Adsorptive removal of p-nitrophenol from water with mechano-synthesized porous organic polymers

<table>
<thead>
<tr>
<th>Journal:</th>
<th>New Journal of Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>NJ-ART-09-2018-004575.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>21-Oct-2018</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Zeng, Heng; Jinan University Lu, Weigang; Jinan University, Hao, Leiduan; Washington State University, Chemistry Helms, Gregory; Washington State University, Center for NMR Spectroscopy ZHANG, QIANG; Washington State University, Chemistry Luo, Zhiping; Fayetteville State University, Chemistry and Physics</td>
</tr>
</tbody>
</table>
Adsorptive removal of p-nitrophenol from water with mechano-synthesized porous organic polymers

Heng Zeng, a Weigang Lu, a, c Leiduan Hao, b Gregory L. Helms, b Qiang Zhang a * and Zhiping Luo c

In this work, we demonstrated a successful synthesis of porous organic polymers via a ball-milling procedure. Several readily available benzene derivatives were selected to be polymerized through a Friedel-Crafts reaction with FeCl₃ as Lewis acid catalyst and formaldehyde dimethyl acetal as a crosslinker. All the mechano-synthesized porous organic polymers (MPOPs) are not soluble in common organic solvents, and the calculated surface area was over 500 m²/g when biphenyl was used as the monomer. One of the advantages of applying ball-milling in targeted polymer synthesis is bypassing the large quantity of hazardous chlorinated solvents which are commonly used in traditional Friedel-Crafts reactions. Considering the aromatic skeleton and hydrophobic nature of these polymers, their performances in p-nitrophenol (PNP) adsorption from water was investigated. The quantification was carried out on an ionic 3Q 320 LC-MS/MS system with 4-nitrocatechol (PNC) as an internal standard. MPOP-1 and MPOP-3 showed maximum adsorption capacity of 133.10 and 155.51 mg/g for PNP, respectively. The adsorption kinetics were studied and both adsorption isotherms were well delineated with a pseudo-second-order equation, indicating the availability of strong adsorption sites in both MPOPs for interacting with PNP.

As a subclass of porous organic polymers, hyper-crosslinked microporous organic polymers (HCPs) are usually generated by transition-metal-catalysed aromatic couplings. They were initially named for the polymeric frameworks synthesized through Friedel-Crafts reactions in the presence of anhydrous FeCl₃ as Lewis acid catalyst and formaldehyde dimethyl acetal as a crosslinker, 4 in which a variety of aromatic derivatives were used as building blocks and polymerized via a C(sp²)–C(sp³) cross coupling to produce hyper-crosslinked polymers. They have been thoroughly studied in the fields of gas storage, catalysis, separation and recently carbon capture applications due to their intrinsic porosity and exceptional stability. 4c, 5 Although other Lewis acids and crosslinkers can be used to replace FeCl₃ and formaldehyde dimethyl acetal to synthesize HCPs, 6 the Friedel-Crafts coupling process generally requires neither noble metals as catalyst nor the monomers with specific polymerizable groups. Hyper-cross-linking prevents the close packing of polymeric chains in this kind of materials and imparts the frameworks with narrowly dispersed micropores, which lead to decent surface areas and pore volumes. 7

From a traditional organic synthesis point of view, the preparation of HCPs is of high yield and cost-effective, benefiting from the efficiency of Friedel–Crafts reaction and readily available starting materials. 8 However, chlorinated solvents, such as 1,2-dichloroethane and chloroform, are normally used as reaction media for such syntheses, which is environmentally and economically unsustainable. The growing awareness of the environmental implications of chemical...
processes and the search for greener solutions have brought untraditional approaches back into the light, especially when it comes to scaling up. To bypass the need for hazardous solvents, mechanochemical synthesis seems to be a promising alternative. The advantages of mechanochemical synthesis of applying ball-milling in targeted polymer synthesis are yet to be explored, while chemical transformations are initiated and sustained by mechanical force.

Considering the high yields of mechanochemical reactions along with the easiness to scale up, the prospects of mechano-synthesis are undoubtedly brightening at present and into the future. By utilizing the mechanical energy, ball-milling can be applied not only in many bond-forming processes, including various conventional organic transformations and polymerizations, it can also create stress on substances by different mechanical motions, resulting in nano-sized particles with fine structures that would be otherwise difficult to achieve in solutions, providing opportunities in making new materials desired in certain applications.

