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Mechanics of cellular packing of nanorods with finite and non-uniform
diameters

Xin Yi1,2,†, Guijin Zou3 and Huajian Gao3,∗

To understand the mechanics of cellular/intracellular packing of one-dimensional nanomaterials, we perform theoretical analysis
and molecular dynamics simulations to investigate how the morphology and mechanical behaviors of a lipid vesicle are regulated
by encapsulated rigid nanorods of finite and non-uniform diameters, including a cylindrical rod, a rod with widened ends, a cone-
shaped rod and a screwdriver-shaped rod. As the rod length increases, the vesicle evolves from a sphere into different shapes,
such as a lemon, a conga drum, a cherry, a bowling pin, or a tubular shape for long and thick rods. The contact between the
vesicle protrusion and rod plays an important role in regulating the vesicle tubulation, membrane tension, and axial contact force
on the rod. Our analysis provides a theoretical basis to understand a wide range of experiments on morphological transitions that
occur in cellular packing of actin or microtubule bundles, mitotic cell division, and intracellular packing of carbon nanotubes.

1 Introduction

Understanding the biophysical mechanisms for cellular and
intracellular packaging of one-dimensional materials is of fun-
damental importance for many cellular functions and biologi-
cal processes, including cell shape control,1–5 filopodial pro-
trusion during cell movement,6 mitotic cell division,7–9 frus-
trated phagocytosis,10 and cytotoxicity.12 For example, long
and stiff microtubule bundles within a vesicle could give rise
to tubulation of the vesicle resembling the Greek letter ϕ
with a pair of tubular membrane protrusions or a cherry-like
shape with a single protrusion,1–4 while encapsulated long
flexible filaments become curved against the vesicle mem-
brane and the vesicle adopts a non-axisymmetric dumpling-
like shape.13,14 Flexible ring-like filaments could fold into
a (super-)coiled structure within a cell and lead to complex
cell deformation.4,5 Elongation of spindle microtubules within
cell nucleus due to gene overexpression could result in abnor-
mal tubulation of the nuclear envelope during mitosis.7 Sister
chromatids which become separated at the cell poles during
anaphase are connected by thin microtubule bundles, and to-
gether form a dumbbell-like structure in the cell.9

In the field of pathogenicity, the need to assess the
health safety of synthetic one-dimensional nanomaterials,
such as carbon nanotubes, nanofibers, and asbestos, prior to
widespread commercial use is calling for a systematic effort
to understand the biophysical mechanisms of their interac-
tions with cells and intracellular organelles following cell up-
take.10–12 Experimental results indicate that length11 and elas-
ticity12 are important features that modulate the pathogenicity
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of encapsulated nanotubes. More specifically, long and stiff
carbon nanotubes could induce lung injury, epithelioid gran-
uloma, persistent interstitial inflammation and fibrosis, frus-
trated phagocytosis, and organelle damage.10–12,15 Exposing
the mesothelial lining of the chest cavity to long multiwalled
carbon nanotubes induces asbestos-like and length-dependent
pathogenic behaviors, including frustrated phagocytosis and
giant cell formation.10 Sufficiently long and stiff carbon nan-
otubes within lysosomes cause sustained tip contact with the
inner lysosomal membrane, leading to lipid extraction, per-
meabilization, cathepsin B release into the cytoplasm, and
eventually cell death, while biologically soft carbon nanotubes
buckle within liposomes, consequently losing persistent tip
contact and staying nonpathogenic.12

While a number of theoretical models have been established
to understand and characterize the mechanical response of a
vesicle to a confined rigid nanorod of different lengths,1,3,12,16

two key parameters, nanorod diameter and shape, have been
neglected in these previous studies where the vesicle was over-
simplified as having point contact with a nanorod that exerts
a pair of localized outward pushing forces upon the vesicle
poles. Similar approaches have been employed in modeling
the formation of tubular membrane protrusions induced by ex-
ternal forces17–19 induced by, for example, cooperative move-
ment of motor proteins20,21 or optical/magnetic tweezers.18

