic interactions are
present, produces disturbance flows that create Brownian stress,
〈ΣΣΣB〉. In the freely draining limit, the latter vanishes, as does
〈ΣΣΣH,ext〉. The remaining interparticle stress n〈xxxFFFP〉 includes the
so-called elastic stress (entropic exclusion), as well as contribu-
tions from attractive forces:

〈ΣΣΣ〉=−nkT I+n〈rrrFFFP〉, (8)

where I is the identity tensor, rrr = XXX i−XXX j is the separation be-
tween an interaction pair, and the angle brackets signify an aver-
age over particles defined in Appendix B. The osmotic pressure is
thence computed as

Π =−1
3

I : ΣΣΣ. (9)

4 Results
The gel is formed as described in Section 2 from a dispersion of
Brownian spheres at an initial volume fraction φ = 20%, and at-
tractive interparticle potential of magnitude V0 = 5kT, 6kT after
which it is subjected to a gravitational field — a body force ex-
erted on each particle, Pe = (4π/3)∆ρga3/(kT/a), varied to test
the influence of particle weight, ∆ρg = (ρparticle−ρ f luid)g, on col-
lapse. The macroscopic deformation, microstructural evolution,
and rheology are monitored throughout simulation. The result-
ing data are presented and analyzed here, starting with macro-
scopic deformation, followed by detailed structural analysis, then
examination of bond dynamics and osmotic pressure.

4.1 Macroscopic collapse

Prior to application of the external force, the gel network spans
the entire container with a structure that is homogeneous8 over
the network length scale. The external force is imposed and, over
time, the gel eventually separates from the ceiling, forming a free

surface that descends downward. Utilizing the method described
in Appendix A, the region of the gel initially in contact with the
ceiling was monitored over time and, from it, the evolution of
macroscopic gel height was measured, revealing distinct temporal
sedimentation regimes. The sedimentation rate is computed from
the same data, and is compared below to the sedimentation of
purely repulsive hard spheres, suggesting potential mechanisms
underlying the collapse behavior.

4.1.1 Densification

Gravitational compaction of the gel reduces its macroscopic
height and increases its volume fraction, and one goal of the
present study is to determine whether the former causes the lat-
ter, or vice versa. The intimate connection between the two bulk
measurements is nowhere more important than the emerging free
interface that descends over time, because the criterion by which
it is defined is the volume fraction of particles in the topmost
layer of the gel. As discussed in Section 3, the network-length
scale roughness of the newly free surface requires partitioning of
the gel into vertically stacked layers a few particles thick, and
computation of a volume fraction averaged within each individ-
ual layer (each of which encloses at least 3000 particles):

〈φ〉(z) = ∑i 4πa3
i /3

Vlayer
, (10)

where the angle brackets denote an average over the layer cen-
tered at z, computed by adding the volume of every particle i
located in the layer divided by the volume of the cuboidal layer,
Vlayer. We created 100 such bins, and these bins can either re-
main static or the bins can compress and follow the gel as it falls.
The resulting depth-dependent volume fraction is plotted in Fig-
ure 3a for a 5kT bond-strength gel and particle weight Pe = 0.05
(plots for V0 = 6kT and other values of Pe can be found in Fig-
ure S2 of the Supplementary Materials). Each curve shown is an
instantaneous snapshot of 〈φ〉(z) at selected times as noted in the
legend. The initial volume fraction is 〈φ〉 = 20%, for all depths
0 ≤ z/H ≤ 1. Fluctuations in volume fraction correspond to
the bi-continuous morphology of the gel comprising particle-poor
pores and particle-rich strands. As the gel compacts, a depletion
region forms near z/H = 1 and an accumulation region near
z/H = 0, forming three distinct zones distinguished by volume
fraction: a colloid-poor region at the top with 〈φ〉 < 20%, a free-
falling zone in the middle with 〈φ〉 ≈ 20%, and a densifying zone
at the bottom, with 〈φ〉 > 20%. As the gel peels away from the
ceiling, a supernatant forms where 〈φ〉 → 0; some particles are
left behind stuck to the ceiling, giving 〈φ〉 6= 0 there.

As the gel densifies, a few particles remain attached to the ceil-
ing, and others diffuse freely in the supernatant, while most of the
particles remain with the bulk gel. In Figure 3b, volume fraction
is plotted from the bottom of the container to the current height
of the gel, hgel . The “free-falling” and densifying zones, predicted
by Buscall and White32 for strong gels, are clearly distinguish-
able but, in contrast to their permanently-bonded gel, the volume
fraction profiles in Figure 3b show pronounced spatial and tem-
poral variation. First, the interfacial region with 〈φ〉 < 20% is
not sharp and can penetrate down to 10% of the bulk gel. Sec-
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ond, density fluctuations within the free-falling zone change over
time, demonstrating that the gel is not truly in free-fall. That is,
the relative positions of particles within layers are evolving with
time, unlike that of a permanently bonded gel. In particular, an
increase in volume fraction near z/hgel = 0.4 reveals densifica-
tion in the middle region of the gel, suggesting for the first time
that densification may arise not only due to affine compaction,
but also due to some other driving force. This is the first indicator
that phase separation may play a role in gel collapse.

The middle and bottom zones, initially differentiable as

〈φ〉 = 20% and 〈φ〉 > 20%, merge at long times and, concomi-
tantly, densification slows markedly. The final volume fraction at
the free surface is approximately 10%, and is 30% ≤ 〈φ〉 ≤ 45%
elsewhere. A coarse estimate of the final compacted volume frac-
tion is obtained by an average over the entire compacted gel,

〈φ f 〉=
1

hgel

∫ hgel

0
〈φ〉(z)dz. (11)

Prior studies22,24 noted that weaker bonds permit denser com-
paction, which we study here by varying bond strength V0/kT
and particle weight, Pe. We plot the final volume fraction 〈φ f 〉 in
Figure 4 for a range of particle weights 0.01 ≤ Pe ≤ 0.1, and
two interparticle strengths, V0 = 5kT and V0 = 6kT , which are
expected to lie between the volume fraction of the undeformed
gel 〈φi〉 = 20%, and the volume fraction of an attractive glass
〈φg,attr〉 ' 62%.41–43 The final height for the range of particle
weights and bond strengths spans the range 25% ≤ 〈φ f 〉 ≤ 45%,
with a more densely packed terminal gel state as Pe increases. If
we recall the phase diagram in Figure 1, the final compacted gel
would now be located farther to the right, possibly outside the
binodal. This suggests that yield is a non-equilibrium leap to a
region of more complete phase separation. Weaker interparticle
bonds permit a greater leap; this suggests that re-arrest of phase
separation, rather than mechanical equilibrium, determines when
compaction will stop.

Overall, the evolution of volume fraction shows that bond re-
versibility plays a qualitative role in compaction mechanics. The
volume fraction within the gel also contradicts the idea that col-
lapse causes disintegration of the network into clusters which sub-
sequently pack closely in a final sediment. In the present study,
this is evidently not the case, since the average volume fraction
does not reach random-close packing. This suggests that the gel
retains its continuous network structure throughout the duration
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of collapse; a detailed analysis of its structure is undertaken in
Section 4.2. Finally, the final volume fraction represents a leap
outside the binodal in the phase diagram, strongly suggesting a
phase separation process that subsequently re-arrests.

4.1.2 Bulk height evolution

Slow descent of the bulk height commences after application of
the external force and is monitored over time, utilizing the al-
gorithm described in Appendix A. The temporal evolution of gel
height changes with particle weight, ∆ρ = ρparticle − ρ f luid , and
is studied here over the range 0.01 ≤ Pe ≤ 0.1, selected to corre-
spond to experimental studies.15–19,21,22,26,44 The instantaneous
height of the gel hgel , normalized on its initial value H, is plot-
ted as a function of time in Figure 5a. Several curves are shown,
corresponding to the range of Pe indicated in the legend, with
two curves for each value of Pe: one for V0 = 5kT and one for
V0 = 6kT bond strength.

All curves in Figure 5a display a monotonic decrease of gel
height over time, where changes in slope recover three well-
defined regimes: slow initial compaction, a subsequent period of
rapid sedimentation, followed by a slower, long-time compaction
regime. The simulation results here show excellent qualitative
agreement with experiments.15–19,21,22,26,44 Even with the sim-
ple model of a freely draining gel, we recover all the hallmarks of
gel collapse.

The initial compaction of the gel during the induction period∗

is quite small when plotted within the range of the overall height.
The inset shows a zoomed-in view of the induction period on
a linear-linear scale, showing that initial deformation is indeed
small, 0.1% ≤ hgel/H ≤ 0.5% (this deformation is at least an or-
der of magnitude larger than the resolution of the measurement
algorithm described in Appendix A, which can detect bulk strain
as small as 0.01%). The slow descent eventually transitions to
faster deformation, where the change in slope signals the end of
the induction period. This “delay time”, τdelay, between forcing
onset and rapid sedimentation, shortens as the forcing strength
increases.