In this work, we demonstrated a successful mechano-synthesis of porous organic polymers via a ball-milling procedure. Several readily available benzene derivations were selected to be polymerized through a Friedel-Crafts reaction with FeCl₃ as Lewis acid catalyst and formaldehyde dimethyl acetal as a crosslinker. Considering the aromatic skeletal structure and hydrophobic nature of these mechano-synthesized porous organic polymers (MPOPs), removal of organic pollutants, especially aromatic ones, from water could be one of the potential applications. Indeed, MPOP-1 and MPOP-3 exhibit maximum absorption capacity of p-nitrophenol (PNP) as high as 133.10 and 155.51 mg/g, respectively. The quantification of PNP in water was carried out on an Ionics 3Q 320 LC-MS/MS system with PNC as an internal standard. Fourier transform infrared spectroscopy (FT-IR) data were collected on a SHIMADZU IRAffinity-1 Spectrophotometer; the position of an absorption band was given in wavenumbers in cm⁻¹. Solid-state ¹³C NMR investigation was carried out on an Agilient NMR–inova500 with glycin as an external chemical shift reference. The plots are of the TOSS spectra (total suppression of sidebands) which show only the isotropic C-13 peaks.

Synthesis of MPOP-1 to -5 (Scheme 1)

Under a nitrogen atmosphere, formaldehyde dimethyl acetal (0.9 mL, 10.2 mmol) was added to a mixture of anhydrous FeCl₃ (2.0 g, 12.3 mmol) and toluene (0.43 mL, 2.2 mmol) in a 65-mL stainless steel grinding vial with two 8-mm steel balls. It was sealed and grounded with 8000M Mixer/Mill for 100 min. 20 mL of aqueous HCl solution (3.0 M) was then added and grounded for another 5 min. The resulting mixture was filtered, the solid was collected and refluxed in a mixture of 20 mL of ethanol/20 mL of aqueous HCl solution (3.0 M) overnight. After cooled down, the solid was collected by filtration, washed with H₂O (3 X 10 mL), ethanol (3 X 10 mL), acetone (3 X 10 mL), and then dried under vacuum at 80 °C for 8 hr to produce MPOP-1 with a yield of 98% (elemental analysis, Fe% 0.178%; Cl% 0.119%).

A similar procedure was followed by using naphthalene (0.27 g, 2.1 mmol) instead to produce MPOP-2 with a yield of 107%, possibly due to the trapped iron and chlorine species (elemental analysis, Fe% 0.622%; Cl% 0.272%). A similar procedure was followed by using biphenyl (0.32 g, 2.1 mmol) instead to produce MPOP-3 with a yield of 99% (elemental analysis, Fe% 0.786%; Cl% 0.410%). A similar procedure was followed by using stilbene (0.37 g, 2.1 mmol) instead to produce MPOP-4 with a yield of 115%, possibly due to the trapped iron and chlorine species (elemental analysis, Fe% 0.423%; Cl% 1.078%).

A similar procedure was followed by using tetraphenylethylene (0.34 g, 1.0 mmol) instead to produce MPOP-5 with a yield of 95% (elemental analysis, Fe% 0.799%; Cl% 0.354%).
Gas Adsorption

A Micromeritics ASAP 2020 Plus surface area/pore size analyzer was used to measure nitrogen and carbon dioxide physisorption isotherms. ca. 100 mg of sample was used for each measurement. High-purity gases were used. Pore size distribution was calculated from the nitrogen adsorption isotherm based on DFT model in the Micromeritics ASAP 2020 plus software package.

Tandem Mass Spectrometry (MS/MS) Method Development

Tandem mass spectrometry (MS/MS) method was developed on a mass spectrometer (ionics 3Q 320, Perkin Elmer, USA) in a multiple reaction monitoring (MRM) mode. The analysis was performed with an electrospray ionization source set in a positive mode. An ion-spray voltage of +5.5 kV was applied. The heated capillary temperature was set at 200 °C.

