Nanoscale

The Owl Sensor: a 'Fragile' DNA Nanostructure for Analysis of Single Nucleotide Variations

Journal:	Nanoscale		
Manuscript ID	NR-ART-02-2018-001107.R1		
Article Type:	Paper		
Date Submitted by the Author:	15-Apr-2018		
Complete List of Authors:	Karadeema, Rebekah; University of Central Florida, Chemistry Department Stancescu, Maria; University of Central Florida, Chemistry Steidl, Tyler; University of Central Florida, Chemistry Bertot, Sophia; University of Central Florida, Chemistry Kolpashchikov, Dmitry; University of Central Florida, Chemistry		

SCHOLARONE[™] Manuscripts

The Owl Sensor: a 'Fragile' DNA Nanostructure for Analysis of Single Nucleotide Variations

Rebekah J. Karadeema,[†][±]* Maria Stancescu,[†] Tyler P. Steidl,^{‡†} Sophia C. Bertot,^{‡†} and Dmitry M. Kolpashchikov^{†‡}[‡]*

[†]Chemistry Department, University of Central Florida, Orlando, FL 32816, USA

[⊥]Current address: Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States

[‡]Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA

National Center for Forensic Science and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, 32816, United States

[‡]ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation

E-mail: rebekah@scripps.edu; dmitry.kolpashchikov@ucf.edu

KEYWORDS: DNA nanotechnology • DNA crossover tile • SNP analysis • fluorescent sensor • molecular beacon probe.

ABSTRACT: Analysis of single nucleotide variations (SNVs) in DNA and RNA sequences is instrumental in healthcare for detection of genetic and infectious diseases and drug-resistant pathogens. Here we took advantage of developments in DNA nanotechnology to design a hybridization sensor, named the 'Owl Sensors', which produce a fluorescent signal only in complex with a fully complementary DNA or RNA analytes. The novelty of Owl Sensor operation is that selectivity of analyte recognition is, at least in part, determined by the structural rigidity and stability of the entire DNA nanostructure rather than exclusively by the stability of the analyte-probe duplex, as is the case for conventional hybridization probes. Using two DNA and two RNA analytes we demonstrated that Owl Sensors differentiate SNVs in a wide temperature range of 5°C-32°C, a performance unachievable by conventional hybridization probes including molecular beacon probe. Owl Sensor's reliably detects cognate analyse even in the presence of 100 times excess of single base mismatched sequences. The approach, therefore, promises to add to the toolbox for diagnosis of SNVs at ambient temperatures.

The diagnosis and appropriate treatment of human genetic disorders and infectious diseases rely on the analysis of single nucleotide (nt) variations (SNVs), which include substitutions, insertions, and deletions.¹ Hybridization probes traditionally used for SNV analysis bind a fragment of DNA or RNA containing an SNV site and form a complex, which has greater stability if fully complementary, i.e. all Watson-Crick base pairs are formed between the probe and the analyte, than if a single mispairing is present.² Upon subjection of the complex to increasing temperatures the fully matched hybrid decomposes (melts) at higher temperatures than the mismatched complex.³ This technique enables differentiation of SNVs at high temperatures (>40°C), but only over narrow temperature intervals. The variations of hybridization probes developed so far include peptide nucleic acids (PNAs),⁴ locked nucleic acids (LNAs),⁵ molecular beacon (MB) probes,⁶ and binary probes.⁷ All probes rely on this same idea for SNV analysis: the difference in the Gibbs energies between matched and mismatched complexes, which has constant and limited value.⁸ For example, if the probe binds a 10-nt segment (which is close to the

shortest possible in practice), a single base mispairing will destabilize the complex by only ~10% on average. While increasing the length of the recognized fragment provides greater affinity and sensitivity, a mispairing then contributes a proportionally lower destabilization effect, leading to even poorer differentiation. Balancing probe affinity and selectivity is a fundamental limitation of the conventional hybridization probes.⁸ Therefore, despite many years of efforts, SNV analysis by hybridization probes remains challenging, especially at temperatures below 40°C.⁷⁻⁹ On the other hand, enzymes recognize SNVs at ambient temperatures, presumably due to their more sophisticated recognition strategy.¹⁰ We hypothesized that enzyme-free DNA probes that, along with the base pairing, use additional principles of target recognition would enable high selectivity of SNV recognition even at ambient temperatures. One implementation of the idea is multicomponent X sensors (see below),¹¹ which differentiates mismatches at ambient temperature.

