
Uncertainty Quantification of a DNA Origami Mechanism 
Using a Coarse-Grained Model and Kinematic Variance 

Analysis

Journal: Nanoscale

Manuscript ID NR-ART-08-2018-006377.R1

Article Type: Paper

Date Submitted by the 
Author: 28-Oct-2018

Complete List of Authors: Huang, Chao-Min; The Ohio State University, Mechanical and Aerospace 
Engineering
Kucinic, Anjelica; The Ohio State University, Chemical and Biomolecular 
Engineering
Le, Jenny; The Ohio State University, Biophysics Graduate Program
Castro, Carlos; The Ohio State University, Mechanical and Aerospace 
Engineering; The Ohio State University, Biophysics Graduate Program
Su, Haijun; The Ohio State University, Mechanical and Aerospace 
Engineering

 

Nanoscale



 1 

Uncertainty Quantification of a DNA Origami 

Mechanism Using a Coarse-Grained Model and 

Kinematic Variance Analysis 

Chao-Min Huang1, Anjelica Kucinic2, Jenny V. Le3, Carlos E. Castro1, 3* and Hai-Jun Su1* 

1Department of Mechanical and Aerospace Engineering, 2Department of Chemical and 
Biomolecular Engineering and 3Biophysics Graduate Program, The Ohio State University, 
Columbus, Ohio 43210, USA 

Emails: castro.39@osu.edu & su.298@osu.edu 

Abstract  

Significant advances have been made towards the design, fabrication, and actuation of dynamic 

DNA nanorobots including the development of DNA origami mechanisms. These DNA origami 

mechanisms integrate relatively stiff links made of bundles of double-stranded DNA and relatively 

flexible joints made of single-stranded DNA to mimic the design of macroscopic machines and 

robots. Despite reproducing the complex reconfiguration of macroscopic machines, these DNA 

origami mechanisms exhibit significant deviations from their intended motion behavior since 

nanoscale mechanisms are subject to significant thermal fluctuations that lead to variations in the 

geometry of the underlying DNA origami components. Understanding these fluctuations is critical 

to assess and improve the performance of DNA origami mechanisms and to enable precise 

nanoscale robotic functions. Here, we report a hybrid computational framework combining coarse-

grained modeling with kinematic variance analysis for predicting uncertainties in the motion 
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pathway of a multi-component DNA origami mechanism. Coarse-grained modeling was used to 

evaluate the variation in geometry of individual components due to thermal fluctuations. This 

variation was incorporated in kinematic analyses to predict the motion pathway uncertainty of the 

entire mechanism, which agrees well with experimental characterization of motion. We further 

demonstrated the ability to predict the probability density of DNA origami mechanism 

conformations based on analyses of mechanical properties of individual joints. This integration of 

computational analysis, modeling tools, and experimental methods establish a foundation to 

predict and manage motion uncertainties of general DNA origami mechanisms to guide the design 

of DNA-based nanoscale machines and robots. 

 

Introduction  

While macroscopic machines require energy input to achieve their desired function, biological 

nanomachines, such as motor proteins, exploit a combination of thermal fluctuations and energy 

to perform mechanical functions through conformational changes1,2.Supramolecular3–5 and DNA-

based systems6–11 have emerged as powerful approaches to mimic aspects of these exquisite natural 

or macroscopic machines. In particular, scaffolded DNA origami nanotechnology12,13 has been 

used to reproduce the geometry; designed 1D, 2D, and 3D motion; and triggered reconfiguration 

of macroscopic machines by incorporating flexible motion into nanodevices through strategic 

integration of single-stranded DNA (ssDNA)7,14–16, compliant components8,17, or relative sliding 

or rotation of complementary geometries7,9,18,19. However, in contrast to macroscopic machines, 

these DNA origami mechanisms (DOMs) function at length and energy scales similar to biological 

motors where thermal fluctuations not only drive motion, but can also cause variations in the 

geometry of the underlying components. These fluctuations can lead to significant deviations, or 
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uncertainty, in the designed motion behavior7,20,21, which is critical to understand and manage to 

improve device functions. The goal of this work is to understand and establish an integrated 

computational, theoretical, and experimental framework and user-friendly tools for predicting 

motion, including uncertainty and conformational distributions, as a critical step to assessing 

mechanical performance of DOM and enabling designs with improved motion fidelity and 

dynamic function.  

A number of computer-aided design (CAD) tools have been developed to facilitate22–24 and 

automate25,26 the DNA nanostructure design process. For the scaffolded DNA origami12 approach, 

cadnano23 is the most widely used design software. In addition, computer-aided engineering tools 

have been developed for simulating the shape of designed DNA nanostructures. For example, 

CanDo27,28, a finite element modeling framework developed by Bathe and co-workers, enables 

rapid prediction of the folded shape of DNA origami structures. Pan et al.29 later extended CanDo’s 

scope to lattice-free designs by adapting it to Tiamat. These tools primarily focus on designing or 

predicting shapes of static nanostructures.  

Recently, structural DNA nanotechnology has demonstrated tremendous potential for 

engineering dynamic nanomachines7,8,15,18, which has led to a demand for more advanced 

modeling tools. Pan et al. introduced Brownian dynamics30 to capture time-dependent properties, 

such as trajectories, of structures predicted by CanDo. However, this approach does not capture 

some molecular scale design features that may influence dynamic behavior. Compared to 

continuum mechanics-based methods, atomistic molecular dynamics (MD) provides a potential 

solution for DNA origami, up to ~15k bp in size, by modeling detailed structures and properties 

such as ionic conductivity31–34. However, the high computational demand of a full atomic MD 

model prevents studies of dynamics beyond nanosecond timescales, which are critical to 
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understanding and improving device designs. Coarse-grained models35–37 have been developed to 

speed up the computational process. In general, depending on the level of simplification, fewer 

particles or rigid bodies reflect a faster but less accurate algorithm. Among many coarse-grained 

models, oxDNA38–42was developed with a focus on modeling designed DNA nanostructures. In 

the oxDNA model, the basic unit is a nucleotide base, which is treated as a rigid body with three 

sites of non-collinear interactions: hydrogen bonding, base stacking, and covalent backbone bonds. 

Recently, some dynamic DNA origami structures were studied using oxDNA20,43,44, including 

compliant hinges, revolute joints, sliders, crank-sliders and Bennett linkages. However, even 

though GPU acceleration has reduced the computational demand by one to two orders of 

magnitude45, it is still difficult to completely capture the motion of a DOM. Furthermore, this 

incomplete capture would create difficulties in iterating the design and simulation processes to 

optimize designs for motion fidelity, especially for mechanisms with large configuration changes. 