The decrease in delay time with increasing Pe is shown in Fig-
ure 5b, for both the 5kT and 6kT gel, and recovers experimen-
tally reported trends.17,21,22,24,31 The two curves are well sep-
arated when Pe is small, suggesting that Brownian motion and
thus bond dynamics play a role in the delay time. Indeed, weaker
attractions are correlated with a shorter delay time and this dis-
parity widens as forcing gets weaker, showing that at the same
value of Pe, stronger Brownian motion hastens collapse. This dual
trend has been studied in prior theory and experiments and has
been attributed to an increased bond rupture rate21 that leads to
loss of network connectivity, or a decrease in bond formation rate
that interferes with concurrent gelation and sedimentation,16 in
turn leading to rapid sedimentation. While such studies provide
convincing support for the idea that external forcing augments
thermally activated bond rupture and can be utilized to predict

∗A non-uniform descent of the gel in the early stages of the induction period may
be present in some experiments in which the gel slides along a curved meniscus to
which it is initially attached. 17,18

the delay time, no detailed structural measurements have been
made to support the ideas. Our recent study of fixed-stress shear
yield showed that Brownian motion hastens yield.1 In Section 4.3
we present measurements of bond loss and gain, along with other
structural changes, to interrogate the cause of the delay in yield.

The second regime, fast sedimentation, is well-separated from
the first regime by a finite transition from shallow to steep slope
in the height-evolution curve. The transition region is exam-
ined both to identify the delay time, τdelay, between gelation
and collapse, and also to characterize the onset of collapse as
“abrupt”16,21 or “gradual”17,31. The former objective is typically
carried out by setting τdelay to the time at which lines drawn
tangent to the slow-induction and fast-sedimentation regimes in-
tersect. The latter observation (abrupt versus gradual) leads to
conjecture about the mechanistic cause of the transition to fast
collapse, and is simultaneously the most interesting and least un-
derstood aspect of gel collapse. Hypotheses vary widely, such as a
loss of network connectivity,22 the widening of network channels
during the initial induction period,17 detachment of the gel from
the meniscus,18 and fluid backflow that ruptures the network.16

At a minimum, it can be said that the gradual steepening bears
the hallmarks of a “tipping point”, but visual inspection does not
provide satisfying insight to the underlying micromechanics. In
the present study, structural changes accompanying this rheolog-
ical transition are interrogated in detail in Section 4.2 to obtain
precise temporal connection between onset of rapid sedimenta-
tion and structural evolution.

Rapid sedimentation is the next temporal regime of gel col-
lapse, where the majority of bulk height is lost over a time scale
much shorter than the initial delay, as shown in Figure 5a. The in-
set reveals that when interparticle bonds are strong and particles
are not heavy, the fast collapse appears short-lived.

At long times, sedimentation slows, approaching a plateau.
The change in height approaches zero, giving a long-time “final”
sediment height. Unsurprisingly, weaker interparticle bonds and
heavier particles both permit a more compacted final sediment,
consistent with experiments22,24 and the average final volume
fraction calculations in Section 4.1.1.

Overall, we have demonstrated that a simple freely draining
model recovers the three distinct temporal collapse regimes: a
slow induction period that ends with a tipping point, followed
by a transition to faster sedimentation; then rapid sedimenta-
tion over an extended period of time and, finally, slow, long-
time compaction. Small changes in height preceding the tipping
point, and the dependence of delay time on bond dynamics sug-
gest that small but quantifiable structural changes underlie the
tipping point. The model recovers experimentally reported de-
pendence of delay time and final compaction height on Pe and
bond strength and show that bond reversibility plays a qualitative
role in collapse mechanics. In the following sections, we will in-
terrogate the evolution of sedimentation rates and examine the
snapshots accompanying the regimes of sedimentation.

4.1.3 Sedimentation rate

Detailed measurements of macroscopic height taken in Sec-
tion 4.1.2 permit accurate computation of the transient sedimen-
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tation rate and thus enable quantitative analysis of the tipping
point and qualitative understanding of whether the network set-
tles like a suspension (of particles or clusters) or condenses by
some other mechanism.

The sedimentation rate U is computed as the slope of the tem-
porally evolving height, and is plotted in Figure 6a as a function
of time, for a range of particle weights 0.01 ≤ Pe ≤ 0.1. The tem-
poral regimes characteristic of delayed sedimentation15–27 are re-
covered in all curves: First, a constant compaction speed is ob-
served at short times, the induction period. A sudden increase in
U is identified as the tipping point, which permits the gel to enter
the fast collapse regime. It reaches a peak value that increases
and occurs earlier as Pe increases and as bond strength decreases.
Eventually, the sedimentation rate slows markedly, entering long-
time compaction slower than initial compaction. The shortening
of delay time with weaker bonds is less pronounced than the ef-
fect of increased particle density, Pe, suggesting that the delay
time does not simply span a period of ceiling detachment.

To test the influence of gel attachment to the ceiling, additional
simulations were run with a purely repulsive ceiling. Figure 6b il-
lustrates this effect on the sedimentation rate for a 6kT gel with
Pe = 0.05. The delay time is shorter by a scalar value without the
attachment, but collapse still exhibits a pronounced delay, con-
firming that collapse is a bulk rheological phenomenon. Although
an attractive interaction with the container or a stiff meniscus de-
creases the initial sedimentation rate, it does not suppress the in-
duction period, showing that colloid-colloid interactions underlie
the delay time.

It is natural to ask whether the neglect of hydrodynamic inter-
actions makes the sedimenting gel the same as a sedimenting dis-
persion of purely repulsive colloids. We measure the rapid-phase
sedimentation rate and compare it to a freely draining suspen-
sion undergoing sedimentation in a finite-height container. As
particles advect downward and accumulate near the bottom, the
resulting number-density and osmotic-pressure gradient drive dif-
fusive flux upward. Sedimentation rate curves in Figure 6b illus-
trate the downward particle flux: in the absence of interparticle
bonds, the topmost layer undergoes constant free fall from t̂ = 0
until the accumulation region at the bottom drives gradient dif-
fusion upward, in turn slowing overall sedimentation. The most
important feature to notice is that for the purely repulsive hard-
sphere dispersion, there is no tipping point, no appreciable in-
crease in fall speed, and no induction period. Delayed collapse
requires bonds, but does not require hydrodynamic interactions.

Remarkably, the purely-repulsive suspension falls slower than
a gel subjected to the same gravitational forcing. This can be
understood by recognizing that for purely repulsive particles, os-
motic pressure is positive, giving a tendency for the particle-phase
to expand outward,45 thereby resisting gravity and slowing sed-
imentation. When particle attractions are strong enough to in-
duce gelation, the contribution to osmotic pressure from inter-
particle interactions (i.e. the second virial coefficient) is negative
on average,8 pulling particles toward one another, condensing
the particle phase, thus aiding compaction. Quantitative analysis
(Figure S5 in Supplementary Materials) shows that when bonds
are stronger, the scaling with Pe increases. This result is coun-

terintuitive if one expects stronger bonds to produce a stronger
gel network, i.e., that stronger bonds give a higher yield stress.
We will return to the idea in Section 4.4 that the sign of osmotic
pressure determines the tendency of the material to compact.

To understand this surprising result, one can recognize that the
elastic stress, n〈xxxFFFP〉, produces a negative osmotic pressure in the
presence of attractive forces, becoming more strongly negative as
bonds become stronger. This suggests that the same negative os-
motic pressure that drives condensation and phase separation is
driving the collapse of a kinetically arrested gel, but a state of
arrest slows the rate of response (fall speed) of the gel. From
this we might infer that yield is a release from kinetic arrest, that
collapse is actually condensation, i.e., non-equilibrium phase sep-
aration, and that the “tipping point” to fast collapse is the onset
of this phase separation.

In summary, gel collapse is a bulk rheological phenomenon
whereby an evidently intact, self-supporting network yields and
sediments. The durable but transient bonds produce compaction
that is distinct and indeed faster than the settling of a dispersion
of unbonded particles, which we hypothesize arises from the neg-
ative osmotic pressure created by a condensing particle phase.
Overall this suggests that non-equilibrium phase separation is the
central process underlying the delay and tipping-point behavior.

4.2 Structural evolution
In the previous section, a phenomenological picture of gel col-
lapse emerged in which yield signals a release from kinetic arrest
and collapse is gravity-activated, non-equilibrium phase separa-
tion; here structural measurements are made to interrogate this
idea. Prior studies have put forth other phenomenological de-
scriptions of the structural evolution underlying the macroscopic
induction and bulk collapse phases. To support our claim that ac-
tivated phase separation is the fundamental mechanism at work,
we begin with simple visual inspection of the microstructure at
key instants during gel collapse. A series of snapshots of the struc-
ture is embedded in the plot in Figure 7, each taken at the time
t̂ ≡ t/(a2/D), connecting structure to the bulk sedimentation
curve for Pe = 0.05 and V0 = 5kT (Images for V0 = 6kT and
other Pe can be found in Figures S3 and S4 of the Supplemen-
tary Materials). For this gel, the induction period extends from
0 ≤ t̂ ≤ 12, with peak sedimentation occurring at t̂ = 120, fast
collapse until t̂ ≈ 1400, and finally, slow, long-time compaction.