In this work, we were inspired by the engineering concept that recognizes that a small and localized failure in an 'imperfectly' designed system is likely to result in a structure's collapse. For example, a stable bridge, but not the one with a structural defect, can absorb stress on its support system.¹² Keeping in mind that a rigid object fails more easily than a ductile/flexible one,¹³ we took advantage of DNA nanotechnology¹⁴ and designed a DNA sensor that forms a rigid and structurally imperfect complex when binds to a complementary analyte. A single base mismatch serves the role of 'stress' and causes the collapse of the entire fluorescent structure, allowing the sensor to effectively differentiate between fully complementary and mismatched analytes.

The Owl Sensor consists of two DNA adaptor strands Rx and P_v and a universal molecular beacon (UMB) probe. UMB probe does not directly binds analytic and therefore can be used for analysis of any sequence giving that adaptor stands are adjusted accondingly.¹⁵ The central portions of the adaptor strands are complementary to an analyte and are thus called analyte-binding domains, while the 4- to 5-nt long 3' and 5' terminal sequences are complementary to UMB. The adaptor strands are named R_x and P_y (Figure 1a), where x and y stand for the number of nts in the analyte-binding domains. In the presence of a specific analyte, R_x and P_y bind to both UMB and the analyte thus forming a 4-stranded fluorescent structure, which, when drawn, resembles owl eyes, suggesting the name of the structure and the sensor. The structure contains a DNA 4-way junction (crossover) motif commonly used in DNA and RNA nanotechnology.¹⁰

Figure 1. Design and performance of Owl Sensor. A) The adaptor strands R_x and P_y reversibly hybridize to the analyte and the universal molecular beacon (UMB) probe, forming a fluorescent Owl Structure (see Figure S1 for more details). B) Melting curves for R_{10}/P_9 Owl Sensor (R_{10} : 5'-TAT TGA GTG GCC CAT CGA TC, P_9 : 5'- TAA CTG TTG TGT CTA TGT; and UMB1, 5'-/FAM/-CGC GTT AAC ATA CAA TAG ATC GCG/BHQ1/) in the presence of fully matched InhC (5'-GCG GCA TGG GTA TGG GCC ACT GAC ACA ACA CAA GGA C) or SNV-containing analytes: substitution (Sub), deletion (Del) or insertion (Ins) (see Table S1 for full sequences). Grey dotted-dashed line: no analyte control; black dashed line: UMB1 only. The samples contained 50 mM Tris-HCl, pH 7.4, 50 mM MgCl₂, and 0.1% Tween-20 with 50 nM UMB1, 50 nM ROX, 150 nM R10, 200 nM P9, and 100 nM analytes. ROX dye was used as an internal control for normalization of fluorescence from different samples (see SI for details). The experimental data are average of 3 experiments.

As a model analyte, we used a fragment of a gene which codes for enoyl-acyl carrier protein reductase (inhA), a target

for the antibiotic isoniazid, which is a common treatment of Mycobacterium tuberculosis (Mtb) infection.¹⁷ SNVs in this gene are known to impart Mtb resistance to isoniazid.¹⁷ The analyte named InhC was fully matched to the sensor, while InhT contained a G-T mispairing, which is known to be the least destabilizing and, therefore, the most challenging to detect mismatch in DNA.¹⁸ We also designed an analyte with a one-nucleotide deletion, Inh del, and an analyte with a onenucleotide insertion, Inh ins (Table S1), mutations not seen in Mtb, but allowing for the versatility of the sensor to be demonstrated. The analytes folded in a relatively unstable secondary structure under the assay conditions (Figure S1). The sequence of the UMB1 probe (see Figure 1 legend) was optimized by us earlier.¹⁵ In this study, we demonstrate that the Owl Sensor enables differentiation of fully matched analytes from SNVcontaining analytes in a broad temperature range that includes ambient temperatures. Furthermore, we aimed to show that this property, at least in part, can be attributed to the rigidity of the Owl Structure.