In addition to +computational demand, salt-dependent properties in the oxDNA model are based 

on monovalent sodium cations, but most DNA origami experiments are conducted in the presence 

of divalent magnesium cations.  

To address these challenges, this work seeks to establish integrated computational, theoretical, 

and experimental methods into efficient tools to model and predict the motion behavior of complex 

DOMs and ultimately guide future designs. We chose to use oxDNA as the basis of our modeling. 

To address the computational demand limitations, we integrated theoretical kinematic analysis and 

Monte Carlo simulation approaches. Furthermore, to validate our models and address salt-

dependence limitations, we integrated experimental analysis of DOM with feedback into the 

modeling. The particular focus of this work was to study thermally driven motion of DOM and 

understand what design parameters govern deviations from the motion pathway (i.e. motion 
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uncertainty) and conformational probability distributions along key reaction coordinates. We 

investigated the sources of motion uncertainty from the underlying components, namely the links, 

which are usually bundles of double-stranded DNA (dsDNA), and the joints, which usually 

comprise one or several single-stranded DNA (ssDNA) connections. While links are relatively 

stiff, they may undergo some changes in shape due to thermal fluctuations, especially fraying at 

their ends28. The joints may also exhibit motion in unintended rotational or translational degrees 

of freedom due to fluctuations within ssDNA connections. 

To develop and test our modeling framework, we constructed a new multi-component DOM that 

integrates 4 links (each made from 8 bundles of dsDNA) connected by 4 rotational joints. This 

mechanism is called a straight-line linkage (SLL) as shown in Figure 1 since it is designed to 

closely approximate a straight-line motion at a tip point of two rigidly connected links. We first 

developed an approach to speed up the computational relaxation process for multi-component 

designs. We then integrated coarse-grained MD simulation results with kinematic variance 

analyses to create a hybrid computational tool to predict and study the motion behavior. 

Experimental characterization of the energy landscapes of the mechanism and the joints was used 

to investigate the salt-dependent aspects of motion that govern the conformational distribution. 

Lastly, we used toehold-mediated actuation to steer the probability distribution and verified our 

hybrid tool again to predict the uncertainty in the actuated conformation. We also applied this 

computational framework to another DOM, the crank-slider7, to demonstrate the general 

applicability. 

Experimental 

DNA Origami Structure Design and Fabrication. We designed DNA origami structure in the 

computer-aided design software cadnano23. The Straight-Line Linkage (SLL) is based on a 7249-
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nt single-stranded scaffold originating from the M13mp18 bacteriophage virus that was purchased 

from Guild Biosciences and then prepared following previously described protocols27. The 

oligonucleotide staples were ordered from a commercial vendor (Eurofins, Huntsville, AL). The 

self assembly reaction follows previously described protocols27. The folding reactions contained 

20nM scaffold and 200 nM of each staple within a solution consisting of ddH2O, 5mM Tris, 5 mM 

NaCl, 1 mM EDTA, and 20 mM MgCl2. An MgCl2 screen revealed that a MgCl2 concentration 

higher than 14 mM yielded well-folded structures. The folding reaction occurred in a 2.5 day 

thermal annealing ramp based on a previously published method27 in a thermal cycler (Bio-Rad, 

Hercules, CA). 

Agarose gel electrophoresis was used to characterize these folding results, as well as to purify 

out excess staples. Well-folded structures from purified bands were characterized and imaged as 

negatively stained samples on the Transmission Electron Microscope (TEM).  

Sample Analysis and Imaging using Transmission Electron Microscopy. Gel-purified SLL 

structures were imaged on a TEM for quantification and validation of well-folded structures. A 

sample volume of 4 µL was deposited onto a Formvar-coated copper grid, stabilized with plasma-

cleaned carbon film (Electron Microscopy Sciences, Hatfield, PA). The sample was incubated onto 

the grid for 4 minutes, and then wicked away. 10 µL of 2% uranyl formate (SPI, West Chester, 

PA) stain with 25 mM NaOH was immediately added to the grid and wicked away. Twenty µL of 

the same stain was added, incubated for 40 s, and then wicked away. TEM took place at the OSU 

Campus Microscopy and Imaging Facility on a FEI Tecnai G2 Spirit TEM at an acceleration of 80 

kV at a magnification of 100 000X. MATLAB was used to quantify and process the raw TEM 

images. The TEM images were organized into galleries of individual SLL structures for further 

quantification and analysis. A 5-point analysis of the SLL was carried out using a custom 
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MATLAB code to measure the kinematic motion of the tip position P3 (Figure 1). Five points were 

manually selected to obtain lengths and angle measurements for analysis of P3 motion.  

 

Preparation of the Actuated Straight-line Linkage. The SLL was actuated with ssDNA staples 

complementary to overhangs connected to links 2, 4, 5, and 6. Folded samples of the SLL with 

overhangs were purified via polyethylene glycol (PEG) centrifugation using a protocol modified 

from46 after a 2.5 day folding reaction. The well-folded SLL with overhangs were mixed in a 1:1 

volume ratio with 15% PEG8000 (Sigma Life Science) in a 200 mM NaCl solution. The mixture 

was centrifuged at 16000g for 30 min to pellet the nanostructures. The supernatant was removed 

and the structures were resuspended in buffer containing 10 mM Tris, 1 mM EDTA, and 20 mM 

MgCl2. The motion of the tip position P3 to the left or right (marker-side) is actuated by combining 

purified SLL structures at 5 nM with the overhang sites and a concentration at 500nM of the 

complementary ssDNA staples. The solution was incubated at 37°C for 24 hours. Once incubation 

was complete, the actuated SLL was gel-purifiedand was characterized via TEM.  

Preparation of Open-chain Straight-line Linakge. The open-chain SLL was folded with a 

protocol similar to the closed-loop SLL, however, the staples connecting link 4 were not included 

in the folding process, purification, or characterization. 

Preparation of the Straight-line Linkage Configurations for Molecular Dynamic 

Simulations. The cadnano design of the SLL was converted to the initial configuration through 

the python code cadnano_interface.py, provided by the oxDNA group 

(https://dna.physics.ox.ac.uk), in which all bundles were parallel to each other as shown in Figure 

2. Due to forced connections present in cadnano, this initial configuration had many over-stretched 

bonds across adjacent bundles causing failed starts of the MD simulations (Figure S2). To address 
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this issue, we developed a custom MATLAB code to enable “virtual assembly” of the mechanism. 