In view of the accumulating experimental observations on
cellular packing of nanorods with finite and non-uniform
diameters, we aim to develop a more sophisticated theo-
retical model that explicitly accounts for contact between
the membrane of a vesicle and side wall of an encapsu-
lated nanorod, which allows us to handle more complex and
general nanorod geometries under a wide range of mem-
brane tension. Four different nanorod shapes are consid-
ered (Fig. 1): a cylindrical nanorod, a nanorod with two
wide ends, a cone-shaped nanorod, and a screwdriver-shaped
nanorod. Here the cylindrical nanorod serves as a represen-
tative for one-dimensional nanomaterials including (carbon)
nanotubes, (gold) nanowires, (asbestos) nanofibers, micro-
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tubule bundles, and actin-based cellular protrusions of tubular
shapes; the nanorod with two wide ends models dumbbell-
like structures observed in mitotic cell division and engi-
neered nanodumbbells used in biomedical imaging22,23 and
photodynamic therapy24; the cone-shaped nanorod could be
used to depict carbon nanohorns which exhibit potential ap-
plications in drug delivery25,26 and show low cytotoxicity
at a low-uptake level27 but at high doses induce lysosomal
membrane permeabilization and subsequent release of lyso-
somal proteases, eventually leading to cell apoptosis;28,29 the
screwdriver-shaped nanorod of a sharp diameter variation can
be viewed as a modified hybrid of the cylindrical nanorod and
cone-shaped nanorod. To complement the theoretical analysis,
molecular dynamics (MD) simulations are also performed to
probe how the morphology and other mechanical behaviors of
a vesicle are regulated by encapsulated rigid nanorods of dif-
ferent diameters and shapes. It will be shown that an initially
spherical vesicle undergoes significant shape transformations
that strongly depend on the nanorod length, shape, and di-
ameter. Moreover, both the effective axial contact force on
the nanorod exerted by the confining vesicle and the vesicle

Fig. 1 Schematics and snapshots from MD simulations of the
tubulation of a vesicle induced by an encapsulated rigid nanorod at a
pressure difference ∆p, (r,ϕ ,z) being the adopted cylindrical
coordinate system. The vesicle-nanorod morphologies for (a) a
cylindrical nanorod of a uniform radius a, (b) a cylindrical nanorod
with two widened tip ends of radii at, (c) a cone-shaped nanorod,
and (d) a screwdriver-shaped nanorod. The encapsulated nanorod
has length L = 4R. The two contact edges between the nanorod tips
and the membrane divide the vesicle into three portions, the top and
bottom parts (thin red lines) and middle part (thick black lines).
Color settings of MD simulations throughout this work: beads of
lipid molecules in orange and those modeling the nanorod in yellow.

membrane tension exhibit rich features of nonlinearity, non-
monotonicity, and discontinuity. Our results shed light on the
biophysical mechanisms for the cellular or intracellular pack-
aging of microtubule bundles, mitotic cell division, as well as
the pathogenicity of carbon nanotubes.

2 Model and methods

To analyze the response of an initially spherical vesicle of ra-
dius R to an encapsulated rigid nanorod of a finite diameter, we
consider a theoretical model in which the deformed vesicle is
of a fixed surface area A(= 4πR2) at a pressure difference ∆p
with a protrusion induced by the nanorod with length L ≥ 2R
(Fig. 1). In our analysis, the deformed vesicle is assumed to re-
tain an axisymmetric configuration, which is confirmed by our
MD simulations. The free energy of the system is described
by the Helfrich functional30

E = πκ
∫ l

0

(
dψ
ds

+
sinψ

r

)2

rds−∆p(V −V0),

where the first term is the elastic deformation energy of the
vesicle with ψ , s, and κ being the tangent angle, arclength,
and bending rigidity of the vesicle membrane, respectively;
l denotes the undetermined total arclength of the vesicle;
V0 = 4πR3/3 and V = π

∫ l
0 r2ds are the original and deformed

volume of the vesicle under ∆p. It is assumed that the mem-
brane has no spontaneous curvature. The membrane deforma-
tion energy associated with the Gaussian modulus is constant
due to the Gauss-Bonnet theorem and hence ignored here. In
addition to the free energy of the system, there are two other
key quantities characterizing the mechanical state of the vesi-
cle: the effective membrane tension σ as a Lagrange multi-
plier conjugated to the fixed vesicle area A, and the effective
axial contact force F between the nanorod and vesicle mem-
brane, stretching the vesicle along the z-axis in our adopted
cylindrical coordinate system.

As shown in Fig. 1, the two contact edges between the
nanorod tips and membrane divide the vesicle into three por-
tions, the top and bottom parts (thin red lines) and middle
part (thick black lines). We employ the Monge parameteri-
zation based on the cubic B-spline curve approximation19,31