The Owl Structure is more rigid than dsDNA formed in the case of conventional probes because (i) DNA crossover tiles (even with free ends) are known to be more rigid than dsD-NA;¹⁶ and (ii) the ends of the P and R strands are fixed, both by hybridization to **UMB1** and by stacking interactions of the both 3' and 5' terminal base pairs in each strand. To the best of our knowledge, this last feature is absent in the designs of all other hybridization probes, where the location of the ends of the probe is independent on the DNA helical path. Therefore, the length of the analyte-binding fragment of R_x and P_y should correspond to a full helical turn of B DNA (~10 nts) to provide the greatest stability of the Owl Structure.

Indeed, when different lengths of \mathbf{R}_x with \mathbf{P}_{10} were tested, we found that R₁₀/P₁₀ produced the highest melting temperature, an indication of complex stability (compare Figure 1 with S2). However, as expected, the stable R_{10}/P_{10} complex was able to tolerate an SNV and thus produced nearly the same signal in the presence of the mismatched InhT as with the fully matched InhC (Figure S2C). This proves our hypothesis that 'perfectly' designed DNA nanostructures (Owl complex formed by R₁₀ and P₁₀) are able to tolerate stress in the form of base mispairing. For the Owl Sensor to collapse in the presence of a mismatch, 'imperfect' designs were explored, in which the lengths of analyte-binding fragments were changed from a perfect 10 to imperfect 12, 11, 9 or 8 nts (Figures 1, S2, and S3). We found that R_{10}/P_9 allows for complex formation from 5 to about 34°C with the correct analyte, while SNVcontaining analytes resulted in little or no signal above the background in this temperature interval (Figure 1B). This result supports our assumption that the R₁₀/P₉ Owl Sensor cannot withstand additional stress introduced by SNVs due to the strain in the structure induced by 'imperfect helicity' (Figure 1a). R_{10}/P_8 produced no signal above the background in the presence of either analyte (Figure S3) due to insufficient stability of the Owl Structure.

We then compared SNV differentiation ability of the R_{10}/P_9 Sensor with Linear, MB probes and X sensor, which were designed to differentiate SNVs according to the previously developed stretagies^{5,6,11} (Figure 2A). Figure 2B demonstrates the ratios of fluorescent signal in the presence of fully matched **InhC** to that of single base mismatched **InhT**. We assumed that the SNV was differentiated if the signal of the matched analyte (F_m) divided by that of the mismatched

analyte (F_{mm}) was greater than 1.5, a parameter named ΔT_{15}^{11d} Based on this criterion, the R_{10}/P_9 Owl Sensor differentiated the SNV between 5 and $32.4^{\circ}C$ ($\Delta T_{1.5} = 27.4^{\circ}C$), an interval significantly greater than that for the Linear probe $(\Delta T_{1.5} = 14.8^{\circ}C)$, MB probe $(\Delta T_{1.5} = 15.6^{\circ}C)$, and X sensor $(\Delta T_{1.5} = 17.9^{\circ}C)$. Similar results were obtained for the deletion- and insertion-containing analytes (Figure S6), as well as for the R_{10}/P_9 Owl Sensor specific to the InhT analyte (Figure S7). Importantly, the Linear and MB probes differentiated analytes at temperatures above physiological values (> 45° C Figure 2B), which is common for conventional probes.^{5,6} Therefore, the Owl Sensor has two practical advantages over the traditional hybridization probes: it enables (i) broadening the temperature differentiation range, and (ii) shifting its differentiation interval to lower (ambient) temperatures. The limit of detection (LOD) of the Owl Sensor was found to be 4.9 nM, which was not significantly affected by the persence of 100 times excess of the single base mismatched analyte (Figure S7). This LOD is comparable with that of MB probes.⁶

Figure 2. SNV differentiation by various hybridization probes. A) Owl Sensor R_{10}/P_9 , Linear probe, MB probe, and the X sensor in complex with analyte **inhC/inhC_Q**. The red 'C' indicates the location of the SNV site. B) Differentiation ability (F_m/F_{mm}) of the linear probe (blue line), the MB probe (purple line), X sensor (magenta line) and the Owl Sensor (green line) as a function of temperature. F_m/F_{mm} is defined as a ratio of fluorescence intensities produced by each probe in the presence of fully matched analyte (F_m) **InhC** to that of mismatched **InhT** analyte (F_{mm}) after subtraction of the background. **InhT** analyte contained a C>T substitution with respect to **InhC** analyte. Unless otherwise specified, the P strand of the Owl Sensor was specific to the **InhC** version of the analyte. The threshold of $F_m/F_{mm} \sim 1.5$ is indicated by the red dotted line. The original fluorescent data used for the plot are shown in Figures 1B and S4. The experimental data are average of 3 experiments.