This code allows the user to manually apply rigid body transformations to the SLL link 

components or other multi-component structure. The code detects components based on the staple 

colors. Hence, uniform staple colors were assigned to all staples in a given link, and each link was 

assigned a different color using the graphic user interfaces (GUI) of the cadnano software. The 

rigid-body transformations were used to shorten the over-stretched bonds as well as to define the 

overall initial configuration for the MD simulations. Using the virtual assembly to achieve an 

appropriate configuration, the computational relaxation step was more efficient and prevented 

unwanted entanglement. 

Next, we ran the relaxation algorithms originating from oxDNA packages. The goal of relaxation 

is to adjust all neighboring bonds on the backbone site to be within a certain range of the finite 

extensible nonlinear elastic (FENE) potential curve. This step is composed of two parts: oxDNA1 

and oxDNA2 relaxation. Moreover, the latter gradually adapted the structure to have major and 

minor grooves. The coefficients of the relaxation algorithm were gradually increased to prevent 

the structure from breaking down. The entire relaxation step took ~20 minutes. To make sure that 

all staples were completely annealed with the scaffold strand, our code also exported a file 

indicating the mutual traps of paired staple and scaffold bases according to the cadnano file. This 

file pertaining to external forces is optional but recommended.  

MD Simulation 

The coarse-grained MD simulations were performed with the oxDNA2 package47 without any 

external forces at a temperature of 303K. The total number of steps was set to 3×108 (for the SLL 

starting at the center configuration) or 1×108 (for the other five simulations). The simulation time 

step for integration was 15.15 fs and the Newtonian step of an Andersen-like thermostat was 103. 
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A scaling factor α ≈   330 was used to convert the simulation time to the physical time43. The salt 

condition for all simulations in this paper was set to monovalent NaCl concentration as 0.5 M 

NaCl. To reduce the computation time, the oxDNA simulation was run with GPU acceleration45 

on a computer with a NVIDIA GPU. For example, a simulation with 1×108 steps required ~22 

hours to complete the process. The UCSF Chimera48 software was used to render all 3D coarse-

grained models in this paper. 

 

Free Energy Landscape  

For the open-chain SLL experiment, the probability distributions of two open joints j  were 

fitted by combining three Gaussian distributions as  
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Once probability distribution function ( )jp   was obtained, the free energy of each joint was 

written as follows with a symmetric assumption: 
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where kB is the Boltzmann’s constant, T is the absolute temperature. By solving the kinematic 

equations, each joint angle as function of the input angle θ3 (the coupler link angle relative to the 
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 where Z is a constant to satisfy the condition that ( ) 1p 



 . 

 

 

Results & Discussion 

Design and Fabrication of the Straight-line Linkage (SLL) 

To demonstrate our motion analysis, we consider the Robert’s Straight-Line Linkage (SLL)49 

mechanism, shown in Figure 1A. This SLL is a four-bar linkage with four hinge joints (P1, P2, P4, 

and P5) and four links (l1, l2, l3-l5-l6, and l4). The macroscopic version of this SLL design has one 

degree of freedom (DOF) according to Kutzbach-Grübler's mobility equation50, where the triangle 

l3-l5-l6 is considered a single rigid body. The hinge joints P1 and P5 are anchored on the reference 

ground link, l1. When a link is driven, the tip point P3 traces an approximately straight line (shown 

in red), hence the name SLL.  

The DNA origami SLL was first designed as a solid cylinder model (Figure 1B) with cylinders 

representing dsDNA helices. The detailed DNA routing and sequence design was performed in 

cadnano23 (Figure S1). In this design, the rigid links, l1 through l6, consist of bundles of dsDNA 

helices arranged in a 2×4 square lattice51 cross-section. Link l3 (red bar) was designed with a bump 

feature to make the overall shape asymmetric and enable us to discern the left and right sides of 

the SLL mechanism. This is critical for proper motion analysis since the mechanism could land on 

either its front or back side in imaging assays. The four joints (P1, P2, P4, and P5), which function 

as revolute joints, are designed with two short and two long scaffold connections (Figure 1B, inset), 

where the short connections form the axis of rotation as previously established hinge designs7,52.  

We fabricated the SLL design using the scaffolded DNA origami self-assembly process27 and 

purified well-folded structures via gel electrophoresis (Figure S33). Figure 1C shows a 

representative TEM image illustrating a range of SLL conformations with zoomed-in images 
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depicting three distinct configurations of the SLL. To quantify conformations, we manually 

selected points P1 through P5 in a custom MATLAB code, selecting P1 as the lower hinge joint on 

the opposite side of the bump. We describe the conformation of the mechanism in terms of the 

location of the tip point, P3, which undergoes the straight-line motion. First, we defined a local 

coordinate system origin on the midpoint of P1 and P5 to describe P3y and P3x, the vertical and 

horizontal position of the tip P3. To quantify the motion performance of the SLL, we 

experimentally measured the position P3 for 791 samples with respect to the local coordinate 

system and we depicted the area encompassing their distribution in gray (Figure 1D, more TEM 

snapshots in MovieS1 middle). We observed that the DNA origami SLLs reasonably follow the 

designed motion pathway (red line); however, there is significant deviation from the motion 

pathway of approximately ±10nm, which is consistent with analysis of prior DOMs7,21.  

We have previously demonstrated the ability to design DOMs that exhibit a programmed motion 

pathway. Here, we aimed to enable quantitative predictions of two aspects of the motion, namely 

the uncertainty in motion (i.e. deviation from the designed motion pathway) and the 

conformational probability distribution. In the case of the SLL, we consider: (1) the motion 

uncertainty of the tip P3 (shaded area in top part of Figure 1D) as a quantitative measure of the 

motion performance of the design, and (2) the probability distribution of the coordinate P3x (bottom 

part of Figure 1D), which we consider a key reaction coordinate to evaluating the mechanical 

properties and enabling effective actuation of the device. 
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Figure 1: Design and fabrication of the DNA origami straight-line linkage (SLL). (A) Simplified line model for 

kinematic analysis of the SLL four-bar linkage with the corresponding tip trajectory (red). (B) The SLL consists of 8 

square-lattice helix bundles with 4×2 cross sections. The strut on the ground link has a 3×2 cross section. (C) TEM 

images show the conformational range of the free SLL and zoomed-in TEM images of three representative 

conformations illustrate the motion pathway along the horizontal direction. Scale bars, 50 nm. (D) (Top) The 

experimental distribution of the tip position (blue points) deviates from the theoretical curve (red line) that assumes 

each bundle is a rigid body with perfect planar motion. (Bottom) The conformational distribution of the tip P3 along 

the horizontal direction exhibits bimodal behavior. 