to describe the profile of each part. For example, the pro-
file of the bottom part is approximated as z(r) = ∑biNi(r)
(i = 0, . . . ,n), where bi (control points) are the coefficients of
the basis functions Ni(r) defined recursively on a non-uniform
knot vector of the variable r. A typical choice of the knot
vector of a parameter η ∈ [0, t] is described as {η0, . . . ,ηn+4}
with η j = 0 ( j = 0, . . . ,3) and η j = t ( j = n+ 1, . . . ,n+ 4).
Similar forms based on the cubic B-spline functions are em-
ployed for r(z) = ∑ciNi(z) (i = 0, . . . ,m) in the middle part
and z = z(r) in the top part. In the limiting case of a pair of
localized point contact forces upon the vesicle poles, both the
top and bottom parts vanish. Moreover, the parameterization
transformations from ψ(s) to z(r) in the top and bottom parts
and to r(z) in the middle part are required to represent the
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Fig. 2 (a) Normalized axial contact force FR/κ as a function of the normalized nanorod length L/R at ∆p = 400κ/R3 and different values of
the normalized nanorod radius a/R. At extremely small a/R (e.g., a/R = 0.01), F saturates to a nearly constant value upon membrane
protrusion formation. (b) Selected vesicle morphologies induced by the encapsulated rigid nanofiber of radius a/R = 0.01,0.2, and 0.3, and
length L/R = 3,4,5, and 6. The scale bar is of length 2R. Inset in (a) showed the enlarged vesicle shape at L/R = 2.2, a/R = 0.1 and at
L/R = 2.8, a/R = 0.01. (c-g) Experimental images of the observed vesicle morphologies induced by one-dimensional nanomaterials of
different radii, lengths, and structures. (c) Lysosomes containing stiff single-walled carbon nanotubes in a cell from the mice ileum. Reprinted
with permission from ref. 43. Copyright 2010, Elsevier, Ltd. (d) A lemon-shaped vesicle with a pair of protruding tips. Reprinted with
permission from ref. 3. Copyright 1998, the American Physical Society. (e) Cherry-shaped vesicles, each with a single tubular membrane
protrusion enclosing a stiff long microtubule. (f) A vesicle encapsulating a thick nanorod exhibiting a bowling pin-like shape. Left subfigure is
reprinted with permission from ref. 1. Copyright 1998, the Physical Society of Japan. Right subfigure is reprinted with permission from ref.
2. Copyright 1998, Elsevier, Ltd. (g) A vesicle containing a cage-shaped actin network exhibits a thick, rod-like shape. Both (e) and (g) are
reprinted with permission from ref. 4. Copyright 2015, the Royal Society of Chemistry.

free energy E in cylindrical coordinates. With the geometric
relations dr/ds = cosψ and dz/ds = sinψ , the radial and az-
imuthal principal curvatures for the top and bottom parts are
dψ/ds = z′′(1 + z′2)−3/2 and r−1 sinψ = r−1z′(1 + z′2)−1/2,
respectively, with z′ ≡ dz/dr and z′′ ≡ d2z/dr2. The ra-
dial and azimuthal principal curvatures in the middle part are
dψ/ds = −r′′(1+ r′2)−3/2 and r−1 sinψ = r−1(1+ r′2)−1/2,
respectively, with r′ ≡ dr/dz and r′′ ≡ d2r/dz2.

The minimum energy state of the vesicle at each given L is
numerically determined through the interior-point method in
constrained nonlinear optimization,32 in which the fixed sur-
face area A serves as an equality constraint, and inequality
constraints are introduced to prevent penetration between the
membrane and encapsulated nanorod. In the case of a straight,
cylindrical nanorod with a uniform radius a (Fig. 1a), we have
the boundary condition ψ = 0 at the south pole (s = 0) of the
vesicle requiring b0 = b1, and continuities of the r coordinate
and tangent angle ψ at the lower contact edge (z = 0) requir-
ing c0 = a and 9(c1 − a)zn = (rn − a)z4. Here, rn represents
the (n+1)th component in the knot vector of r in the bottom
part, and zn is the (n+1)th component in the knot vector of z
in the middle part. Other boundary conditions include ψ = π
at the north pole (s = l) of the vesicle and continuities of r
and ψ at the upper contact edge (z = L). The nanorods of
other shapes, as shown in Fig. 1b-e, require different forms
of boundary conditions at the contact edges, which could be
determined in a similar manner as discussed above. Once the

state of the minimum energy E is obtained, the corresponding
vesicle shape and effective membrane tension σ as a Lagrange
multiplier are known. The effective axial contact force F as a
conformational force arising from the vesicle deformation is
determined numerically from F = dE/dL.