The remarkably improved SNV differentiation ability of R_{10}/P_9 in comparison with the R_{10}/P_{10} sensor could be explained by both the reduced stability of the analyte-P9 in comparison with analyte-P10 complex, as is the case for the conventional probes. Alternatively, the instability of the Owl Structure as a whole due to the 'imperfect' design could be the main contributor to its differentiation ability. If the latter is true, addition of structural flexibility to the Owl Structure should jeopardize this extraordinary SNV differentiation ability.

Table 1: Quantitative assessment of the stability and differentiation ability $(\Delta T_{1.5})$ of the R_{10}/P_9 Owl Sensor with and without TEG linkers.

Nanoscale

DNA strand combinations ^a		T _{m,} °C Inh C		ΔT _{1.5} , ^o C		
R	Р		InhT	Inh-Del	Inh- Ins	
10	9	31.6	27.6	27.9	27.6	
10	9_A	31.5	27.8	27.9	27.8	
10	9_o-TEG	31.3	28.0	28.3	27.6	
10	9_i-TEG	23.9	20.0	20.8	0.0	
10	9_TEG_D	23.7	0.0	0.0	0.0	
10_o-TEG	9	26.2	23.1	23.4	11.9	
10_TEG_D	9	15.6	8.2	10.5	0.0	
10_i-TEG	9	19.0	12.4	13.6	0.0	
10_o-TEG	9_o-TEG	25.5	18.2	19.9	0.0	
10_i-TEG	9_i-TEG	27.8	24.0	24.0	0.0	
10_TEG_D	9_TEG_D	23.8	19.4	19.4	18.2	

 $^{[a]}T_m$ is a melting temperature determined from the data presented in Figs. 1B 2B, S11, S12, and S13; $\Delta T_{1.5}$ (see explanation of Figure 2 legend).

Figure 3. Introduction of flexible triethylene glycol (TEG) linkers reduced SNV-differentiation ability of Owl Sensors. A) Location of TEG linkers in the Owl Structure (green). B) Fluorescent response of R_{10-0TEG}/P₉ sensor in the presence of matched InhC, or SNV-containing **Inh_T**, **Inh_ins** and **Inh_del**. Grey dotted-dashed line: no analyte control; black dashed line: **UMB1** only. The experimental conditions were as decribed in Figure 1B

legend. The experimental data are average of 3 experiments.

To test this hypothesis, we added flexible triethylene glycol (TEG) linkers between the analyte- and MB-binding arms at the strand crossover points (Figure 3A). PEG linkers connecting two DNA fragments are known to increase the flexibility of DNA constructs.¹⁹ The Owl strands contaning linkers had recive the following labels: outside junction (o-TEG), inside junction (i-TEG), or to both junctions (TEG D) (Figure 3A). TEGcontaining Owl Sensors were subjected to the melt curve procedure to determine the effect of their flexibility on the T_m and $\Delta T_{1.5}$. Overall, the SNV differentiation ability of the TEGcontaining sensors was significantly reduced: $\Delta T_{1,5}$ dropped form 27.4° C from R_{10}/P_{9} Sensor to as low as 0 for some PEGvlated constructs(Table 1). A single TEG linker in the R_{10} strand resulted in poor differentiation of insertion (Ins) and deletion (Del) SNVs (Figure 3B) in comparison to the linker-free R_{10}/P_9 (Figure 1B). This result suggests that the rigidity of the entire Owl Structure (not only the length of P_9 -analyte complex) is important for SNV differentiation. Interesting, when TEGcontaining strands were used, a significant signal with Inh ins analyte was observed, indicating that a flexible system tends to accommodate an extra nucleotide in the analyte strand (Figure S9-11).