At t̂ = 0, the network appears fully connected, and forms an
elastic gel† that is bonded to the top and bottom surfaces, span-
ning the entire container. The next snapshot is taken at t̂ = 12,
corresponding to the end of the induction period, and shows no
visually obvious structural change during the delay time. The gel
remains fully attached to the ceiling, the network appears to re-
main connected, and morphology unchanged. These observations
are unsurprising on one hand, given that the bulk deformation
measurements presented in Section 4.1.2 show less than 0.5%

†G′ and G′′ measurements in the linear regime over frequencies reveal that the elas-
tic modulus of the network dominates over its viscous modulus. See Figure S1 in
Supplementary Materials.
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Fig. 7 Sedimentation rate U ≡−dhgel/dt, normalized on HD/a2, plotted as a function of diffusively scaled time for gel with bond strength V0 = 5kT and
particle weight Pe = 0.05. Snapshots of the gel at several instants during the sedimentation process.
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bulk strain. However, this result is remarkable in the context of
prior phenomenological models put forth to explain the end of
the delay period such as break-up of the network into clusters,22

or breakage of strands and release of debris from the network17.
The lack of network-length scale rearrangement during induction
suggests that bulk deformation during induction must be carried
out by individual particle displacements.

The layer of particles adjacent to the ceiling is examined to see
whether the gel detaches everywhere at the same time, or more
gradually. The height detection algorithm (Appendix A) provides
a means by which to characterize the developing rough interface,
where spatial resolution of volume fraction measurements detect
both particles and pores. Solvent pores adjacent to the ceiling
are depicted as contour maps in Figure 8. As shown in the leg-
end, bright green cells correspond to particle-rich regions near
the container surface, while gray regions correspond to solvent
pores near the container surface, and black indicates vertically
deep pores of a dozen particle radii. At t̂ = 0 (Figure 8a), most
of the ceiling is covered by particles, separated by a few shallow
pores. At the end of the induction period, at t̂ = 12, more pores
of the same vertical size appear adjacent to existing pores, indi-
cating that pores adjacent to the ceiling grew laterally but not
vertically. Initial depletion of the top layer of the gel similarly
measured in experiments17 also occurs by lateral pore enlarge-
ment rather than average bulk descent.

To understand the lateral pore growth mechanism during the
induction period, we revisit the mechanism of pore growth during
quiescent aging. The durable yet temporary nature of bonds al-
lows the gel to restructure over time;8 net migration of particles is
driven by decrease of potential energy, as illustrated in Figure 9. A
cross-sectional sketch of a network junction in Figure 9a depicts
two types of curvature — axial curvature along the strand, and
hoop curvature around the strand. Idealized particle-scale struc-
ture for a strand with a smooth surface is depicted in Figure 9b;
the mobile surface particles have more bonds when they reside at
a junction, and fewer bonds far from a junction. Curvature thus
produces a driving force for particles to migrate away from the
strand and toward the junction, eventually dissolving the strand.
Such migration is enhanced further (cf Figure 9c) by hoop curva-
ture, driving particles away from continuously narrowing strands.
This exposes a new, higher-energy free surface comprising parti-
cles with fewer bonds, driving even faster pore growth. Overall,
this quiescent-aging driving force is self-reinforcing, causing pore
growth and thickening of strands by particle migration toward
junctions in the network.

Particles in contact with the ceiling can only migrate down-
ward or laterally, illustrated in Figure 9d. For a pore surrounded
by particles adjacent to the ceiling, particles closest to the ceil-
ing have the highest energy. At short times, they migrate away
from the ceiling toward the bottom of the pore, decreasing en-
ergy and causing lateral pore growth. Weak gravitational forcing
further enhances this migration. Some particles may also dislodge
from the surface and be advected by gravity toward the bottom
of the pore to cause further lateral pore growth during induction.
The slow descent of the gel during the induction period is thus
caused by gravity-enhanced coarsening migration that leads to

self-reinforcing lateral pore growth near the ceiling.
The tipping point is essentially the result of a capillary-type in-

stability, where particles migrate away from the length of a strand
toward a junction. Owing to the strong influence of Brownian mo-
tion, this instability manifests as a transition from pore widening
to rapid vertical pore growth, rather than a dramatic disintegra-
tion of the entire network.

As sedimentation speed ramps up from the tipping point to the
peak fall speed (12 < t̂ ≤ 120), Figure 8c-d show that several
portions of the gel are still attached to the ceiling, even at t̂ = 120
(well into rapid sedimentation). That is, neither the tipping point
nor the peak sedimentation is set by the gel simply letting go
of the ceiling. Further, new gray cells appear, as pores continue
to grow laterally, revealing that self-reinforcing pore growth and
coarsening continue beyond the tipping point, and the instability
grows. Additionally, vertical pore growth commences (dark grey
cells), as some particles dislodged from the network surface mi-
grate downward under gravity toward the bulk. Zoomed-in view
of the top several layers in the gel and quantitative volume frac-
tion measurements (in Figures S6 and S7 in the Supplementary
Materials) provide further support.

Our results agree with observations reported in the experimen-
tal literature, which show that rapid sedimentation begins while
the gel is still partially attached to the top boundary. For example,
Starrs et al.,18 provide dark-field images of the collapsing gel that
show that the gel slides partly down the meniscus at very early
times, then detaches only partially during the induction period.
These images are compared to corresponding times on the height
vs time plot (at arrow ‘j’) and show that the gel is still clearly and
partially attached to the meniscus at the onset of rapid sedimen-
tation. Similarly, video of gel collapse from Kamp and Kilfoil22

show the emergence of a rough interface, but the correspondence
between the images, height, and time was not presented. What
is clear from their video is that backflow and recirculation occur
well after onset of collapse. Overall, experiments agree with our
findings: collapse is not a simple matter of a gel that is too weak
to sustain its own weight once it detaches from supportive bound-
aries.

Recent simulation studies by Del Gado and coworkers46 have
shown that in the limit of very weak thermal motion where gel
morphology is stringy with low average contact number, strands
rupture where local stresses are high in the network. The conse-
quence of rupture is stress relaxation over long length scales in
the network that can be screened by increasing thermal motion.
In the present study where thermal motion plays a significant role
in particle rearrangements and morphology is bi-continuous and
strands are thick, strand dissolution occurs from particle motion,
over many Brownian times, leading to the formation of a rough
surface, which in turn drives even more particle migration toward
lower energy.

Following the peak sedimentation rate, structural changes are
pronounced and visually obvious, as shown in snapshots of the
entire gel in Figure 7. During the rapid sedimentation regime,
at t̂ = 500, gradual dissolution of strands near the top leaves
colloid-poor regions several particles deep, separated by strands
still attached to the ceiling. By t̂ = 1000 (Figure 7), the colloid-
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Fig. 8 Contour map of pores adjacent to ceiling showing the gel formed by V0 = 5kT , forced at Pe = 0.05 at a variety of instants in time from the onset
of gravity until peak sedimentation rate. Green cells corresponds to regions where particles are attached to the ceiling, and gray cells correspond to
pores adjacent to the ceiling. Gray-scale shows the depth of the pore from the ceiling, with darker color indicating vertically larger pore.
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poor regions grow and more strands dissolve but the rough sur-
face is still partially attached to the ceiling. A container-wide su-
pernatant does not emerge until much later. That is, neither the
tipping point, peak sedimentation rate, nor rapid sedimentation
requires detachment of the gel from the ceiling, and the gel can
descend rapidly even when a significant portion is still attached
to the ceiling.

While the gel descends away from the ceiling, particles accu-
mulate near the bottom (Figure 3b and zoomed-in volume frac-
tion measurements in Figure S7 in Supplementary Materials),
where morphology changes include pronounced pore shrinkage
(Figure 7). Nonetheless, the entire gel retains its porous network
structure, contrary to the hypothesis15,16,22 that the network rup-
tures into clusters that subsequently pack densely near the bottom
of the container.

A container-wide supernatant appears by t̂ = 4000 (Figure 7),
where the entire gel is detached from the ceiling, save the lone
particles and dangling strands remaining attached to the ceiling.
The most important feature of gel morphology is the interface
separating the gel and the supernatant, which is still rough at the
length scale of the container. Quantitative measurements of vol-
ume fraction support the visual observation of a container-wide
supernatant (see Figure S7 in Supplementary Materials) where
〈φ〉 → 0 at t̂ > 1000. The interfacial region (Figures 3b and S7
in Supplementary Materials) thins over time, with the 〈φ〉 ' 20%
region creeping slowly upward toward z/hgel ' 94%, and the
topmost layer at 〈φ〉 ' 10% and slowly depleting. The middle
zone has disappeared. By this time, the sedimentation rate de-
cays rapidly and collapse ceases, indicating that when the gel can
densify no further, collapse stops.