In addition to the theoretical analysis, coarse-grained MD
simulations are performed to demonstrate the roles of nanorod
size and shape on the vesicle-nanorod interaction. Both the
solvent-free modeling14,33–35 and dissipative particle dynam-
ics simulations19,36–39 has been demonstrated to be effective
and efficient in studying the mechanical behaviors of biomem-
branes. In our simulation setup, the lipid bilayer of the vesi-
cle is composed of solvent-free lipid molecules. Each lipid
molecule is modeled as three connected beads, one bead repre-
senting the hydrophilic head and the other two the hydropho-
bic tail. The pressure difference across the lipid membrane
is maintained by imposing outward forces on the lipid heads
along the director of the lipid molecules. The encapsulated
nanorod consists of a single wall of folded two-dimensional
triangular lattices. Other details of the simulations, such as
the nanorod geometries (Fig. S1a), simulation procedures, cal-
culations of the axial contact force, and interaction poten-
tials,33,34 can be found in the supplementary information (SI).
To reduce the computational cost, the vesicle in our MD sim-
ulations is chosen initially as a sphere of radius R = 50 nm,
consisting of around 5 × 104 lipid molecules. The bending
rigidity κ of this model membrane is about 12 kBT deter-
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Fig. 3 (a) Axial contact force and (b) vesicle morphology induced by a nanorod of length L and radius a, as determined from MD simulations.

mined by the adopted interaction potentials.35 The lateral di-
mensions of the simulation box are 160 nm×160 nm. To avoid
membrane rupture due to membrane tension while still captur-
ing the mechanical interplay between the nanorod and vesicle,
the outward forces are taken as 1.95×10−3 kcal·mol−1·nm−1

on each lipid of area 0.68 nm2 in our CG model, which
corresponds to a pressure difference ∆p around 40 kPa or
a dimensionless pressure of ∆pR3/κ = 100, as opposed to
∆pR3/κ = 400 assumed in our theoretical analysis. The
canonical (NVT) ensemble is used in the simulations which
are performed based on LAMMPS40 at a constant tempera-
ture of 310 K under the Nose-Hoover thermostat.41,42 We fo-
cus on the equilibrium morphology and axial contact force of
the vesicle-nanorod system.

3 Results

We first investigate the case of a vesicle containing a straight,
rigid, cylindrical rod of length L/R ≥ 2 and uniform radius a.
Fig. 2a shows that the effective axial contact force F first in-
creases almost linearly with the nanorod length L, rises to a
peak value and then decreases upon the formation of a tubu-
lar membrane protrusion. Similar profiles are observed for the
effective membrane tension σ (Fig. S2). Note that the peak
values of F and σ are not located at the same value of L/R at
given ∆p. The force variation is accompanied by a transfor-
mation of the vesicle shape (Fig. 2b). At extremely small a/R
(e.g., a/R = 0.01), curves of F and σ exhibit indistinguish-
able differences from those due to a pair of point forces on the
vesicle poles, as expected, and the vesicle transforms from an
initial sphere to a lemon-like shape with a pair of protruding
tips, and to a cherry-like shape with a thin, long tubular mem-
brane protrusion and a relatively large bulge (Fig. 2b). As a/R
increases, the sizes of the two protruding tips and the tubular

protrusion increase, the lemon-like shape gradually becomes
a conga drum-like shape, and the cherry-like shape becomes
a bowling pin-like shape with a tubular membrane protrusion
with radial size comparable to that of the bulge. For large a/R
and L/R (e.g., a/R = 0.3 and L/R = 6), the vesicle exhibits
a rod-like shape enclosing the nanorod (Fig. 2b). Due to the
finite size of the nanorod, the vesicle is deformed at L/R = 2
with non-zero axial contact force F (Fig. 2a). The profiles of
the normalized axial contact force and membrane tension at
∆pR3/κ = 200 (see Fig. S3) exhibit similar trends to these at
∆pR3/κ = 400 (Figs. 2a and S2).

To validate the theoretical analysis, we simulate vesicles
with encapsulating nanorods of different radii and lengths
(Fig. 3a). The simulations yield force profiles and vesicle mor-
phologies similar to those from the theoretical analysis shown
in Fig. 2. The effective axial contact force F , as the total ver-
tical elastic force applied by the deformed vesicle, rises to a
peak value at a certain L/R and then decreases upon the for-
mation of a tubular membrane protrusion. As the rod radius
a/R increases, F also increases, until the vesicle becomes rod-
shaped at sufficiently large L/R (Fig. 3b).

In the absence of a pressure difference, there is no mem-
brane protrusion or sharp transformation of the vesicle shape;
F and σ increase smoothly and monotonically with L/R
(Fig. S4). As L increases, the vesicle becomes thinner while
retaining a rod-like shape. Once contact between the rod wall
and vesicle membrane is established, F and σ increase at a
much higher rate, as shown in Fig. S4 in the case of a/R = 0.3
and L/R beyond a value of approximately 5.5.