Earlier we demonstrated the ability of X sensor to differentiate SNV containing analytes in the temperature interval 5-40°C due to the multistage recognition of the target with the limiting stage requiring the same activation energy for matched and mismatched analytes, which leads to the effect termed 'kinetic inversion'.^{11d} It has been well established that a linear or MB probe equilibrates with a mismatched faster than with a fully matched analytes.^{20,11d} Thus achieving equilibrium conditions was considered essential to achieving best SNV differentiation. The 'kinetic inversion' effect enables the opposite: faster equilibration of a complex with fully matched nucleic acids, which results in excellent SNV differentiation earlier in the hybridization reaction. For hybridization of the X sensor, we observed the 'kinetic inversion' effect in this study. Indeed, the fluorescence of the X sensor in the presence of Inh_C achieved plateau given ~ 200 s for equilibration, while longer time of ~ 600 s required for equilibration with mismatched Inh T (Figure 4, orange lines). It should be noted, that with Inh analytes the 'kinetic inversion' effect was less pronounced than with analytes used prevously,^{11d} presumably due to the difference in the stability of analyte secondary structures (a detailed investigation of this difference is in progress). However, we did not observe the 'kinetic inversion' effect for Owl sensor: the reaction mixture with mismatched Inh T reached plateau faster (in about 600 s) than fully matched **Inh** C (no signal stabilization even after 1800 s; Figure 4, green lines). We conclude, therefore, that Owl sensor utilizes different SNV differentiation strategy than X sensor, a phenomenon that may become practically important. Indeed, the X sensor, designed according to the previously established rules, failed to differentiate Inh C from Inh T at temperatures below 15°C (Figure S11). Therefore, if a differentiation of SNV in analytes with unstable secondary structures needs to be achieved at temperatures below 15°C, the Owl Sensor design should be utilized.

Further we explored the ability of Owl Sensor to analyze RNA sequences. RNA-DNA hybrids typically adopt an A DNA-like conformation with 11.1 bp per helical turn (not 10.4 bp/turn as it is for B DNA). We investigated the performance of a series of Owl Sensors with the RNA analogs of **InhC** and **InhT** analytes (Figure S12, S13). It was found that R_{11}/P_9 performed best (differentiation from 5 to 25.1°C), while R_{10}/P_9 failed to produce a significant signal. This proves that optimum helicity in the R strand is needed for sensing. Owl Sensor, therefore, is applicable

for highly selective analysis of RNA sequences with slight modification of thous suitable for analysis of DNA sequences.

Figure 4. Florescence of probe-analyte complexes at different rates of the cooling-heating cycle. The fluorescent signal for the equilibration time of 20, 60, 600 or 1800 s/1°C observed for the X sensore-analyte (oragne lines) and R_{10}/P_9 Owl Sensor (green lines) at 10°C. In the presence of fully matched Inh_C (deshed lines) or single base missmatched Inh_T (dotted lines). The experimental data are average of 3 experiments.

Figure 5. R_{11}/P_9 Owl Sensor differntiates sigle base mismatch in RNA analytes. A) $R_{11_mi}/P_{9_mi_100}$ sensor in complex with fully matched miRNA100. Red letter indicates the SNV position. B) Melting curves for R11_mi/P9_mi_100 compelxes with matched miRNA100 (blue) and single base missmatched miRNA99a (orange) analytes. The samples contained 50 mM Tris-HCl, pH 7.4, 10 mM MgCl₂, and 0.1% Tween-20 with 50 nM UMB1, 50 nM ROX, 150 nM R11_mi, 200 nM P9_mi_100, and 100 nM analytes. ROX dye was used as an internal control for normalization of fluorescence from different samples (see SI for details). The experimental data are average of 3 experiments.

To prove the general applicability of the Owl Sensor design, we used another pair of arbitrarily chosen analytes: miRNA99a and miRNA100, which differ by a single nt (TableS1, Figure S14,15). Altered expression of these miRNAs has been found in various cancers, including breast cancer.²¹ Owl Sensors specific to both RNA and DNA (miDNA99a and miDNA100) versions of the target were designed and tested. As is the case with Inh-related analytes, R_{10mi} was the best for DNA analytes while R11mi peramount of unrelated biological RNA. It was found that presence of 2.5 mg/L or 25 mg/L yeast RNA does not significantly affect the performance of the Owl Sensor (Figure S20). This data further highlights the high selectivity of the developed approach as well as robustness of Owl Sensor performance in the presence of bulk amounts of biological molecules.