Drying gas and nebulizer gas were set at 120 and 350 µL/min, respectively. To determine the MS transitions, two diluted methanol solutions with 0.1% formic acid, one for the analyte (PNP) and the other for internal standard (PNC), were infused into the mass spectrometer by using a syringe pump, respectively. For analyte, the molecular ion was detected at m/z 140.1, the most intense product ions resulting from fragmentation were identified as m/z 123.1, m/z 93.2, and m/z 65.3. For internal standard, the molecular ion was detected at m/z 155.8, the most intense product ions resulting from fragmentation were identified as m/z 139.2, m/z 109.2, and m/z 81.2. These values are in good agreement with NIST (National Institute of Standards and Technology) Chemistry Webbook.

Furthermore, mass spectrometry parameters including entrance voltage, collision energy, and collision cell lens were fine-tuned and listed in Table S3 in Electronic Supplementary Information.

Liquid Chromatography (LC) Method Development

Liquid chromatography (LC) method was developed on a UPLC system (ultrashigh pressure liquid chromatography, Altus A-30, Perkin Elmer, USA). Analyte separation was carried out on a Brownlee SPP C18 column (50 × 3.0 mm, 2.7 µm) maintained at 30 °C. Elution was in gradient mode with a mobile phase composed of a mixture of acetonitrile and water containing 0.1% formic acid pumped at 0.5 mL/min. The total run time for the analysis was 5 min. A high rate of elution was necessary to achieve a short analytical run. The detail of gradient elution setup was in Table S4 in Electronic Supplementary Information.

A diluted aqueous solution containing both PNP (analyte) and PNC (internal Standard) were subjected to auto sampling for the developing of the LC method. The retention of PNP and PNC were 1.64 and 3.05 min with tuned gradient elution, respectively. The total ion chromatogram with a good separation of PNP and PNC as well as high intensity for both was shown in Figure S13 in Electronic Supplementary Information.

LC-MS/MS Method Development

PNP concentrations were measured on the UPLC system coupled with the mass spectrometer under conditions as described above. First, a stock solution of PNP (1 mg/mL, 1000 ppm) and a stock solution of PNC (0.1 mg/mL, 100 ppm) were prepared in deionized water. Both stock solutions were stored at 20 °C and wrapped in aluminum foil to prevent photodegradation. Then, working solutions of PNP for calibration were prepared at seven different concentrations (2, 5, 10, 20, 50, 100, 200 ppm), and PNC was added to each solution at a final concentration of 50 ppm. For example, the 200-ppm working solution was prepared by mixing 0.2 mL of PNP stock solution, 0.5 mL of PNC stock solution and 0.3 mL of water; the 100-ppm working solution was prepared by mixing 0.1 mL of PNP stock solution, 0.5 mL of PNC solution, and 0.4 mL of water; and so on.

Calibration Curve

All seven working solutions were run seven times to eliminate any experimental error. The PNP concentration was plotted against the PNP/PNC peak area ratio. All seven calibration curves showed good linearity throughout the used range of concentration. A linear regression line was fitted to the experimental data as shown in Figure 1 and its correlation coefficient (R²) was calculated to be 0.99854.
Figure 1. LC-MS/MS calibration curve of PNP with PNC as an internal standard.

Adsorption of PNP with MPOP-1 and MPOP-3

To a 500-ppm aqueous solution of PNP (100 ml), added dried MPOP-1 or MPOP-3 (200 mg), it was shaken for 30 s and then left to stand still. For MPOP-1, a 0.5 mL of above solution was taken at intervals of 5, 10, 30, 60, 180, 360 min, 1 d, 2 d, and 5 d, respectively; For MPOP-3, a 0.5 mL of solution was taken at intervals of 5, 10, 30, 120, 240, 360 min, 1 d, 2 d, and 5 d, respectively. Each of these solutions was added 0.5 mL of stock solution of PNC (100 ppm), which made the PNC as an internal standard at a final concentration of 50 ppm in all the solutions. Before mounted on autosampler in UPLC for analysis, all the solutions were filtered with 0.2 μm polypropylene syringe filters.