Overall, structural evolution is reminiscent of a capillary-type
instability triggered by gravity, where the particles near the ceiling
migrate away from strands toward junctions, leading to a transi-
tion from lateral pore growth to vertical pore growth at the tip-
ping point. The onset of this instability should be quantifiable
by bond dynamics, where the transition to vertical pore growth
beyond the tipping point is signaled by a decrease in average
bondedness that subsequently reverses, owing to coarsening and
restructuring of the interface. When fast collapse is underway,
the bulk of the gel undergoes pore shrinkage and densification;
macroscopic sedimentation rates are fast compared to purely re-
pulsive freely draining hard spheres, suggesting that a mechanism
other than simple advection toward the impermeable floor drives
the gel downward. Similar to the driving force near the interface,
enhanced coarsening migration in the bulk can also cause the gel
to eliminate bicontinuous structure and increase volume fraction,
a condensation process. Bond dynamics in the bulk and near the
top surface are interrogated in the next section to quantify and
test these ideas.

4.3 Bond dynamics and evolving the energy landscape

Here we interrogate bondedness, potential energy, and volume
fraction throughout the simulation to shed light on the driving
forces of delayed gel collapse. The rate process that connects
each of these to one another and to phase behavior is bond dy-

namics — how and when particles gain or lose bonds relative to
the three temporal regimes of collapse, and the potential energy
landscape this creates. The microscopic bond dynamics within
the three macroscopic spatial regions (rough surface, free-falling
bulk, compacting bottom) are monitored to differentiate between
enhanced coarsening and affine compaction, where the former
is driven by phase separation and the latter is driven directly by
gravitational flux. The osmotic pressure is a complementary mea-
surement that will be utilized to distinguish phase separation-
driven condensation from affine gravitational flux-driven com-
paction.

4.3.1 Average bond evolution: minimization of potential en-
ergy

Reversible gelation creates durable bonds between particles that
can rupture to permit diffusive particle migration along gel
strands, where a particle exchanges neighbors but eventually ac-
quires more bonds; dynamics thus slow and arrest deepens in
this process of age coarsening.8 The sketch in Figure 9 illustrates
how this process is driven by the bond-energy landscape, driving
instability of the network away from strands toward junctions,
which favors formation and relaxation of bonds. Here we exam-
ine the effect of gravitational forcing on this process, by monitor-
ing interparticle separation throughout simulation, and using it to
track bond formation, bond loss, and changes in potential energy.
The measurement underlying each of these is interparticle sepa-
ration, s = (r− 2a)/2∆, which is monitored for each neighboring
pair throughout simulation. When s≤ 1, the pair is bonded. Each
particle thus has a contact number, Nc, arising from all the bonds
that connect it to its neighbors. Summing Nc over all particles
and dividing by two gives the total number of interparticle bonds.
Bond formation and loss are tracked via the contact number, with
Nc = 0 for free diffusers, 1≤ Nc ≤ 7 for particles on the surface of
network strands, and 8≤ Nc ≤ 12 for particles buried deep within
a strand. There is thus a well-defined distribution P(Nc), aver-
age 〈Nc〉, and peak value of contact number that correlate with
morphological features such as network surface-to-volume ratio.
These can each be computed utilizing the entire gel population,
or within spatial regions, e.g., the horizontal slices as defined in
Section 4.2. Once a bond is formed, it can be stretched, relaxed,
or compressed. The precise length s of a bond sets the potential
energy of a pair interaction. A decrease of potential energy indi-
cates of bond relaxation or gain, while potential energy increases
as a bond moves away from equilibrium — either stretching or
compressing. Each condition is identified by the sign of s. The av-
erage potential energy per particle is thence computed as a sum
over all bonds, divided by the number of particles N:

〈PE〉(t) = ∑i< j Vi j(ri j)

N
. (12)

Changes in potential energy accompany phase transitions in
molecular materials, as part of the Helmholtz free energy mini-
mization that drives spontaneous processes. Equilibrium colloidal
phase transitions have been treated similarly,3,47 with success.
Here we propose to examine changes in the average potential en-
ergy of the gel during yield and densification, with the view that
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decreasing 〈PE〉 is one indicator of progression toward equilib-
rium, i.e., release from kinetic arrest. Normalized on its initial
value, 〈PE0〉, a value of 〈PE〉(t)/〈PE0〉 greater than unity cor-
responds to increasingly negative (decreasing) potential energy
(bond formation and relaxation). When 〈PE〉(t)/〈PE0〉 < 1, ex-
isting bonds are either compressed or stretched (possibly lost),
leading to an increased (less negative) potential energy. ‡

The gel is binned into nine layers of equal thickness that
changes as the gel falls, and the contact number and potential
energy are averaged within each layer (defined in Appendix B)
and plotted in Figure 10. The average contact number and po-
tential energy for a quiescently coarsening gel and for each layer
in the falling gel are plotted in Figures 10a and 10b respectively.
Shaded regions indicate bulk macroscopic regimes. The dotted
quiescent curves reveal slow ongoing coarsening, 〈Nc〉(t)/〈Nc,0〉>
1 as bonds form; meanwhile, 〈PE〉(t)/〈PE0〉 increases with time.

In the top layer of the collapsing gel, the average contact num-
ber and potential energy show little change during induction,
consistent with the findings in Section 4.2. However, the macro-
scopic transition regime (orange background) overlays precisely
with a measurable shift in bond dynamics in the topmost layer
in the gel. Beyond the tipping point, approximately 0.2% of
bonds are lost, and the normalized potential energy increases
(Figure 10b), suggesting that bond loss is accompanied by some
bond stretching. That is, the capillary-type instability is set by
average bond loss, which is what permits a transition from lat-
eral to vertical pore growth. However, coarsening should ulti-
mately result in an increase in number of bonds and a decrease
in potential energy. Beyond the tipping point, initial bond loss is
rapidly overtaken by net particle migration toward junctions and
reattachment of particles in the network, leading to a subsequent
decrease in potential energy (〈PE〉(t)/〈PE0〉> 1) and an increase
in number of bonds within the gel. This coincides with the disso-
lution of some ceiling-attached strands, and partial liberation of
a free surface. The surface now rapidly smooths itself, giving the
ramp-up to fast bulk descent. Quantitative microscopic support
of this idea is shown in the curves spanning the transition regime
(12≤ t̂ ≤ 120), which reveal a reversal from average bond loss to
average bond gain (Figure 10a), at t̂ = 100.

Following peak sedimentation (t̂ > 120), the gel continues to
detach from the ceiling (cf Figure 3b) where one expects that
bonds must be lost in the creation of a free surface. Surpris-
ingly, in Figure 10, the average contact number continues to in-
crease while the average potential energy continues to decrease
(〈PE〉/〈PE0〉 > 1), revealing net bond formation and relaxation
without densification, supporting the idea that the fast descent of
the rough interface occurs by smoothing of its bumpy topology via
coarsening migration of individual particles: network evolution
of pore growth and pore coalescence in the top layer. Whether
this coarsening migration is enhanced by gravity is a question we
return to shortly.

‡Whether 〈PE〉(t)/〈PE0〉< 1 results from bond stretching or compression can be dis-
cerned by a negative or positive osmotic pressure and an examination of bond-length
statistics.

In the bulk of the gel, we observed in Figure 3b (and Figure
S7 in Supplementary Materials) that volume fraction increases
from the bottom up, most evident at long times; this densifi-
cation can arise at least in part from simple affine compaction;
but such condensation may also signal phase separation. To dis-
tinguish between the two, we recognize that if affine displace-
ments drive collapse, the average potential energy would increase
(〈PE〉(t)/〈PE0〉< 1) at long times as particles are pushed toward
hard-sphere contact, driving particles out of the energy minimum.
Microscopic measurements actually reveal the opposite trend: a
decrease in average potential energy (〈PE〉/〈PE0〉> 1) in the blue
colored region of Figure 10b. The gel not only densifies every-
where but does so with a lower average energy. Compared to
the quiescent gel, the falling gel exhibits a more pronounced de-
crease in potential energy over the same duration of time, indi-
cating that this energy decrease occurs faster than the deepening
arrest of quiescent coarsening.

Overall, evidence of a rapid decrease in potential energy ac-
companying densification and a more rapid descent (cf Fig-
ure 6b) of a gel compared to a suspension of purely repulsive
hard spheres, together suggest that gel collapse is driven by a
non-equilibrium phase separation rather than affine compaction
alone, toward a dense, lower-energy structure. Further inter-
rogation of osmotic pressure will quantify the contribution of
affine compaction in driving particles toward hard-sphere con-
tact, which would contribute to a positive osmotic pressure, in
contrast to the negative osmotic pressure associated with phase-
separation driven condensation.

To further interrogate the idea that collapse is triggered phase
separation, we turn our attention away from average quantities
to the distribution of contact number, P(Nc), to interrogate the ex-
change between populations of particles binned by contact num-
ber.