Traditional design of SNV-specific hybridization probes is a time-consuming. Even if perfectly designed and under optimal hybridization conditions, such sensors have limited SNV selectivity, especially at practically important ambient temperatures. Here we applied of a new concept of analyte recognition, in which a hybridization sensor uses an analyte as a scaffold to build a rigid and fragile nanostructure that is too unstable if an SNV is present. The design procedure is as follows: (i) always use UMB1 (5'-/FAM/-CGC GTT AAC ATA CAA TAG ATC GCG-/BHQ1/) as a fluorescent reporter; (ii) always use UMB1-binding arms for strands P and R as shown in Figure 2 and 5 for DNA and RNA analytes, respectively; (iii) SNP site should be located in the middle position of P strand-binging region; (iv) analyte binding arm of strand R should hybridize adjacent to the hybridization site of strand P and should be 10 and 11 nucleotides for analysis of DNA and RNA analytes, respectively . Therefore, unlike conventional hybridization-based sensors, these design promises to eliminate the need for adjusting the probe lengths or the hybridization conditions to achieve near-perfect selectivity. The new sensor selectively binds only fully complementary DNA and RNA and discriminates against single base substitutions, deletions, and insertions in a broad temperature range even in the presence of random RNA or excess amount of single base-mismatched analyte. For two different analyte sequences, it was shown that 10 and 9 nts for the R and P strands, respectively, were ideal for DNA-targeting sensors, while 11 and 9 nts for the R and P strands, respectively, worked best for RNA targeting. Follow up studies ware in progress for further verification of general applicability of the Owl Sensor for DNA and RNA analysis. Importantly, UMB1 does not hybridize directly to the analyte in the Owl complex and, therefore, can be used universally for any analyte, provided that strands P and R are tailored for targeted sequences. The Owl Sensor, therefore, promises to simplify design and optimization of hybridization assays and will contribute to low cost, ambient temperature analysis of DNA and RNA.

ASSOCIATED CONTENT

Supporting Information. Supporting Information contains details of experimental procedures, list of all DNA and RNA sequences used in this study as well as the experimental data supporting the conclusions made in this study.

AUTHOR INFORMATION

Corresponding Author

*Rebekah J. Karadeema E-mail: rebekah@scripps.edu and *Dmitry M. Kolpashchikov Dmitry.Kolpashchikov@ucf.edu.

Present Addresses

†Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding Sources

The project was supported by NSF CCF 1423219 and NSF CBET 1706802. D. M. K. was supported by the ITMO University Fellowship and Professorship Program.

Notes

Any additional relevant notes should be placed here.

ACKNOWLEDGMENT

DMK is grateful to Dr. Yulia V. Gerasimova for helpful discussion and help in manuscript preparation.

ABBREVIATIONS

UMB, universal molecular beacon; nt, nucleotide; SNV, single nucleotide variations; MB, molecular beacon; PNAs, peptide nucleic acids; LNAs, locked nucleic acids; *Mtb, Mycobacterium tuberculosis*; LOD, limit of detection; F_{ms} . Fluorescence of matched analyte; T_{mm} , Fluorescence of mismatched analyte; T_{m} , melting temperature; TEG, triethylene glycol.

REFERENCES

(1) (a) Aphasizheva, I.; Aphasizhev, R. *Trends Parasitol.* **2016**, 32,144-156. (b) Makova, K. D.; Hardison, R. C. *Nat. Rev. Genet.* **2015**, 16, 213-323; (c) Yu, C.; Baune, B. T.; Licinio, J.; Wong, M. L. *Psychiatry Res.* **2017**, 252, 75-79.

(2) (a) Marras, S. A.; Tyagi, S.; Kramer, F. R. *Clin. Chim. Acta.* 2006, 363, 48-60; (b) Boutorine, A. S.; Novopashina, D. S.; Krasheninina, O. A.; Nozeret, K.; Venyaminova, A. G. *Molecules* 2013, 18, 15357-15397; (c) Guo, J.; Ju, J.; Turro, N. *Analytical & Bioanalytical Chemistry* 2012, 402, 3115. (d) Junager, N. P.; Kongsted, J.; Astakhova, K. *Sensors (Basel)* 2016, 16, pii: E1173.