Coarse-Grained Modeling and Results  

To quantify thermal fluctuations, we started by building models of the SLL with existing DNA 

origami simulation tools. First, CanDo was used to simulate our design (Figure S1). The CanDo 

result accurately captures the overall geometry, but does not capture the motion distribution, likely 

because the finite element-based model does not consider aspects such as excluded volume, charge 

repulsions, base-stacking of blunt ends, and transient base-pairing of ssDNA, all of which could 
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play important roles in governing the motion. Hence, we focused on building a coarse-grained 

model that captures more molecular-level details using oxDNA.  

oxDNA has been used to model static DNA origami structures41,42 and more recently compliant43 

and dynamic20 DNA origami devices. In general, these models undergo a relaxation step, which 

determines an initial geometry based on the design. This relaxation step can be challenging for 

multi-component structures that require significant rotation or translation of components of the 

original cadnano design (Figure 2A), where all helices are in parallel and may be spatially 

separated when compared to a real configuration (Figure 2B). In these cases, the oxDNA relaxation 

step may not converge to a feasible configuration (Figure S2) because the displacements required 

are too large. 

To address this problem, we developed a workflow together with a dedicated computational tool 

that converts multi-component DOMs in the cadnano format (Figure S3-S7) into a coarse-grained 

model for simulation in oxDNA with a user-determined initial configuration (Movie S2). As 

shown in Figure 2A-2B, the cadnano routing was first converted to a coarse-grained model with 

all dsDNA bundles positioned and oriented as in the cadnano design. Then, a set of rigid-body 

transformations can be conducted on individual components using our computational tool (custom 

MATLAB code with user-friendly GUI) (Figure S4) to position all bundles into the desired 

configuration of the closed-loop mechanism. A few steps of these rigid body transformations are 

illustrated in Figure 2B. We term these transformations “virtual assembly”, since the components 

are laid out and we are placing them into their appropriate position and orientation within the 

mechanism. The final assembled configuration is shown in Figure 2C. Next, an oxDNA relaxation 

algorithm (Figure 2D) and molecular dynamic simulation (Figure 2E and 2F) were performed to 

visualize and quantify conformational changes under thermal fluctuations. In addition to enabling 
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effective relaxation of the oxDNA simulation, the “virtual assembly” approach also allows for one 

to run multiple simulations with different initial conditions since bundles can be rearranged into 

various configurations along the SLL motion pathway (Figure S5). This is particularly useful, in 

combination with the ability to run different lengths of simulation time, to test whether simulations 

have converged to an equilibrium distribution of conformations and to probe the mechanics of 

specific regions of the conformational distribution, which may not be easily thermally accessible.  

Here, we ran four simulations of the DNA origami SLL with different initial configurations. 

Three simulations with initial configurations of the tip P3 positioned at left, center, and right were 

performed for ~500 µs and one simulation with the tip P3 positioned at the center was performed 

for ~1500 µs. Figure 2G shows the simulation results of the motion of the tip P3 in terms of the X- 

and Y-positions through time for the different initial configurations and simulation lengths. Movie 

S3 shows the SLL configurations for all trajectories in front-facing views.  

The simulation results show the horizontal range of motion of P3 to be roughly between -25 nm 

and 25 nm (Figure 2G), which is consistent with experimental data. However, despite reproducing 

some of the basic characteristics of motion, neither the individual simulations (Figure 2G) nor the 

compiled simulation results (Figure S8) capture several features of the experimentally measured 

motion including the deviation from the theoretical motion pathway (i.e. motion uncertainty) and 

the bimodal distribution, which are the primary features of interest for this study. Particularly, the 

experimental data shows a wider vertical distribution (Figure S8). The range of motion uncertainty 

(i.e. the deviation from the theoretical motion) observed in our experiments is consistent with prior 

DOM measurements7 including measurements based on 3D reconstruction from cryo-EM 

imaging21.  
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While the compiled simulation results capture the full range of motion, they do not capture the 

strong bimodal behavior we observe in experiments (Figure S8). In addition, conformational 

distributions from the individual simulations deviate significantly. For example, the simulations 

starting from the left and the right positions (the orange and yellow traces in Figure 2G) have no 

overlap. This indicates the simulations do not capture the full conformational distribution, likely 

due to insufficient simulation time. A recent study20 required ~50ms simulation time for a two-

component DNA origami hinge to converge to an equilibrium distribution. This length of 

simulation is intractable (our 500 μs simulations took ~22 hr on a standard workstation with GPU 

acceleration) without using clusters or supercomputers. In addition, the bimodal behavior, which 

suggests the presence of an energy barrier, could increase the time required for convergence to an 

equilibrium distribution. The longest simulation (1500 µs) starting from the center position (the 

purple trace in Figure 2G) explored did explore both sides of the horizontal motion distribution 

and exhibited some motion pathway deviations similar to our experiments. The compiled 

simulation results do not capture the bimodal behavior (Figure S8), but the three shorter 

simulations primarily explored one half of the horizontal motion distribution possible due to the 

presence of an energy barrier in simulations. This suggests running the simulation for significantly 

longer times may better capture the full motion distribution and our experimental motion 

uncertainty (and possibly the bimodal probability distribution of P3x). However, to avoid running 

excessively long, intractable simulations, we developed an alternative approach that integrates 

analyses of motion uncertainty sources from the oxDNA model with Monte Carlo simulations and 

kinematic analyses. This integrated approach can be carried out more efficiently, since the sources 

of uncertainty come from conformational fluctuations of components, which converge to an 

equilibrium distribution more rapidly (Figure S9 and S10). Hence, either using compiled or 
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individual MD simulation data provides design insight into the sources of motion uncertainty 

within the design.  

 

Figure 2 : Virtual DOM assembly and results of the coarse-grained molecular simulation. (A) The design diagram in 

cadnano software. (B) The initial configuration taken directly from the cadnano design yields an unrealistic initial 

configuration and topology. Rigid-body transformations are repeatedly applied to transform each bundle to an 

appropriately assemble initial configuration. (C) After rigid-body transformation, the configuration resembles the 

cylindrical model, although some bonds may still be overstretched (inset). (D) The relaxation algorithm gradually 

changes the configuration, including the major and minor grooves and distances between neighboring bases. (E) A 

fully relaxed configuration prior to starting the oxDNA simulation. (F) After completing the oxDNA simulation, the 

trajectory file is generated for visualization and post-processing. (G) Results of four repeated simulations for the tip 

position with different time lengths and initial configurations. Through rigid body transformations, three short ~500 

µs simulations starting at the center, left, and right are plotted on the left y-axis on the top. The other long ~1500 µs 

simulation, corresponding the right y-axis, was shown to vaguely converge even at a longer time scale.  