The theoretically predicted morphologies of vesicles con-
taining nanorods of different sizes are consistent with exper-
imental observations for a wide range of cell activities. In
treating Alzheimer disease, single-walled carbon nanotubes
(SWCNTs) with precisely controlled doses preferentially en-
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Fig. 4 Profile of a tubular membrane protrusion magnified in the
radial direction for L/R = 5. Inset: vesicle morphology induced by
the encapsulated nanofiber of radius a = 0.2R and length L = 5R.
The red curve corresponds to the zoomed-in vesicle portion in the
red rectangle. The nanotube is not shown here for clarity.

ter lysosomes as pharmacological targets in neurons and neu-
rites, and serve as drug carriers to deliver preloaded acetyl-
choline.43 It is demonstrated that lysosomes containing SWC-
NTs of intermediate lengths exhibit lemon-like shapes, as
shown in Fig. 2c,43 though the mechanisms responsible for
a SWCNT-based neuroprotective approach for Alzheimer dis-
ease remain elusive.43,44 Lemon-shaped vesicles with a pair of
more evident protruding tips are observed as the microtubule
polymerizes within a phospholipid vesicle (Fig. 2d).3 Our the-
oretical analysis indicates that a vesicle containing a stiff, thin,
long nanorod exhibits a cherry-like shape, or a bowling pin-
like shape for a thick, long nanorod. As shown in Fig. 2e, lipo-
somes encapsulating thin, long actin-fascin bundles do exhibit
cherry-like shapes,4 and liposomes encapsulating long, thick
microtubule bundles of different L/R exhibit bowling pin-like
shapes (Fig. 2f).1,2 In the case of a cage-shaped actin network,
which can be approximated as a thick rod (Fig. 2g), the con-
fining liposome exhibits a rod-like shape. These experimental
observations are all consistent with our theoretical results and
MD simulations.

Fig. 4 shows that the tip region of a tubular membrane pro-
trusion exhibits a slightly larger radius than that of the cylin-
drical region of the protrusion, while the base region connect-
ing the vesicle bulge exhibits either slight constriction when
there is no contact between the encapsulated nanorod and
vesicle membrane (e.g., the case of a/R = 0.01 in Fig. 4) or
smooth contact with the nanorod wall (e.g., cases of a/R =
0.1,0.2, and 0.3 in Fig. 4). Previous theoretical studies in-
dicate that the shape of the protrusion tip is governed by a
fourth-order linear differential equation and can be character-
ized by a sum of sinusoids with exponentially damped am-
plitudes.45–47 As a increases, the tip region affected by the
exponentially decaying oscillations expands.

To investigate whether and how the nanorod tip size affects

the morphology of a confining vesicle, we perform a number
of case studies with both theoretical analysis and MD simula-
tions on the interaction between the vesicle and an encapsu-
lated nanorod with two widened tips, as shown in the inset in
Fig. 5. In our theoretical analysis, the tip thickness is assumed
to be negligible, and in the MD simulations, the tip contains
only one layer of coarse-grained beads. Fig. 5 shows that the
axial contact force F increases as the tip radius at increases
before the formation of the tubular protrusion and then levels
off to a constant. The membrane tension σ first increases and
gradually rises to a maximum. Upon vesicle tubulation and
with increasing contact between the vesicle membrane and
nanorod wall, the membrane tension decreases linearly with
respect to L/R (Fig. S5a). More vesicle morphologies from
the MD simulations can be found in Fig. S5b. The nanorod
with a wider tip requires a larger length L to overcome a larger
axial contact force F for vesicle tubulation. The rising por-
tions of the force curves for at/R = 0.1,0.2, and 0.3 in Fig. 5
overlap those for a/R = 0.1,0.2, and 0.3 in Fig. 2. This is
because the vesicle before tubulation has no contact with the
rod wall and only senses the tip size of the nanorod in the pre-
tubulation stage. A key feature of Fig. 5 is that the peak force
is proportional to the size of the nanorod tip. A similar size-
dependent feature has been observed in membrane protrusions
induced by an external pulling force, which is found to be pro-
portional to the size of the region on which it is exerted.18,19,48