4.3.2 Bond distribution: densification mechanisms

In Section 4.2, we argued that self-reinforcing pore enlargement
driven by gravity-enhanced coarsening is a capillary-type instabil-
ity that produces the tipping point to collapse, but the observed
shift in average contact number was small. Microscopic evidence
of this process should include a change in contact-number distri-
bution similar to that observed during quiescent age coarsening,
but with gravitational enhancement of bond rupture — the ratch-
eting of particles to higher contact number at a rate faster than
the quiescent shift.8 We recall that quiescent coarsening leads to
progressively deeper arrest with no change in net volume frac-
tion, but growing dense domains and solvent pores; in contrast,
if enhanced coarsening leads to rapid phase separation and den-
sification in the bulk of the gel, a rapid migration of particles to
higher contact number should precede densification in the bulk
of the gel. A rapid migration of particles to higher contact num-
ber should precede densification in the gel. The evolution of total
average contact number (Figure S8 in Supplementary Materials)
smears out too much detail. To distinguish coarsening migra-
tion with no volume fraction change from particle advection with
densification, we evaluate the evolution of distribution of contact
number, P(Nc), layer-by-layer in the gel.
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Even though in Section 4.2 we saw growth in pore size, early-
time changes in P(Nc) are difficult to distinguish, in agreement
with 〈Nc〉(t), because the mobile particles that drive coarsening
belong to the population Nc ∈ [0,3], which constitute fewer than
4% of all particles in the gel. A small change in population of
these particles is difficult to detect from P(Nc) curves,8 but one
can tease out the changes relative to the initial population size by
normalizing the distribution at any time t̂ by its value at t̂ = 0,
plotted in Figure 11. To get an even closer look, the gel is di-
vided into three functional groups: the top 10% where it even-
tually detaches from the ceiling (plots (a) through (d)); a zone
(0.4 ≤ z/hgel ≤ 1) in the gel that initially falls with no change in
volume fraction until t̂ ≤ 500, but undergoes densification beyond
t̂ & 500 (plots e through h); and the bottom, 0.1 ≤ z/hgel ≤ 0.2,
where particles accumulate near the sticky, no-flux floor (plots i
through l). Each row corresponds to a spatial region. Each col-
umn is a temporal regime, corresponding to each shaded region
in Figure 10.

The baseline is the change in contact number distribution for
a quiescent gel. During early quiescent aging (first column), the
top layer (plot a) sees a loss of low contact-number particles over
time. At longer times (40≤ t̂ ≤ 120), in the top layer (plot b), qui-
escent coarsening manifests as further decrease in populations of
surface populations (1≤ Nc ≤ 6) and a corresponding increase in
populations of particles buried in the strand 10≤ Nc ≤ 12, typical
of the coarsening process where particles ratchet toward higher
contact numbers. As the gel quiescently ages further (plots c, d),
even more particles migrate toward high contact number, driv-
ing the peak of P(Nc) toward the right, consistent with previous
detailed studies of quiescent coarsening.8

Now we examine changes in the falling gel starting with the
topmost layer (Figures 11a-d). During the induction period (0 ≤
t̂ ≤ 12), low-contact number populations 0≤ Nc ≤ 3 decrease and

the population corresponding to Nc = 4 increases; while not vi-
sually dramatic, both are more pronounced than quiescent coars-
ening, supporting the view that the slow induction period occurs
via enhanced pore growth arising from gravity-enhanced coars-
ening. This enhanced shift to higher contact number destabilizes
the gel during the ramp-up period (Figure 11b); the growth of
higher contact-number populations appears less pronounced than
the decrease at lower contact number, owing to the disparity in
overall population size (cf Figure S7 in Supplementary Materials).
Recall that during the transition regime, a rough interface begins
to emerge that eventually smooths itself via coarsening. Corre-
spondingly, enhanced coarsening at the top layer continues into
fast sedimentation and slow, long-time compaction, quantified by
further particle migration from low contact-number populations
to high contact-number populations in plots c and d. That is, the
final formation of a flat interface with a smooth topology occurs
via enhanced coarsening migration.

The bottom of the gel is always densifying and accumulating
particles throughout collapse (cf Figure 3b). Here, the evolu-
tion of P(Nc)/P(Nc,0) is markedly different compared to quies-
cent coarsening. During the induction period (plot i), the number
of network surface particles with 1 ≤ Nc ≤ 6 decreases, accom-
panied by an increase in high contact-number particles (thick-
ening strands). Beyond the tipping point (Figures 11j through l
for t̂ > 12), surface particles migrate toward higher contact num-
ber as expected, but, surprisingly, particles deeply buried in the
strand Nc = 12 migrate toward lower contact number, resulting
in an increase in population Nc = 9. This results in pore shrink-
age, signaling condensation. We recall that the bottom layer is
always undergoing affine compaction because the floor is imper-
meable to particles, and the changes in P(Nc)/P(Nc,0) observed
could arise from either affine compaction or from activated phase
separation in the bulk of the gel.
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Fig. 11 Normalized contact number distribution at several times for a 5kT gel with particle weight Pe = 0.05 for various spatial regions (filled symbols)
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We identify two distinct temporal regimes in the middle region:
0≤ t̂ ≤ 500 (no net densification), and t̂ ≥ 1000, when the gel be-
gins to densify. Plots (e) and (f) show that coarsening is no faster
under gravity throughout induction until peak sedimentation, but
later during rapid sedimentation, plot (g) reveals some enhanced
coarsening where normalized contact number distribution reveals
a more rapid migration of particles compared to a quiescent gel.
Recalling that volume fraction is still temporally constant during
this time in the middle region, we infer that P(Nc) shifts higher
owing to coarsening migration rather than affine displacements.
This acceleration of coarsening migration rather than a slow pro-
gression toward arrest supports the idea that the gel is phase sep-
arating and decreasing its potential energy during free-fall rather
than simple coarsening.

Later, when densification of the middle layers commences (plot
(h)), a decrease in the P(Nc) ≤ 6 and P(Nc = 11,12) populations
and an increase in populations of Nc = 9 emerge, the latter in
contrast to quiescent coarsening. That is, particles migrate away
from the highest contact number populations to lower contact
number populations under densification, which can only occur if
pores in the gel have shrunk substantially. It is more favorable
energetically for the volume in the pores to be subsumed by the
strand surrounding the pore, providing additional free volume to

the condensed phase, allowing compressed bonds to relax and, in
consequence, decrease in 〈PE〉.

Clearly affine flux plays a substantial role in densification and
pore shrinkage in the bottom region at long times, but an addi-
tional contribution to particle flux may arise from the advection
of phase separation: the motion of particles driven by activated
release from kinetic arrest. This advection was suggested in Sec-
tion 4.1.3 by the substantially higher sedimentation velocity of
the gel in comparison to a suspension. The only driving force
available to produce enhanced sedimentation velocity is from
particle-phase osmotic pressure, which, if negative, drives the gel
to condense (collapse) after the emergence of a free surface. That
is, densification is not the result of affine bulk descent, but rather
it is the cause: the gel is collapsing in on itself, i.e. phase sepa-
rating. This precedes and drives macroscopic sedimentation, or
collapse.

In summary, quantitative analysis of bond dynamics reinforces
the idea that the tipping point is accompanied by small bond
loss that drives an instability in the gel, triggering a cascade of
changes arising from enhanced coarsening migration of particles
from low to high contacts (and conversely, from high to low en-
ergy) — vertical pore growth that in turn leads to strand dis-
solution and creation of a rough surface, eventually leading to
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ceiling detachment and smoothening the rough surface over sev-
eral hundred Brownian times. In the bulk of the gel, gravity-
enhanced coarsening precedes and drives densification, suggest-
ing that densification arises not only due to particle advection
toward the impermeable floor, but more importantly, due to non-
equilibrium phase separation driven by interparticle attractions
that lowers the average potential energy. The difference be-
tween compaction (the former mechanism) and collapse (the lat-
ter mechanism) can be distinguished even more clearly by mea-
surements of osmotic pressure, discussed in the next section. Per-
haps surprisingly, hydrodynamic interactions are not a necessary
trigger or cause of gel collapse.

4.4 Rheology: Osmotic Pressure
Thus far, we have identified that three distinct processes accom-
pany collapse: enhanced coarsening migration, phase separation,
and affine compaction. The challenge is to distinguish between
affine compaction and phase separation during macroscopic de-
scent; both result in bulk densification and pore shrinkage. The
osmotic pressure can unambiguously differentiate the two pro-
cesses.