Characterization of Error Sources from oxDNA Simulations 

We identified three potential sources of the motion uncertainty of P3 from the oxDNA simulation 

results: out-of-plane motion (i.e. motion in unintended degrees of freedom), variations in link 
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geometry (i.e. changes in link end-to-end distance), and variations in joint geometry (i.e. variations 

in the geometry of ssDNA connections that form the joints). We first quantified each source of 

motion uncertainty and then integrated those variations into a kinematic analysis to develop an 

efficient approach for predicting the motion uncertainty of the overall SLL in terms of the position 

of P3. 

We introduced one input variable to specify the location along the theoretical motion pathway. 

Here we chose link 3 as the driver. Once we specify the orientation of link 3, the rest of the 

theoretical mechanism geometry can be determined by solving vector loop equations based on the 

geometric parameters of the closed-loop SLL mechanism. The basic framework of the vector loop 

analysis assumes rigid links with constant length. Here, we specified the dimensions of the links 

assuming 0.334nm/bp, which resulted in the theoretical motion curve depicted in Figure 1D.  

Out-of-plane motion: We noticed some joints rotate out of the linkage plane in all simulations 

(Movies S4), which we refer to as out-of-plane motion. To quantify the error due to this out-of-

plane motion, we built our kinematic model on the joints P1, P2, P4, and P5 and the tip P3. In the 

coarse-grained simulations, we defined the positions of these joints as the center of mass (yellow 

spheres in Figure 3A and 3B) of the four single-stranded nucleotides that make up the short hinge 

connections (red points in Figure 3A and 3B). We tracked the 3D relative positions of these joints 

throughout all the simulations. The link geometries were then defined as the distance spanning two 

joints in the SLL mechanism. This analysis revealed that the links do not remain perfectly coplanar. 

Figure 3A shows a top view of a single frame of the simulation to illustrate this out-of-plane 

motion. The out-of-plane motion of the SLL is also visualized in Movie S4.  

Since the links are not coplanar, it is non-trivial to define a reference plane for the mechanism. 

We used principle component analysis (PCA) to define a mechanism reference plane as a basis for 
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quantifying out-of-plane motion. The first and second eigenvectors, 1̂e  and 2ê , from the PCA 

analysis represent the maximum position variance to the projected planes. Hence, the plane normal 

to the third eigenvector, 3̂e , is where the SLL exhibits the maximum projected area as illustrated in 

Figure 3B, and this is the orientation where the SLL is likely to be observed on the TEM grid. 

Thus, we assumed the plane normal to the third eigenvector 3̂e  as the projection and reference plane 

for the simulated DNA origami SLL. The tilted 3D vectors defining the links (blue cylinders in 

Figure 3A and 3B) were compared to this plane to quantify the out-of-plane motion. Quantitative 

results measured from oxDNA simulations are shown in Figure S9 in terms of the tilt angle of all 

the links relative to the reference plane. The longest, link 1, exhibits the least out-of-plane motion 

because its length is twice that of the others. 

Variations in Link Geometry (End-to-end distance): Although the persistence length of the link 

components is expected to be much longer than their length15, we still observed significant 

fluctuations of the bundle components in simulations (Figure 3B and Figure S10), especially at the 

ends of the bundles, which is consistent with prior simulation and experimental analysis28. This, 

combined with effects of staining, leads to the ends of dsDNA bundles being less resolved in TEM 

images, resulting in the link lengths being difficult to accurately measure experimentally. 

However, coarse-grained modeling provides a way to visualize the thermal fluctuations in the 

shape of these bundle components. Similar to out-of-plane motion, we tracked the 3D distances 

between the joints as a measure of variation in link end-to-end distance. The distributions of these 

link lengths are an indicator of variability in link geometries resulting from thermal fluctuations 

that occur even in well-folded nanostructures.  

Since the TEM images are 2D projections of the nanostructures, it is unclear whether changes 

in the link dimensions in experiments are due to thermal fluctuations or due to the out-of-plane 
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motion. To address this challenge, we incorporated the influence of out-of-plane motion with the 

3D end-to-end distances computationally. We first projected the 3D lengths of the six links (blue 

cylinders in Figure 3B inset) onto the reference plane (assumed as the largest projected area from 

principal component analysis) to obtain 2D-projected end-to-end distances (pink cylinders) for 

every frame in each simulation as shown in Movie S5. The 2D end-to-end distances, which now 

contained the effects of out of plane motion, were then separately fitted using the semi-flexible 

polymer53 and the skewed Gaussian models. We found that the skewed Gaussian model fits better 

for these links, made of bundles of dsDNA (Figure S14 and S16). The 2D probability distributions 

of each link and the skewed Gaussian fits are shown in Figure 3C. All fitting parameters for each 

link are listed in Table S4. 

Joint error: The hinge joints between any two links in our DNA origami SLL were designed as 

2-nt ssDNA connections, similar to what we have used in our previous designs7,52. Although they 

are very short, it is possible that the length of these connections may fluctuate. To evaluate this 

fluctuation, we developed an error model for these hinges joints, illustrated in Figure 3D, in which 

dashed (black) and dotted (red) lines are the long and short ssDNA connections, respectively. Due 

to the highly flexible nature of ssDNA, these connections constrain the motion between two links 

primarily to rotate about an axis of rotation defined as a line between these two short connections 

(Figure 3D, right). However, the 2-nt length may also introduce additional clearance between links 

at every joint in the mechanism. To quantify the effect of this joint clearance error, we assumed 

that the lengths of the joint connections can vary anywhere from zero to a maximum of 1.2nm 

(0.6nm per ssDNA base) with a uniform distribution using Monte Carlo method.  
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Figure 3: Sources of motion uncertainty for the DNA origami SLL. (A-B) The top and front views of a simulation 

snapshot show the out-of-plane motion and the fluctuating end-to-end distances. The red, yellow, and brown spheres 

in the ribbon model indicate the two 2-nt ssDNA connections, the arithmetic mean center in 3D space, and the center 

projection of each vertex, respectively. The blue and pink cylinders indicate the 3D line model and the projected links, 

respectively. (C) Probability distribution of the six projected link lengths and fitted curves using the skewed Gaussian 

distribution. Unit: nm. (D) The two 2-nt connections between layers of the two arms. The 2-nt connections constrain 

the two arms to a mostly rotational motion with a slight joint displacement error.  