In Figs. 2 and 3, the nanorods under consideration have
uniform diameters. To investigate the effects of non-uniform
cross-section of an encapsulated nanorod, we consider vesicle
tubulation induced by cone- and screwdriver-shaped nanorods
and determine the associated F and σ . As shown in Figs. 6a
and S6a for cone-shaped nanorods, the axial contact force in-
creases to a peak value followed by a drop upon vesicle tubula-
tion, similar to the results in Figs. 2 and 5. It can be seen from
Fig. 5 that the peak contact force is proportional to the size
of the nanorod tip. Therefore, it is not surprising that vesi-
cle tubulation occurs at the smaller end of the cone-shaped
nanorod and at a smaller value of L/R compared to that in the
case of a cylindrical nanorod. As shown in Fig. 6a, for a trun-
cated cone of a1/R = 0.1 and a2/R = 0.3, the peak value of
F is located around L/R = 2.6, which is smaller than the val-
ues of 2.9 or 3.2 for a uniform nanorod with a1/R = 0.1 or
0.3 in Fig. 2. A similar conclusion is obtained at a2/R = 0.1
and a2/R = 0.2. Although the peak force was not captured
by our MD simulations due to the narrow range of parame-
ter values within which it is located, as shown in Fig. 6a, we
could observe similar behaviors from the simulated equilib-
rium morphologies. For example, the vesicle encapsulating a
truncated cone of a1/R = 0.1 and a2/R = 0.3 forms a tubular
membrane protrusion around L/R= 3.3, as shown in Fig. S6b;
in contrast, it retains a lemon-like shape without tubular pro-
trusions when encapsulating a uniform nanorod of the same
L/R (Figs. 3 and S9b). Moreover, the peak force in Fig. 6a
is slightly higher than the peak force in Fig. 2. A similar be-
havior is observed from MD simulations (comparing Fig. S6a
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Fig. 5 Normalized axial contact force FR/κ as a function of the normalized nanorod length L/R for a/R = 0.1 and different tip sizes
at/R = 0.1,0.2, and 0.3. (a) Theoretical results at ∆p = 400κ/R3; (b) MD simulations at ∆p = 100κ/R3. Insets plot vesicle morphologies
induced by an encapsulated rigid nanorod with radius at/R = 0.3 at selected lengths.
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Fig. 6 (a) Normalized axial contact force FR/κ as a function of the normalized nanorod length L/R for ∆p = 400κ/R3 and (b) different
geometries of the cone-shaped nanorods. Inset in (a) provides the nanorod geometry with a1 < a2.

with Fig. 3a). In the case of a large a2 (e.g., a2/R = 0.3), the
force F could reach a higher level than the first peak upon
vesicle tubulation. This increase in force can be attributed
to a gradual enlargement of membrane tubule in the radial
direction (Fig. 6b), as validated by our MD simulations in
Fig. S6. In the case of small a1 and a2 (e.g., a1/R = 0.01
and a2/R = 0.1), the enlargement of membrane tubule in the
radial direction is not evident (Fig. 6b). Therefore, upon vesi-
cle tubulation, the axial contact force and membrane tension
exhibit similar linear behaviors with respect to L/R, as in the
case of an encapsulated cylindrical nanorod (comparing the
black lines in Figs. 6a and S7 with the black lines in Figs. 2
and S2).

4 Discussion

The current results can be used to predict the buckling of a
confined elastic rod. We exemplify the encapsulated rod of
a uniform radius a as a bundle of weakly cross-linked actin
filaments.49 The critical buckling force for the bundle under
simply supported boundary conditions is

fb = π2 LpkBT
L2 N,

where Lp = 18 µm is the persistence length of a single fila-
ment,50 L is the overall length of the filament, and N is the
filament number. Here we have assumed that the weakly bun-
dled filaments buckle independently. Thus, fb is linearly pro-
portional to the filament number N. In the case of a hexagonal
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distribution of the filaments in the bundle of radius a, the fila-
ment number is around N =

√
2π/3(33/4+

√
2πa/d)a/d+1,

where the distance between neighboring filaments is taken as
d = 20 nm.51 The relation between the filament number N and
the critical length, at which the encapsulated bundle of actin
filaments buckles, can be determined by comparing the critical
buckling force fb and the axial contact forces in Fig. 2.
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Fig. 7 Buckling phase diagram in terms of the normalized rod
length L/R and filament number N at R = 500 nm and
∆p = 400κ/R3. The filament bundle of L/R and N above the phase
boundary would buckle due to the relatively large axial contact
force.

For a vesicle of radius R = 500 nm at ∆p = 400κ/R3, a
phase diagram on the buckling of an encapsulated cylindrical
rod with and without consideration of the finite rod diameter is
shown in Fig. 7. In the case where the effect of the rod diam-
eter on the axial contact force is not considered, the vesicle is
assumed to form point contact with the filament bundle of ra-
dius a and is subjected to a pair of outward point forces. As the
force curve at a/R = 0.01 in Fig. 2a exhibits an indistinguish-
able difference from the point force case, it is compared with
fb and a discontinuous phase boundary is determined in which
the discontinuity corresponds to the shape transformation of
the vesicle before and after tubulation. At small N, no tubula-
tion is formed. As N increases, the vesicle exhibits tubulation.
In a more realistic case where the effect of the rod diameter on
the force curve is not ignored, the critical length of the filament
bundle becomes smaller and this trend becomes more striking
as N increases. Moreover, the filament bundle cannot resist the
axial force required for vesicle protrusion without buckling in
our case study. Here we consider the case ∆p = 400κ/R3. As
∆p decreases, the phase boundaries before and after vesicle
tubulation move upward and downward, respectively, as the
axial contact force decreases at a lower ∆p. As demonstrated
in Fig. 7, the finite rod diameter is significantly important in
regulating the buckling and protrusion of the confined filament
bundle.