(3) (a) Erali, M.; Voelkerding, K. V.; Wittwer, C. T. *Exp Mol Pathol.*2008, 85, 50-58. (b) Fontenete, S.; Guimarães, N.; Wengel, J.; Azevedo, N. F. *Crit. Rev. Biotechnol.* 2016, 36, 566-577; (c) Tong, S. Y.; Giffard, P. M. *J. Clin. Microbiol.* 2012, 50, 3418-3421.

(4) Zhang, N.; Appella, D. H. J. Infect. Dis. 2010, 201, S42-5. (b) Liu, Q.;
Wang, J.; Boyd, B. J. Talanta 2015, 136, 114-127; (c) Lee, J.; Park, I. S.;
Jung, E.; Lee, Y.; Min, D. H. Biosens Bioelectron. 2014, 62, 140-144; (d)
Smolina, I. V.; Frank-Kamenetskii, M. D. Methods Mol Biol. 2014, 1050, 121-130; (e) Sharma, C.; Awasthi, S. K. Chem. Biol. Drug Des. 2017, 89, 16-37.

(5) (a) Campbell, M. A.; Wengel, J. *Chem Soc Rev.* 2011, 40, 5680-5689.
(b) Xi, D.; Shang, J.; Fan, E.; You, J.; Zhang, S.; Wang, H. *Anal. Chem.* 2016, 88, 10540-10546; (c) Fontenete, S.; Carvalho, D.; Guimarães, N.; Madureira, P.; Figueiredo, C.; Wengel, J.; Azevedo, N. F. *Appl. Microbiol. Biotechnol.* 2016, 100, 5897-5906.

(6) (a) Tyagi, S.; Kramer, F. R. *Nature Biotechnology* 1996, 14, 303-308.
(b) Kolpashchikov, D. M. *Scientifica* 2012, 928783.

(7) Kolpashchikov, D. M. Chem. Rev. 2010, 110, 4709-4723.

(8) (a) Demidov, V. V.; Frank-Kamenetskii, M. D. *Trends Biochem. Sci.* **2004**, 29, 62–71; (b) SantaLucia Jr, J.; Hicks, D. *Annual Review of Biophysics & Biomol. Structure* **2004**, 33, 415-440.

(9) (a) Wegman, D. W.; Ghasemi, F.; Stasheuski, A. S.; Khorshidi, A. Yang, B. B.; Liu, S. K.; Yousef, G. M.; Krylov, S. N.; *Anal. Chem.* 2016, 88, 2472-2477. (b) Urakawa, H.; El Fantroussi, S.; Smidt, H.; Smoot, J. C.; Tribou, E. H.; Kelly, J. J.; Noble, P. A.; Stahl, D. A. *Applied and Environ. Microbiol.* 2003, 69, 2848-2856.

(10) (a) Olivier, M. *Mutat Res.*, **2005**, *573*, 103-110; (b) Drabovich, A. P.; Krylov, S.N. *Anal Chem.* 2006, 78, 2035-2038; (c) Y. V. Gerasimova, D. M. Kolpashchikov, *Chem. Soc. Rev. 2014*, 43, 6405-6438; (d) (f) Strerath, M.; Detmer, I.; Gaster, J.; Marx, A. *Methods Mol. Biol.*, **2007**; *402*, 317-328.

(11) (a) Kolpashchikov D. M. J. Am. Chem. Soc. 2006,128,10625-10628;
(b) Gerasimova, Y. V.; Kolpashchikov, D. M. Biosens Bioelectron. 2013,

41, 386-390; (c) Gerasimova Y. V.; Ballantyne, J.; Kolpashchikov D. M. *Methods Mol. Biol.* **2013**, 1039, 69-80; (d) Stancescu, M.; Fedotova, T.A.; Hooyberghs, J.; Balaeff. A.; Kolpashchikov, D. M. *J. Am. Chem. Soc.* **2016**, 138, 13465–13468.

(12) Feld, J. Carper, K. L. 1997, John Wiley & Sons. ISBN 0-471-57477-5.