 

Computational Tools for Predicting DOM Motion Uncertainty 

In macro-scale precision engineering, error analysis relates machine performance to several 

varying geometric factors influenced by manufacturing tolerances54. While uncertainty in 

component geometry at the macroscopic scale comes from variation in manufacturing processes, 

thermal fluctuations in our SLL and other DOM designs cause variations in component geometry 

that may lead to deviations in motion relative to the theoretical kinematic motion. To predict the 

motion pathway uncertainty of the SLL, we introduced two computational tools: (1) Taylor series 
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expansion with an optimization algorithm (TSOA) and (2) Monte Carlo simulation (MC). Both 

tools are based on the tip position’s analytical solution, which in turn, is derived from solving 

vector loop equations using link 3 as the driver50 (Figure S19). The TSOA is a deterministic 

method that estimates the boundary of the tip position with varying lengths assuming link lengths 

lie somewhere between the 5th and 95th percentiles of length distributions (Figure 3C). On the other 

hand, the MC method repeatedly calculates the output tip position by randomly sampling one set 

of the six link lengths from the distribution (Figure 3C). Full details of both methods are provided 

in section 4(b) and 4(C) in the Supporting Information. 

For TSOA, we first used the analytical solution and the median values of link lengths to 

discretize the curve into several points with different θ3 values (Figure 4A and Figure S20). For 

each point on the curve, we took first-order partial derivatives of the six link lengths as input 

variables. The arrows shown in the inset of Figure 4A correspond to the changes in tip position 

that occur when individually changing the length of each link. Then, we aimed to maximize the 

deviation along the direction ˆ
ke  (gray dashed arrow in Figure 4A inset) by summing linear 

combinations of these vectors from partial derivatives, and repeated this maximization, iterating 

the direction ˆ
ke  from 10o to 360o to determine a boundary of potential positions for a given 

theoretical position (black dots in Figure 4A inset). We also tested a second order model that 

included 36 quadratic terms in addition to the 6 linear terms to increase the accuracy. This 

boundary discretization was repeated for several theoretical conformations defined by evenly 

spaced θ3. We then integrated those boundary points into a shape indicating where the SLL tip 

position P3 may be located for the entire motion pathway (Figure 4A, gray shaded area). However, 

TSOA cannot consider the random joint errors since this method is deterministic. 
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For the MC algorithm, we aim to evaluate the impact of the joint error by extending the original 

vector loop equations with four extra terms of joint errors, formulated as modified vector loop 

equations. In the modified vector loop model (Eq S11), we could separate the joint and link errors 

with the MC approach using different sampling settings (Eq S13). For example, to specifically 

consider the effects of joint clearance, we can assume each joint exhibits a maximum clearance of 

1.2 nm while each link has a constant length as determined by the median value from the generated 

link length distributions. Alternatively, to specifically consider the motion uncertainty due to 

variations in link length, we assumed perfect joints with zero clearance and only considered 

variations in link lengths. Figure 4B illustrates the results of repeatedly sampling the tip positions 

P3 (N=106) and separately considering the joint error and the link error, showing the deviation in 

the link length dominates the overall motion uncertainty. This suggests that making links stiff is 

critical to minimizing motion uncertainty of DOM performance. 

The MC and TSOA computational tools are both capable of predicting the motion pathway of 

expected experimental results of the SLL. Figure 4C compares the results from the TSOA and MC 

simulation with TEM data for verification. The MC method can calculate the probability 

distribution of the tip position to quantitatively compare the TEM-based distribution. The contour 

levels we set for the MC method are 30%, 50%, 90% and 99% which capture 30%, 45%, 76% and 

92% of the TEM data, respectively. 15 (1%) imaged SLLs are outside of the TSOA, and 62 (8%) 

for the 99% contour of the MC. These small differences may be due to experimental limitations in 

selecting points or due to limitations of the modeling, for example in not properly accounting for 

ion interactions. Nevertheless, the results, generally agree well with experimental data.  

These two computational tools, TSOA and MC, were also consistent with each other. The TSOA 

method used the median, lower bound, and higher bound values in a multi-variable model to depict 
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the possible outcome. Hence, the TSOA method may be more useful when all that is known or can 

be estimated are geometrical tolerances of the components, such as from TEM images, rather than 

a full conformational distribution. On the other hand, the MC method is capable of decoupling the 

link and the joint errors. In addition, it also provides a means to estimate the 2D probability 

distribution of the tip position.  

 

 

Figure 4: Computational tools and error quantification of the SLL. (A) Schematic of combining the Taylor series 

expansion and optimization algorithm (TSOA) to calculate the boundary of the tip P3. The green dots denote regularly 

spaced positions along the motion pathway where the TSOA was carried out. The different color arrows denote the 

changes in the tip position with changes of link 1(black), link 2(orange), link 3 (red), link 4 (green), link 5(purple), 

and link 6(magenta). The boundary for motion uncertainty was determined by maximizing the deviation from the 

theoretical position along a specific direction (dashed gray arrow). That direction was varied over 360º to obtain the 

full boundary (black dots). This was then convolved for different theoretical positions to obtain the overall boundary 

of motion uncertainty (gray shaded area). (B) Contour plots sampling the tip position P3 with the Monte Carlo (MC) 

simulation, with the decoupling of joint error and link error (bottom) illustrating that the overall motion uncertainty is 

dominated by the link error. (C) Combined results from MC and TSOA methods compared to the TEM data. The 

bottom four plots compare directly the fraction of experimentally measured conformations that lie within various 

contours predicted by the MC approach. 
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DOM Conformational Probability Distribution  

While the MC method gives more information including estimating the probability distribution 

for P3, it does not completely agree with the experimental conformational distribution. In 

particular, the TEM measurements showed a stronger bimodal behavior compared to the MC 

predictions. This is likely because the MC predictions assume a uniform distribution of θ3 as the 

input for the driver link, while our experimental data (Figure S26) reveals θ3 actually exhibits a 

bimodal distribution. In the MC predictions, we simply extracted the lower and the upper bound 

for θ3 of -43o and 47o, respectively, and assumed a uniform distribution between the range. Using 

a uniform distribution for the input created a less bimodal P3x distribution (Figure S27), although 

some of the bimodal nature of P3x is already seen even with a uniform θ3 distribution as a result of 

the kinematics of the SLL.  