Hallmarks of a release from kinetic arrest and post-gelation
phase separation include negative osmotic pressure that drives
an increase in volume fraction from pore shrinkage and the loss
of surface area as the bi-continuous network becomes a bulk at-
tractive glass (with a more sharply peaked distribution of con-
tact number, few particles of Nc ≤ 4, and a decrease in popula-
tions Nc ≥ 10 as particles fill in pores). While affine compaction
should also increase volume fraction, drive pore shrinkage, and
shift the contact number distribution, affine displacements push
many particles toward hard-sphere contact, causing a shift toward
positive osmotic pressure. Thus the evolution of osmotic pressure
becomes the rheological characteristic that differentiates between
when affine particle motion compacts the gel, and when internal
osmotic pressure-driven phase separation collapses the gel from
within.

The effect of particles and their interactions on osmotic pres-
sure has been defined mechanically as the particle contributions
to the negative of the trace of the equilibrium stress tensor45,48,49

defined in Section 3,

Π

nkT
=−1

3
III : 〈ΣΣΣ〉
nkT

= 1+
Π P

nkT
+ ..., (13)

where the first term on the right hand side is the ideal osmotic
pressure and is always positive: diffusion tends to expand system
boundaries.45 The pair contribution Π P can raise or lower os-
motic pressure. A positive pair contribution to osmotic pressure
also tends to expand a system outward, while condensing sys-
tems display Π P < 0.8,45 Only the elastic stress n〈xxxFFFP〉 matters in
a freely draining system, where hard-sphere repulsion (entropic
exclusion) gives a positive osmotic pressure, and attractions give
a negative contribution:

Π P

nkT
=
〈rrr ·FFF〉
3kT

, (14)

where rrr ≡ XXX i−XXX j is the separation between a pair of particles
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Fig. 12 Osmotic pressure at depth of the gel for Pe = 0.05, V0 = 5kT
at various times. The red shaded region indicates negative contribution
to osmotic pressure, indicating many attractions, while the yellow region
indicates positive contribution to osmotic pressure, indicating many re-
pulsions. Inset shows corresponding layer-by-layer volume fraction.

i and j at positions XXX i and XXX j respectively, and FFF is the force
derivable from the interparticle potential (cf Equation 1) for that
separation. The angle brackets denote a sum over all pairs of
interactions, divided by the number of particles. If the range of
depletion attraction is smaller than a critical value, ∆crit ' 0.15,
terms of order higher than O(n2) may be neglected since three-
particle overlaps are prohibited due to steric hindrance (see Sec-
tion 5 in Supplementary Materials). The range of interparticle
attraction for the gel studied in this work is ∆ = 0.1 < ∆crit .

When the interparticle force between the particles is repulsive,
rrr ·FFF > 0, bonds are compressed and act to expand the particle
phase, and Π P > 0. When the interparticle force between the
particles is attractive, negative osmotic pressure pulls particles
together. This condensation tends to drive phase separation. Fig-
ure 2a illustrates that attractions arise when bonds are stretched,
0 < s ≤ 1. Physically, osmotic pressure is positive when particles
can diffuse, either unhindered by attraction or when bonds are
compressed, driving expansion of the particle phase. In contrast,
osmotic pressure is negative in the presence of attractions when
bonds are stretched, hindering diffusion and driving condensa-
tion. Although the gel is out of equilibrium, a decrease in poten-
tial energy decreases the Helmholtz free energy, consistent with
phase separation.

We return to the interrogation of osmotic pressure in the gel
arising from interparticle forces. Since the collapsing gel densi-
fies over time (cf Figure 3b), we begin by plotting the layer-by-
layer pair contribution to osmotic pressure for the falling gel in
Figure 12 for several instants in time. For reference, the volume
fraction variation with depth in the gel is shown in the inset.

Initially at t̂ = 0, the pair contribution to osmotic pressure is
negative everywhere in the gel; in a quiescent gel this evolves
slowly because attractive bonds want to relax but held out of
their wells due to glassy frustration. During the induction period
0 < t̂ ≤ 12, recall that the gel sediments slowly with small changes
in bulk height (cf Figure 5a), little change in volume fraction (cf
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inset, Figure 12, and contact number and potential energy ex-
hibit small fluctuations (cf Figure 10). Correspondingly, the pair
contribution to osmotic pressure remains negative everywhere,
exhibiting weak fluctuations relative to the initial value at t̂ = 0.

During the transition regime (12≤ t̂ ≤ 120), some densification
near the bottom is apparent in the inset, while a change in av-
erage contact number and average potential energy is detectable
everywhere in the gel (Figure 10b). The pair contribution to os-
motic pressure for every instant shown is now averaged over ten
Brownian times. This reveals increased (less negative) osmotic
pressure near the bottom of the gel (0≤ z/hgel ≤ 0.1) that is larger
than the magnitude of fluctuations. However, most of these bonds
are still stretched and the pair contribution to osmotic pressure is
still negative, suggesting that the gel is condensing everywhere.

During rapid sedimentation 120 < t̂ ≤ 2000, the gel undergoes
significant densification (inset in Figure 12), a rough interface
of several pore sizes is apparent near the top of the gel (cf Fig-
ure= 7), and average contact number increases while average
potential energy decreases everywhere in the gel (cf Figure 10).
Correspondingly, pairwise contribution to osmotic pressure (now
averaged over 20 Brownian times), exhibits significant changes.
The top of the gel (0.9 ≤ z/hgel ≤ 1) exhibits negative osmotic
pressure, consistent with the picture of coarsening that drives
the smoothing of the rough interface. Recall that the middle re-
gion in the gel (0.4 ≤ z/hgel ≤ 0.8) initially reveals no densifica-
tion (t ≤ 500) but later undergoes an increase in volume fraction
(t > 500). Correspondingly, the pair contribution to osmotic pres-
sure is negative in this region, suggesting that attractions domi-
nate and drive phase separation, evidenced by both densification
in this layer, and a decrease in potential energy (〈PE〉/〈PE0〉> 1),
consistent with the picture of release from kinetic arrest. The bot-
tom of the gel (0.1≤ z/hgel ≤ 0.2) is also densifying but the corre-
sponding pair contribution to osmotic pressure is positive, indica-
tive of repulsive interactions between particles arising from bond
compression that dominate when affine compaction pushes par-
ticles closer to each other after phase separation has first relaxed
bonds and collapsed the gel, releasing it downward. Overall, this
supports the idea that gravity-enhanced migration triggers an in-
stability in network strand structure that permits release from ki-
netic arrest, all driven by osmotic pressure gradients.

Finally during the late-stage slow compaction regime, when
the sedimentation rate decays rapidly (cf Figure 7), and height
changes are small (cf Figure 5a), the pair contribution to osmotic
pressure is predominantly positive in the bulk of the gel, except
below and at the interface between the gel and the supernatant,
where osmotic pressure is negative for 0.7≤ z/hgel ≤ 1. This sug-
gests that the interface continues to coarsen to reduce surface
area and, beneath it, ongoing condensation allows the gel to fur-
ther densify.

Only at very long times does the osmotic pressure become
mostly positive; when Π P > 0 in over 70% of the collapsed gel, the
gel seems to re-arrest, i.e, sedimentation slows but bi-continuous
structure remains. This re-arrest occurs evidently because gravi-
tational forcing pushes particles toward one another, beyond the
bond minimum, creating compressed bonds that produce a posi-
tive osmotic pressure; this in turn inhibits phase separation. Col-
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lapse evidently ends when the forcing due to phase separation,
i.e. the negative osmotic pressure driving collapse, is resisted
by positive osmotic pressure. That is, the gel collapses in on it-
self due to activated phase separation and somewhat counterin-
tuitively, gravity causes re-arrest — compressed bonds and more
jammed structure.

This hypothesis may be tested in simulation by turning off grav-
itational forcing after the gel reaches its final height, and moni-
toring the pair contribution to osmotic pressure and subsequent
evolution of the gel. If gravity indeed acts to arrest ongoing phase
separation by jamming the structure, “shutting off” gravity should
produce negative osmotic pressure but little coarsening — i.e. a
more deeply arrested gel. The layer-by-layer pair contribution to
osmotic pressure is plotted in Figure 13 after shutting off grav-
ity for several instants in time. Within four Brownian times, the
osmotic pressure becomes negative everywhere in the gel, sug-
gesting that many compressed bonds have now relaxed, and thus
that gravity halted condensation by jamming particles together.
Over time in the absence of gravity, the osmotic pressure deeper
in the container becomes more negative, where volume fraction is
higher (cf Figure 3a). This picture is consistent with the layer-by-
layer analysis of bond dynamics (cf Figure 10a) which revealed
that deeper layers in the gel have a higher mean contact number
and thus particles have more bonds, which initially relax when
gravity is removed, resulting in a more negative osmotic pressure.
Evolution of contact number distribution after turning off gravity
will reveal whether the negative osmotic pressure in the dense
sediment results in further condensation of the gel or whether
the dense sediment is jammed and further bond relaxation is hin-
dered by steric hindrance.