(13) Rice, P.; Dutton H. 1995, Taylor & Francis. p. 33

(14) (a) Jones, M. R.; Seeman, N. C.; Mirkin, C. A. Science 2015, 347, 1260901; (b) Jaeger, L.; Chworos, A. Curr. Opin. Struct. Biol. 2006, 16, 531-543; (c) Roh, Y. H.; Ruiz, R. C.; Peng, S.; Lee, J. B.; Luo, D. Chem. Soc. Rev. 2011, 40, 5730-5744; (d) Endo, M.; Sugiyama, H. Chembio-

chem. **2009**, 10, 2420-2443. (15) Gerasimova, Y. V.; Hayson, A.; Ballantyne, J.; Kolpashchikov, D. M.

ChemBioChem **2010**, 11, 1762-1768. (16) (a) Fu, T.-J.; Seeman, N. C. *Biochemistry* **1993**, 32, 3211-3220; (b) Eichman, B. F.; Vargason, J. M.; Blaine, H. M. M.; Ho, P. S.; *Proc. Natl*

Acad. Sci. U. S. A. **2000**, 97, 3971-3976; (c) Kolpashchikov, D. M.;

Gerasimova, Y. V.; Khan, M. S. *Chembiochem* 2011, 12, 2564-2567; (c)
B. Kim, S. Jo, J. Son, J. Kim, M. H. Kim, S. U. Hwang, S. R. Dugasani,
B. D. Kim, W. K. Liu, M. K. Kim, S. H. Park, *Nanotechnology* 2014, 25, 105601. (d) Boulais É.; Sawaya N. P. D.; Veneziano R.; Andreoni A.;
Banal, J.L.; Kondo, T.; Mandal, S.; Lin, S.; Schlau-Cohen, G. S.; Woodbury, N. W.; Yan, H.; Aspuru-Guzik, A.; Bathe, M. *Nat. Mater.* 2017, doi: 10.1038/nmat5033; (e) Stewart, J. M.; Subramanian, H. K. K.; Franco, E.

Nucleic Acids Res. **2017**, 45, 5449-5457; (f) Stewart, J. M.; Viard, M.; Subramanian, H. K.; Roark, B. K.; Afonin, K. A.; Franco, E. *Nanoscale* **2016**, 8, 17542-17550; (g) Lau, K. L.; Sleiman, H.F. *ACS Nano.* 2016, 10, 6542-6551; (h) Son, J.; Lee, J.; Tandon, A.; Kim, B.; Yoo, S.; Lee, C. W.; Park, SH. *Nanoscale* 2015, 7., 6492-6497.

(17) Mdluli, K.; Slayden, R. A.; Zhu, Y.; Ramaswamy, S.; Pan, X.; Mead, D.; Crane, D. D.; Musser, J. M.; Barry, C. E. *Science* **1998**, 280, 1607-1610.

(18) Allawi, H. T.; SantaLucia, J. Jr. Biochemistry 1997, 36, 10581-10594.

(19) (a) Pyshnaya I. A., Pyshnyi D. V., Lomzov A. A., Zarytova V. F., Ivanova E. M. *Nucleosides Nucleotides Nucleic Acids*. 2004, 23, 1065-1071; (b) Pyshnyi D. V., Lomzov A. A, Pyshnaya, I.A., Ivanova E. M. *J. Biomol. Struct. Dyn.* **2006**, 23, 567-580.

(20) (a) Wang, S.; Friedman, A. E.; Kool, E. T. Biochemistry, **1995**, 34, 9774-9784; (b) Dai, H.; Meyer, M.; Stepaniants, S.; Ziman, M.; Stoughton, R. *Nucleic Acids Res.*, **2002**, 30, e86; (c) Hooyberghs, J.; Baiesi, M.; Ferrantini, A.; Car-lon, E. *Physical Review E*, **2010**, 81, 012901. (d) Rauzan, B.; McMichael, E.; Cave, R.; Sevcik, L.R.; Ostrosky, K.; Whitman, E.; Stegemann, R.; Sinclair, A.L.; Serra, M. J.; Deckert, A. A. *Biochemistry*, **2013**, 52, 765-772.

(21) Wu, D.; Zhou, Y.; Pan, H.; Qu, P.; Zhou, J. Mol. Med. Rep. 2015 11, 1469-1475.

SYNOPSIS TOC A deliberately unstable fluorescent DNA nanostructure (Owl Structure) is not formed when a single base mismatch additionally destabilizes it.