We hypothesized that the strong bimodal distribution of P3x and the bimodal distribution of θ3 

was due to the mechanical properties of the joints. These mechanical properties are not considered 

in our computational tools, which only account for variations in link geometry and joint clearance. 

To test this hypothesis, we converted the SLL to an open-chain mechanism by excluding staples 

that bridge the scaffold seam on link 4.  This cuts link 4 and allows the SLL to fluctuate freely in 

an open-chain mode (Figure 5A) where individual joints can fluctuate independently. Once in the 

open-chain mode, we measured the angles 1  and 2 of the two joints on the open loop SLL (Figure 

5B) and compiled their angular probability distributions (Figure 5C), which we then used to 

determine joint free energy landscapes (Figure 5D). We observed a strong peak in the probability 

distributions of 1  at 185o and 2 at 167o. While the 185o peak for 1  is not feasible in the closed-

Page 24 of 37Nanoscale



 25 

loop mechanism, the 167o peak for 2 is, and therefore, the mechanical properties of 2 , and 

similarly 3 , are likely to play an important role in the closed-loop mechanism. 

We used the energy landscapes measured from the open loop SLL to evaluate the free energy of 

each joint when it is at a given angle in the closed-loop mechanism, assuming that joint 4 and joint 

3 behave similarly to joints 1 and 2, respectively, due to the symmetry of the mechanism Figure 

5E shows the free energy of the closed-loop SLL in terms of the individual joint contributions and 

the total sum free energy of all the joints (more details in Figure S28-29). The total free energy 

local minima exhibited by joints 2 and 3 translate to energy minima of the overall mechanism at 

θ3= -31o and 33o (Figure 3E bottom and Figure 3F), which correspond to the peaks in P3x at -22.8 

and 23.6 (Figure S26). 

The preferred angles of joints 2 and 3 (Figure 5C) occur when the joints are open enough for 

interactions to occur between the ends of neighboring links, such as in base stacking interactions55 

or base-pairing between ssDNA scaffold loops at the ends of links56 (Figure S32). These 

interactions are known to be salt-dependent. Therefore, we hypothesized that lowering salt 

concentrations would reduce the strength of these interactions and yield a more uniform 

distribution of θ3. However, we expect increasing salt concentrations would yield a more 

prominent bimodal distribution of θ3. To test this hypothesis, we conducted experiments with a set 

of two different salt conditions, 5mM MgCl2 (Figure S30) and 20mM MgCl2 (Figure S31) to 

compare to the previous experiments performed at 10mM MgCl2 (Figure S26). The results 

supported our hypothesis that the lower salt concentration created a more uniform θ3 distribution 

and the higher salt enhanced the bimodal distribution. In addition, the distribution from the SLL 

in a 20mM MgCl2 buffer shows a bias to the right side. This may be explained by noting that the 
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sequences of the scaffold loops show preference to form secondary structures at joint 3 (Figure 

S31, Tables S9, and S10).  

From experimental data, we can confirm that the lateral distribution of the SLL is salt dependent. 

Describing salt-dependence of DNA nanodevices in molecular dynamics simulations is a 

challenge. oxDNA2 contains salt dependence47; and it is possible that running significantly longer 

simulations in oxDNA may better capture the bimodal distribution. However, the oxDNA2 model 

includes dependence on NaCl while our experiments were conducted in MgCl2, which could also 

explain the discrepancies between the experimental and simulation distributions (Figures 1, 2, and 

S8). Regardless, decoupling the system into joints as sub-systems is beneficial to reduce the 

computational burden if oxDNA or other computational models become compatible with 

magnesium conditions in the future. Moreover, since the number of bases in a sub-system is much 

less than in a full system, we can foresee the possibility of using an all-atomic model to capture 

the joint properties and integrate those MD simulation results with our computational tools.  
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Figure 5: Measuring joint properties to model the SLL bimodal distribution. (A) Schematic of the open-chain SLL, 

which is obtained by excluding the link 4 staple strands from the folding process. With the open-chain mechanism, 

we were able to measure the mechanical properties of the free joints in the absence of mechanism constraints. (B) A 

representative TEM image shows the measured angles of the two joints of interest. (C) The distributions of the 

measured joints (N = 436). For the waist joint, ϕ1, two peaks at ~80º and ~185º were observed. The shoulder joint, ϕ2, 

peaked at ~165º. Both distributions were fitted with a combination of three Gaussian distributions. (D) The free energy 

landscapes of all four joints were calculated according to the Boltzmann distribution assuming a symmetric design. 

(E) By solving kinematic equations, the angles and corresponding free energies of all four joints at different 

configurations was computed (top), and the summation of energy of the four joints shows the energy landscape of the 

entire mechanism (bottom). (F) Reconstruction of the θ3 distribution using the open-chain SLL experiment, which 

were performed at 10 mM MgCl2. 

 

Actuating DNA Origami SLL Mechanisms 

To demonstrate actuation of the SLL and test our capabilities for predicting uncertainty in 

actuated positions, we folded a version of the SLL mechanism that contained 12-nt ssDNA 

overhangs to move P3 to the left or to the right with introduction of unique sequences (Figure 6A). 
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As shown in Figure 6A and 6D, we successfully actuated the mechanism to either side, depending 

on the closing strands introduced. We used the asymmetric feature on link 3 to confirm which side 

the mechanism was actuated toward. Compared to the closed-loop SLL, the two actuated versions 

of the SLL exhibit relatively narrow configurational distributions tilted to the left or to the right 

(Figure 6B, Movie S1, S6 and S7). Additional TEM images of the actuated SLL mechanisms are 

provided in Figures S34 and S35. Agarose gel electrophoresis in Figure 6C also showed the 

actuated structures exhibited a slight shift, running faster compared to the open-chain SLL while 

the addition of overhangs did not cause a shift in the absence of actuation. 

In order to predict the motion of the actuated SLL mechanism, we applied the oxDNA simulation 

(Figure 6D) and our TSOA and MC approaches (Figure 6E). This hybrid computational tool 

captured most errors within the experimental data. Specifically, the 99% contours from the MC 

approach captured 78% and 89% of TEM samples in the cases of actuating to the left and the right, 

respectively. We speculated that the slightly lower capture accuracy of the left side actuation came 

from the binding properties of the actuation strands. The overhang sequence with the 3’end (arrow) 

for the actuation to the right in Figure 6A has higher melting temperature at 33.1ºC than the other 

three overhangs (5’end (square) on link 2, 3’end on link 5, and 5’end on link 6 with melting 

temperatures at 31.6º, 26º, 23.2ºC, respectively). Hence, it may be possible that the SLL is more 

likely to consistently incorporate all of the actuation strands when it is actuated to the right.    
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Figure 6: Controlling the distribution of the SLL by actuating with overhangs. (A) With the addition of eight 12-nt 

overhangs, the SLL can be actuated to the left or the right configuration by adding the associated actuation strands. 