If affine compaction did not re-arrest the gel, instead permit-
ting phase separation to continue, the final morphology would
approach that of a dense sediment devoid of pores, i.e., an attrac-
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tive glass.
We compare the collapsing gel to an attractive glass prepared

from a repulsive glass of volume fraction φ = 0.62, where an
attractive interparticle potential is imposed, as would occur by
adding depletant to a repulsive glass in an experiment.42 We com-
pare the contact number distribution in the bottom layer in the
gel to that of the attractive glass in Figure 14a. The two most
important features of the data for the attractive glass are a sharp
peak at Nc = 9, and a vanishingly small population for Nc ≤ 4
that, combined, confirm that it is devoid of pores of more than
a particle size, and is devoid of surface particles. In contrast,
the bi-continuous gel initially exhibits a broad distribution where
extensive surface area permits a significant population size for
Nc ≤ 4. During collapse (0 ≤ t ≤ 6000), the distribution in the
gel moves toward the right and is more sharply peaked as pores
shrink, and moves toward the distribution of the attractive glass,
but never completely so, evidently prevented by re-arrest due to
gravity. Remarkably, after gravitational forcing is removed, Fig-
ure 14a reveals that the change in contact number distribution
is barely discernible even after 2000 Brownian times, suggest-
ing that further condensation is very slow, despite the negative
osmotic pressure seen in Figure 13b. This suggests that glassy
frustration is too deep (particle mobility is low).

That is, it appears that the requirement for condensation is not
only a negative osmotic pressure, but also that the particles with
negative osmotic pressure are mobile enough to drive bond relax-
ation.

A more refined predictor of collapse is the partial pressure ex-
erted by each population that can reveal whether mobile, surface
particles or deeply embedded particles contribute to the negative
osmotic pressure; in the former, negative osmotic pressure would
drive collapse, in the latter, jamming will prevent phase separa-
tion. The partial pressure of each Nc population (the per-particle
pressure weighted by its population size), is normalized on nkT
and plotted as a function of Nc in Figure 14b. The primary fea-
tures of the partial pressure in the attractive glass are a zero pres-
sure for Nc ≤ 4, and sharply negative values for 7≤ Nc ≥ 11. The
single-phase domain with no surface area (the attractive glass)
drives the former effect. The latter effect evidences deep glassy
frustration, where bonds are pulled out of their wells and held
stretched by jammed morphology. In contrast, in the gel, the
partial pressure for the bottom layer is initially negative for all
Nc ≤ 10 with a negative minimum at Nc = 6; that is, highly mobile
populations have a negative osmotic pressure. During collapse, it
is the negative partial pressure of mobile particles (data for the
middle layer of the gel shown in Figure S8 in Supplementary Ma-
terials) that drives condensation, and densification of the gel.

Eventually, affine compaction pushes particles toward one an-
other, and the partial pressure becomes positive for Nc ≥ 7 by
t̂ = 6000. By shutting off gravity, these compressed bonds relax
and partial pressure becomes once again negative for all popula-
tions, also evident from bond-length distribution, shown in Figure
S10 in Supplementary Materials. However, the partial pressure
now exhibits a negative peak at Nc = 9 after removal of gravity,
differing significantly from the initial gel, and revealing similari-
ties to the attractive glass for Nc ≥ 9, suggesting re-arrest of the

gel.
Overall, several signals combine to suggest that collapse is

gravity-triggered phase separation driven by osmotic pressure: a
sedimentation rate much faster than that of a dispersion; densifi-
cation with overall negative osmotic pressure; and decreasing po-
tential energy. Collapse eventually permits bond compression due
to direct gravitational compaction that drives positive osmotic
pressure causing re-arrest of the gel. This re-arrest prevents fur-
ther condensation of the gel and is evident after removing grav-
ity: more negative partial pressures corresponding to sterically
hindered particles that cannot relax.

The pair contribution to osmotic pressure, averaged over the
entire gel is plotted in Figure 15 during collapse. The pres-
sure is initially negative with little discernible change during
the induction period (0 ≤ t̂ ≤ 12). During the transition period
(12 ≤ t̂ ≤ 120), the pressure increases (becomes less negative)
and continues growing through fast sedimentation. The pressure
becomes positive at t̂ ' 1400 late into the rapid sedimentation
regime. In the inset, the sedimentation rate is shown for the same
gel. When pressure becomes positive, the sedimentation rate has
decreased to less than half its peak value, and the transition to
late-stage slow compaction occurs. Overall, it appears that col-
lapse stops when condensation stops. In other words, when grav-
itational forcing drives particles away from the energy minima
compressing bonds leading to an overall positive pair contribu-
tion to osmotic pressure, it inhibits phase separation, and causes
the gel to re-arrest.

5 Conclusions
A freely draining, reversible gel successfully captures the three
temporal regimes of gel collapse — a slow induction period, fol-
lowed by rapid sedimentation, and final slow compaction. This
behavior has been extensively studied15–23,25–28,50 and is found
to be exhibited by gels ranging from permanently bonded frac-
tal networks to loose aggregates. While macroscopic behavior
is easily tracked, understanding of the structural changes that
occur during collapse have proven difficult to measure in ex-
periments. In the present study, the large-scale computational
model provides access to detailed information about particle po-
sitions and structure to examine collapse and gain insights into
its microstructural origins. We modeled a freely-draining system
comprising 750,000 particles interacting via a hard-sphere repul-
sion and short-range attraction potential several times stronger
than the thermal energy, kT . The interplay between attractive
forces and Brownian motion initiates a phase separation that ar-
rests before it is complete,3,4 freezing in a bi-continuous, non-
equilibrium morphology with thick, non-fractal strands that con-
tinue to restructure and coarsen over time. Gelation and aging
were carried out in the absence of gravity, i.e. on neutrally buoy-
ant particles. A body force corresponding to gravity was then ap-
plied, and varied to mimic a range of particle densities relative to
the solvent. A hard “floor” and “ceiling” gave no-flux and no-slip
interfaces that were modeled as sticky or repulsive. The purpose
of the present computational study was to recover and study the
collapse behavior over all its temporal regimes, to understand the
structural origins of the “tipping point” between slow induction
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Fig. 15 Pair contribution to osmotic pressure versus time for the collaps-
ing gel with bond strength V0 = 5kT and particle weight Pe = 0.05. Inset
shows the sedimentation rate for the same gel.

and fast collapse, and to identify the driving force of gel collapse.

Macroscopic analysis of sedimentation behavior showed that
even this simple model of a freely draining gel recovers the three
distinct macroscopic hallmarks of gel collapse — a slow induction
period that ends in a tipping point, followed by a transition to
rapid sedimentation, and a final, slow compaction regime, are re-
covered. Comparison to settling of a freely draining hard-sphere
dispersion showed that delayed yield requires durable interac-
tions (i.e. bonds) but not hydrodynamic interactions. Surpris-
ingly, gel collapse is faster than sedimentation of a freely draining
suspension of purely repulsive hard spheres, a result of the ad-
ditional driving force of negative osmotic pressure acting to con-
dense the particle phase. The driving force grows stronger with
stronger bonds: a mechanically “stronger” gel collapses faster,
owing to the depth of its position beneath the spinodal. Over-
all this suggests that a non-equilibrium phase separation, trig-
gered by gravity-induced particle migration and growing from a
capillary-like instability, is the central process underlying collapse.

Structural analysis revealed the surprising result that collapse
can occur with a fully intact, space-spanning network. The tip-
ping point from slow compaction to collapse evidently arises from
unstable particle migration that produces a capillary-like instabil-
ity, where particles migrate away from the length of a strand to-
ward a junction. Owing to the strong influence of Brownian mo-
tion, this growing instability manifests as a transition from pore
widening to rapid vertical pore growth accompanied by a minor
loss in bonds. When hydrodynamic interactions play a role, they
are the “caboose”, whereas triggered phase separation is the “en-
gine”.

The idea that densification is caused by phase separation is fur-
ther confirmed via measurements of osmotic pressure. Interpar-
ticle attractions produce a negative osmotic pressure in the mid-
dle layers of the gel that drive its condensation, causing gel col-
lapse as stretched bonds relax. But, comparison to an attractive
glass reveals that a negative osmotic pressure alone is not suffi-
cient to drive collapse if particles are jammed and cannot restruc-
ture owing to steric hindrance. Instead, rapid collapse requires
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both appreciable particle mobility and negative osmotic pressure,
which together permit bond relaxation. Concomitant measure-
ments of the potential energy are consistent with the idea that
a spontaneous process is taking place whereby the gel lowers its
energy by condensing — where the final volume fraction places
the final “phase” well to the right of the binodal. That is, a non-
equilibrium phase separation process permitted a leap to the right
in the phase diagram and downward to a lower energy state. At
long times, gravity compresses bonds, driving a positive value of
osmotic pressure, coinciding with a rapid decay in sedimentation
rate. Thus, collapse stops when condensation stops.

Counterintuitively, the role of gravity is to activate the release
from kinetic arrest allowing condensation and phase separation
to proceed, and subsequently compress some bonds causing the
gel to re-arrest and prevent complete phase separation.