For a screwdriver-shaped nanorod with two cylindrical por-
tions of different diameters, both curves of F and σ exhibit

two local maxima from the theoretical analysis (Fig. S8). The
first local maximum located at a relatively small L/R is due
to the formation of a tubular membrane protrusion enclosing
the upper portion of the nanorod with a smaller diameter, and
the second maximum located at a relatively large L/R is due
to the growing protrusion enclosing the lower portion of the
nanorod with a larger diameter (Fig. S8b).

In addition to the cherry- or bowling pin-like shape, a vesi-
cle encapsulating a long and rigid nanofiber could also resem-
ble the Greek letter ϕ with a pair of tubular membrane pro-
trusions.3 Experiments, theoretical analysis, and MD simu-
lations indicate that the ϕ -shaped vesicle with vertical sym-
metry has a slightly higher elastic energy than the cherry-
shaped vesicle.1,12,14 Further experimental studies show that
the effective adhesive interaction, such as the binding or fric-
tion between the lipid membrane and the enclosed portion of
the nanofiber, could facilitate the formation of a ϕ shaped
vesicle.2 In the current study, as the adhesive interaction be-
tween the nanofiber and vesicle membrane is neglected, the
ϕ -shaped vesicle has not been observed. An interesting ques-
tion worth further investigation is whether a cherry- or bowl-
ing pin-shaped vesicle encapsulating a nanorod is still in a
more energetically stable state than a ϕ -shaped vesicle with
two tubular protrusions in the presence of adhesive interaction
between the nanorod and vesicle membrane. The adhesive in-
teraction not only stabilizes the membrane protrusion but also
plays a key role in cell spreading which is guided by the inter-
facial stiffness of the substrate surface.52

The forms of vesicle tubulation analyzed here have also
been observed in certain organelles subject to external forces
arising from the collective motion of motor proteins along
microtubules.20,21 For example, kinesin motors have been
found to pull membrane tubular structures out of giant unil-
amellar lipid vesicles in vitro20 and out of autophagosomes,
a type of degradative compartment formed by the fusion of
autophagosomes and lysosomes during autophagy in vivo.53

A key difference between the vesicle tubulation induced by
a local pulling force and that induced by an encapsulated
nanorod of a finite radius a is the presence of contact be-
tween the nanorod wall and vesicle membrane. A free tubu-
lar membrane structure with bending stiffness κ and mem-
brane tension σ adopts a cylindrical structure of a uniform
radius r0 =

√
κ/(2σ) based on the minimization of elastic

energy E = 2πrL[κ/(2r2)+σ ] with respect to r.46,47 In the
case of a confined nanorod of radius a > r0, contact between
the nanorod wall and vesicle membrane serves as a physical
constraint to prevent shrinking of the membrane tubular pro-
trusion from radius a to r0. From the point of view associ-
ated with membrane contact, another case similar to the vesi-
cle tubulation induced by a thick encapsulated nanorod is the
vesicle tubulation induced by an aspiration pipette at a large
pipette aspiration pressure, where tight contact between the
external surface of the vesicle tubule and the internal surface
of the pipette could be formed.

From a mechanical point of view, a nuclear envelope can

1–9 | 7

Page 7 of 9 Nanoscale



be modeled as a vesicle with a double lipid bilayer.9,54 In
fission yeast cells, such as Schizosaccharomyces pombe, the
elongation of spindle microtubules inside a nucleus lacking
spindle pole bodies could lead to an abnormal transforma-
tion in the shape of the nuclear envelope from a spherical
shape to a cherry- or ϕ -like shape.7–9,54,55 For example, the
overexpression of the Mia1p or ned1 gene leads to the for-
mation of acentrosomal microtubule bundles within the nu-
cleus,7,8 whose elongation further results in tubulation of the
nuclear envelope during mitosis or interphase, a stage before
mitosis in which cells replicate their chromosomes and syn-
thesize substances for cell division. Similar protrusions of
nuclear envelopes have been observed in msd1-null mutant
cells, in which anchoring of the microtubules to the spindle
pole bodies is impaired.55 Moreover, the use of microtubule-
depolymerizing agents could suppress nuclear protrusions.54

During anaphase in normal mitotic cell division, sister chro-
matids separate and move to opposite poles of the cell. The
sister chromatids at the cell poles connected by microtubule
bundles could be approximated as wide elastic tips to char-
acterize the transformation of the shape of the nuclear enve-
lope. Considering the force distribution on the chromatids9

and their elastic deformation, our model on the interaction be-
tween the vesicle and a nanorod with two widened tips could
be generalized to analyze the division of the nuclear envelope.