(B) TEM images of the actuated SLL to the right and left. TEM image averaging was applied to estimate the most 

likely configurations. (C) Agarose gel electrophoresis image of 1kb ladder (L), scaffold (7249), SLL, SLL with 

overhangs, SLL actuated to the left, and SLL actuated to the right. (D) Representative snapshots of the actuated 

oxDNA simulation results. The yellow strands are the closing strands added to one side to actuate the mechanism. (E) 

Combined results from two computation methods, TSOA and MC, and TEM data. The distribution of the tip P3 

position from TEM images illustrated the uncertainty in the actuated position of the SLL. Sample size = 398 (left) and 

469 (right).   
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Uncertainty Quantification of the Crank-Slider DOM 

This proposed integrated approach aims to lower the computational burden of simply using 

coarse-grained MD simulations for dynamic mechanisms by introducing the kinematic variance 

analysis. To demonstrate the broader applicability of this approach, we also applied this framework 

to one of our previously designed complex DOM, the crank-slider mechanism7. Our results for 

this mechanism are summarized in Figure S25. The crank-slider is composed of 4 bundle 

components, connected by either rotational or slider joints, and converts a crank angle rotations, 

 , to slider translations, r . Similar to the SLL, we simulated the mechanism using oxDNA and 

quantified the geometric parameters that define the kinematic motion from the trajectory (Figure 

S25C). With the analytical solution, we applied the MC method to repeatedly sample the output 

extension value r  versus the input rotation angle  . Our results yield a prediction of the motion 

uncertainty that agrees reasonably with the experimental data presented by Marras et al.7, although 

there are larger deviations from the experiment compared to our SLL results, perhaps since we 

only ran one 1500 μs simulation for this mechanism, which may not have explored the full range 

of mechanism conformations. Hence, we also tested using the crank angle distribution from the 

previous study Sharma et al.20, which ran much longer oxDNA simulations of this same 

mechanism. Using their distribution of the input crank angle along with the component length 

distributions from our simulation yielded good agreement with experiments (Figure S25).  

 

Conclusions  

Here, we presented an integrated computational, theoretical, and experimental approach and 

associated computational tools for quantifying uncertainties and predicting motion of DOM. We 

introduced two kinematic variance approaches based on the coarse-grained simulation results. 
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Integrating these kinematic approaches greatly reduced the required time to simulate this large 

DNA origami structure that exhibits large configurational changes. To validate these tools, we 

designed and fabricated a DNA origami straight-line linkage (SLL) and tested the tools with a 

previously reported DOM7. For the SLL, we further identified that the overall mechanism 

conformations can be described in terms of fundamental joint properties by breaking a closed-loop 

mechanism into an open-chain mechanism. We utilized experiments measuring the conformational 

distribution of the SLL at varying salt conditions to confirm the bimodal behavior is in part due to 

ion-sensitive interactions. Lastly, we utilized overhangs to demonstrate the ability of actuating, 

predicting, and controlling the motion of the mechanism. The results show that our tools can 

precisely predict the motion uncertainties of the SLL in both freely fluctuating and actuated cases. 

Through design, simulation, and experimental validation, we gained fundamental insight into 

the motion behavior of DOM and the relation to underlying design parameters, which are likely 

generally applicable to a variety of dynamic DNA origami devices. First, compared to the 

theoretical cylindrical model design that would exhibit perfect planar motion, we observed 

significant out-of-plane motion in the oxDNA simulations when using two short ssDNA 

connections to form a hinge joint. This suggests that effectively constraining DOMs to planar 

motion requires either placing the ssDNA connections further apart and/or including more ssDNA 

connections to constrain the motion. Second, we found that although links are generally considered 

rather stiff, their deformations, in particular the fraying at the ends, contributes significantly to the 

motion uncertainty. Hence, designing stiffer links and especially minimizing fraying of the ends 

with the underlying design could improve motion fidelity. Finally, our results illustrate that the 

conformational distribution of the overall mechanisms can be well described by understanding the 

mechanical properties of the joints. This suggests that designing mechanisms that can easily be 
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converted into open-loop versions can be a useful approach to understand the mechanism behavior. 

In this case, we found the horizontal motion of the SLL was related to salt-dependent interactions 

that likely occur between the ends of links, either base stacking or base-pairing between single-

stranded portions of the scaffold. This could either be used as a design feature, or could potentially 

be minimized by using poly-T staple overhangs that extend from the ends of links as has previously 

been done57.  

From a computational viewpoint, our integration of coarse-grained modeling and kinematic 

analysis enables a rapid, accurate, and systematic tool to predict and evaluate the quality of DNA 

origami designs. In addition, the ability to predict motion uncertainties with a relatively efficient 

framework can facilitate an iterative design process to achieve DOM designs with improved 

motion fidelity. Moving forward, our approach is also amenable to multi-level simulations where 

components are simulated separately to extract features that affect the motion of the overall design. 

Although, here we found some bundle components can exhibit different length distributions with 

a DOM relative to the isolated component by itself. Likely this is more of a concern for closed-

loop mechanisms where kinematic constraints can lead to stresses on individual components. To 

explore the configurational space, another example of multi-level simulation is the virtual-move 

Monte Carlo (VMMC) algorithm using clusters of particles to avoid kinetic traps58. Similarly, by 

using coarse-grained models to the component level and applying rigid body transformations to 

components as we did here, one can sample a variety of states for an initial configuration and then 

switch to a finer coarse-grained model to minimize the energy of the entire structure. Furthermore, 

all-atomic MD simulations can be added at the finest hierarchy32 to cooperate with coarse-grained 

and kinematic analysis, depending on the spectrum of accuracy, time-scale, and computational 
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costs. We also showed that the computational tool is also applicable to other DNA origami 

mechanisms such as the crank-slider. 

In addition, a significant outcome of this work is the computational tools, which can greatly 

simplify the use of oxDNA for general multi-component structures. This creates a foundation for 

simulating general dynamic DNA origami mechanisms, and allows user-defined control over 

initial configurations for simulation, which can enable studies of low probability conformations or 

verification of equilibrium distributions. These tools will continue to improve the rational and 

model-driven design of DNA origami structures and mechanisms with complex mechanical 

function. 
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