We emphasize that this model is valid for reversibly bonded
gels formed via arrested phase separation. Other gels formed
from purely kinetic and non-thermodynamic routes such as DLCA
or jamming,3,4 and patchy colloids where the phase diagrams51

differ significantly from Figure 1, may behave differently.
The view that collapse offers a non-equilibrium route of travers-

ing (tunneling) through the energy landscape from one arrested
state to another arrested state poses interesting questions about
how we should view so-called arrested states of matter. We
propose that such non-equilibrium routes out of the equilibrium
phase diagram can be viewed as “phase mechanics”, a combina-
tion of behaviors that characterize colloidal gel responsiveness:
thermodynamic, kinetic, and mechanical phase transition. Such
a view may provide further insight into the design of engineered
materials, as well as deeper understanding of phase transitions
that accompany highly non-equilibrium processes, such as those
observed inside eukaryotic cells during division, for example.
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Appendix A: Height Detection Algorithm
Measurement of bulk gel height as it evolves (descends) over
time, the primary metric of gel collapse, requires identification
of an interface between the bulk gel and the emerging super-
natant fluid. Experimental measurements of evolving gel height
have been obtained via dark-field images17, suggesting a volume-
fraction criterion for identification of the interface. Precise iden-
tification of an interface can prove challenging, owing to the
colloidal-scale and network pore-scale bumpiness of a newly de-
tached surface. In contrast, in molecular systems, such inter-
faces are molecularly smooth; the “volume fraction” at the inter-
face, φint , is sharply defined as φint = (φliquid −φgas)/2. For a col-
loidal gel, a naive approach would be employ a similar criterion:
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Fig. A1 (a) Schematic to calculate the cells used to calculate instan-
taneous height of the gel from particle positions. Lines and shaded re-
gions depict the algorithm to calculate average gel height. Red layers
have 〈φ〉(z) > φcuto f f , yellow is the lowest layer with 〈φ〉(z) ≤ φcuto f f .
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dark cells depict regions possess 〈φ〉(z) < φint and are thereby assigned
supernatant.

φint = (φgel − φsupernatant)/2. The supernatant has few colloidal
particles, and thus φsupernatant → 0. However, several complica-
tions arise. First, while the average volume fraction of the gel
prior to deformation is uniform over lengths of several pore sizes,
compaction is likely to produce a spatially dependent volume frac-
tion, φgel(z). To resolve this ambiguity, one might assume that
the gel near the detaching interface retains the original volume
fraction, and set φint = 〈φgel〉(t = 0)/2. But even this definition is
ambiguous: the local volume fraction within a gel varies over sev-
eral particle length scales, and the gel itself contains colloid-poor
voids8. This difficulty is most pronounced at the emerging inter-
face, which is rough with exposed pores and dangling strands, as
illustrated in Figure A1. Finally, bulk descent during the initial
duration of collapse does not produce a container-wide super-
natant, and resolution in only the z−direction is insufficient to
capture the changes in height until a container-wide supernatant
emerges.

We developed a height-detection algorithm that overcomes
these issues. The simulation box is divided into a 100 horizontal
layers (x-y plane), each of thickness 2.5a, stacked in the vertical
(z) direction. These layers are static, and do not change for the
height calculation. The average volume fraction within each layer
is computed as follows:

〈φ〉(z) = ∑i 4πa3
i /3

Vlayer
, (15)

where the angle brackets denote an average over the layer cen-
tered at z, computed by adding the volume of every particle i
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Fig. A2 Distribution of volume fraction in a cell of various resolutions of
discretization.

located in the layer divided by the volume of the cuboidal layer,
Vlayer.

Vlayer = N/100n, (16)

where N is the total number of particles in the container, n the
initial number density, and N/n gives the volume of the container.

Average volume fraction in the horizontal layers are examined
in the container, and are expected to decrease going from the
bottom to the top, with an extended interface. The bottommost
layer that has a lower average volume fraction than the thresh-
old of φcuto f f = 0.75〈φ〉(t = 0), is used as an initial estimate of the
location of the interface, illustrated as a shaded yellow layer in
Figure A1. To account for roughness of the interface and dan-
gling strands, the horizontal layers above the yellow layer are
further divided in the x and y directions into cuboidal “cells”. The
idea is that the average volume fraction within the cell is used
to estimate the ‘local’ height of the rough interface, and an av-
erage over all the local heights determines the average height of
the gel. The aspect ratio of the cell must be sufficiently larger
than a typical solvent pore size within the bi-continuous struc-
ture so that solvent pores within the gel are not mistaken as the
interface, yet the aspect ratio must have sufficient resolution to
yield an accurate average height of the gel. The average volume
fraction within each cell is computed as:

〈φ〉(x,y,z) = ∑i 4πa3
i /3

Vcell
, (17)

where the angle brackets denote an average over the cell centered
at (x,y,z), computed by adding the volume of every particle i lo-
cated in the cell divided by the volume, Vcell . The aspect ratio of
the cell was determined by plotting (Figure A2) the distribution of
average volume fraction in a quiescent gel for various cell sizes,
as described by the legend. The discretization 25a× 25a× 2.5a
(red curve) was chosen because it produced a normal distribu-
tion about the average volume fraction of the initial colloidal gel,
and supernatant, described by 〈φ〉(x,y,z)→ 0 would not be de-

tectable in a quiescent gel, whereas smaller cells (green and blue
curves) would incorrectly ascribe solvent pores as belonging to
the supernatant. The chosen discretization provides 100 cells in
each horizontal layer above the yellow layer, distinguishable by
indices i in the x-direction, and j in the y-direction.

Above the yellow layer, the height of the interface hs(i, j),
is calculated for every vertical column of cells at (i, j), as the
vertical center of the bottommost cell where the volume frac-
tion falls below φint . In Figure A1, the shaded green cells have
〈φ〉(x,y,z)> φint , whereas the dark cells have 〈φ〉(x,y,z)< φint . An
average over all vertical columns gives the instantaneous average
height of the gel hgel:

hgel =
∑

10
j=1 ∑

10
j=1 hs(i, j)

100
(18)

The height of the gel is computed from particle positions, at ev-
ery instant of time, that permits calculation of sedimentation rate,
measurement of pore cross-section near the container boundaries,
and a time-dependent division of the gel into horizontal layers to
interrogate layer-by-layer quantities such as contact number, po-
tential energy, and osmotic pressure.

Appendix B: Layer-by-layer averages within
the gel
As the gel undergoes collapse, analysis of volume fraction reveals
changes not only in time, but also within the gel; therefore, it is
expected that bond dynamics and osmotic pressure correspond-
ingly evolve in time and vary within the gel. To study this varia-
tion within the gel, average quantities are computed within hori-
zontal slices (layers) in the gel at all instants in time.

For computation of the layer-by-layer average contact number,
the contact number for each particle i at time t, Nc(i, t) is com-
puted as described in Section 4.3, by counting the number of
nearest-neighbor bonds. The gel is then divided into horizontal
slices of equal thickness. A particle belongs to a horizontal slice
L if its center of mass lies within the slice. The average contact
number within the slice L at time t (denoted by 〈Nc〉(t)), is com-
puted by summing over the contact number of all particles in the
slice divided by the number of particles in the slice,

〈Nc〉(t) =
∑

NL(t)
i=1 Nc(i, t)

NL(t)
. (19)

Here, NL(t) is the total number of particles within the layer L at
time t. The quantity 〈Nc〉(t) is colorized by layer L, normalized
on its initial value, and plotted in Figure 10a as a function of
diffusively-scaled time.

To compute layer-by-layer average potential energy, one cannot
directly use Equation 12 because potential energy Vi j(t) pertains
to a bond, which can be formed by two particles in different hor-
izontal slices, making the definition of potential energy within a
layer ambiguous. Instead, one can define the potential energy
of a particle i at time t, Vi(t), as half the sum over the energy
of all bonds with nearest neighbors. Subsequent computation of
layer-by-layer average potential energy is similar to that of av-
erage contact number. The gel is divided into horizontal slices
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of equal thickness, and the average within the slice (denoted by
〈PE〉(t)) is computed by summing over the potential energy of
all particles in the slice divided by the number of particles in the
slice,

〈PE〉(t) = ∑
NL(t)
i=1 Vi(t)
NL(t)

. (20)

Here, NL(t) is the total number of particles within the layer L at
time t. The quantity 〈PE〉(t) is colorized by layer L, normalized
on its initial value, and plotted in Figure 10b as a function of
diffusively-scaled time.

The layer-by-layer osmotic pressure is computed from the
layer-by-layer average of rrr ·FFF using Equation 14, where rrr is the
distance between particles in a bonded pair and FFF is the force due
to the interaction. Similar to the potential energy per particle,
an unambiguous layer-by-layer quantity requires computation of
rrr ·FFF for every particle i, by summing over half the contribution
of rrr ·FFF from all bonds with nearest neighbors. The layer-by-layer
average is then computed by summing over all particles within
the layer and dividing by the total number of particles within the
layer. Layer-by-layer osmotic pressure is then computed using
Equation 14.
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