Our previous work on the pathogenicity of carbon nan-
otubes within lysosomes indicates that the lysosomal confine-
ment on long and stiff carbon nanotubes leads to local mem-
brane damage due to persistent axial contact between the nan-
otube and the inner membrane leaflet, causing lipid extraction,
lysosomal permeabilization, cathepsin B release into the cyto-
plasm, and cell death.12 Moreover, MD simulations show that
the critical condition for inducing lysosomal permeabilization
can be expressed as a power-law relation between the axial
contact force and critical damage time; the lower the contact
force, the longer it takes for the membrane damage to occur.12

Our present work shows that the axial contact force depends
not only on the nanotube length but also on its diameter. The
larger the nanotube diameter or tip, the higher the maximum
axial contact force. Based on our previous analysis,12 it can
be predicted that at the same length, thicker nanorods and
nanorods with wider tips could induce membrane damage in a
shorter time and thus lysosomal membrane permeabilization,
leading to pathogenicity. In the case of a screwdriver-shaped
nanorod within a vesicle, the axial contact force curve exhibits
two local maxima, and there are more edges of tight contact
than in the case of a cylindrical nanorod (Figs. S8 and S9). As
membrane damage due to lipid extraction occurs more easily
at edges of contact between the carbon nanotube and intracel-
lular membrane,12 we expect that encapsulated screwdriver-
shaped nanotubes with more sharp edges might induce more
severe lysosomal damage and consequently more cathepsin B
release, initiating a proteolytic cascade culminating in the ac-
tivation of caspases and leading to cell death by apoptosis.56

5 Conclusions

In summary, we present in this paper a theoretical study and
molecular dynamics simulations to probe the mechanical in-
terplay between a vesicle and an encapsulated rigid nanorod
of finite and non-uniform diameter. Four distinct nanorod
shapes are considered: a cylindrical nanorod, a nanorod with
two wide ends, a cone-shaped nanorod, and a screwdriver-
shaped nanorod. As the nanorod length increases, the vesicle
encapsulating a uniform cylindrical nanorod transforms from
an initial sphere to a lemon- or conga drum-like shape with
vertical symmetry, and then to a cherry- or bowling pin-like
shape with a single long, tubular membrane protrusion and
a bulge. For a thick and long nanorod, the vesicle evolves
from a bowling pin-like shape to a rod-like shape with vertical
symmetry. Accompanying the vesicle shape transformation,
the axial contact force exerted by the confining vesicle gradu-
ally rises to a peak as the nanorod length increases, and then
decreases almost linearly with respect to the nanorod length
upon vesicle tubulation. The thicker the nanorod, the higher
the force peak. Similar features are present in the membrane
tension curves. In the case of a cylindrical nanorod with two
widened ends, the axial contact force peak becomes propor-
tional to the size of the nanorod tip and is followed by a sharp,
discontinuous drop to a constant upon a discontinuous vesi-
cle tubulation evolving from a conga drum-like shape. For a
cone-shaped nanorod, vesicle tubulation occurs at the end of
the nanorod with a smaller size, with which a smaller axial
contact force is associated. After an immediate force drop
upon vesicle tubulation, the axial contact force exerted on
the cone-shaped nanorod could increase again as the nanorod
length increases. The vesicle encapsulating a screwdriver-
shaped nanorod is subjected to two peaks of axial contact
force due to the formation of a tubular membrane protrusion
enclosing the upper and lower nanorod portions of different
diameters. Our analysis provides mechanistic insights into
the importance of nanorod size and shape for regulating the
mechanical interplay between cellular vesicles and encapsu-
lated nanorods, which can serve as a theoretical basis to under-
stand the cellular packing of actin or microtubule bundles,4,53

filopodial protrusions,6 and mitotic cell division involving mi-
crotubule rearrangement.7–9,54,55 Recalling that the enforced
mechanical contact between carbon nanotubes and intracellu-
lar vesicles plays a key role in identifying the membrane dam-
age and pathogenicity of one-dimensional carbon-based ma-
terials,12 our results predict that stiff carbon nanotubes with
larger diameters, wider tips, or more edges could aggravate
pathogenicity.
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