Results and discussion

To investigate the porosities of the MPOPs, nitrogen adsorption-desorption measurements at 77 K up to 1 bar pressure were performed. Before analysis, these polymers were degassed under dynamic vacuum at 80 °C for 8 h. The nitrogen sorption isotherms and corresponding pore size distribution curves are shown in Figure 2. Brunauer-Emmett-Teller (BET) surface area calculation was carried out by using ASAP 2020 plus software. Isotherm points chosen to calculate the BET surface area were subject to the three consistency criteria detailed by Walton and Snurr. First, the pressure range selected has values of V(Po - P) increasing with P/Po. Second, the point used to calculate the BET surface area is linear with an upward slope. Third, the line has a positive y-intercept (Figure S1 to S5). The calculated BET surface areas for MPOP-1 to -5 were 374, 71, 556, 375, and 129 m²/g, respectively.

MPOP-2, the one from naphthalene, exhibited the lowest surface area probably because of the planarity of naphthalene molecule, which is clearly favoured for a two-dimensional extension, not three-dimensional hyper-cross linking. The other monomers, on the other hand, wherein individual phenyl rings are mostly free to rotate and adopt an orthogonal orientation to the rest of the molecule, are more likely extending into hyper-crosslinked three-dimensional networks. Among them, MPOP-5, the one from tetraphenylethylene, showed a low surface area probably because of the relative rigidity of the molecule itself imposed by the central double bond. MPOP-3, the one from biphenyl, showed the highest surface area, probably due to its preferred conformation where two phenyl rings are perpendicular to each other, such a geometry is favoured and translated into a three-dimensional polymer. These values, however, are somewhat lower than those made with traditional polymerization reactions in solutions (the reported surface areas were usually in the range of 500 to 1200 m²/g), nevertheless, our approach is greener and sustainable by avoiding the large quantity of 1,2-dichloroethane or other chlorinated solvents used in conventional Friedel-Crafts reactions, and our continued efforts to improve the surface area by optimizing the reaction conditions is underway.

The DFT method was used to calculate the pore size distribution, and most of the observed pores were in the microporous region, which is usually the case in hyper-crosslinking (1 to 2 nm, Figure 2). Some mesopores were also observed, and this could possibly be attributed to the voids between aggregates of nano-sized polymeric particles, which is rather common in porous organic polymers. The nitrogen sorption isotherms showed that desorption branch does not coincide with the adsorption branch. This may be due to the existence of extremely narrow micropores that kinetically restrict the exit of adsorbed nitrogen molecules from the interior during pressure releasing the desorption process.
To confirm that, we probed MPOP-3 with CO$_2$ at higher temperatures (Figure S19). No large hysteresis loops in the adsorption/desorption isotherms were observed, and the tiny hysteresis loop was becoming even smaller as temperature increased from 273 K to 295 K to 313 K, which are consistent with the literature.

Thermogravimetric analyses of the MPOP materials were carried out with a heating temperature up to 900 °C at a ramping rate of 5 °C/min under a continuous nitrogen atmosphere (Figure 3). All the MPOPs showed no obvious weight loss before 200 °C and retained more than 60% of their mass even at 900 °C, indicating a good thermal stability, which is consistent with the reports for other hyper-crosslinked materials.5c,18 Compared to PAF-1 (520 °C)1a or PPN-4 (450 °C)1l, in which the unusual stability are derived from their rigid aromatic ring structures, our MPOP materials have relatively lower thermal stability, we suspect that the intrinsical methylene crossing between aromatic rings make the framework relatively flexible, therefore, more susceptible to collapsing during the heating process.

SEM images revealed that MPOP particles were spherical in shape with dimensions in submicrometer range, which is typical for highly cross-linked polymers, likely in aggregated forms (Figure S6 to S10). Wavelength-Dispersive X-Ray Spectroscopy (WDS) analysis was carried out to measure the contents of residue iron and chlorine in these MPOP materials (Table S2). The weight percentage of Fe varied from 0.178% to 0.799%, even after refluxing the MPOPs in 3.0 M aqueous HCl solutions.
overnight twice, indicating some of the iron species were
trapped inside the MPOP materials, which is usually the case for
amorphous porous polymers. However, considering its high
molecular weight, the iron contents are much less significant in
terms of molar percentage. The weight percentage of Cl varied
from 0.119% to 0.410% for MPOP-1, MPOP-2, MPOP-3, and
MPOP-5, interestingly, the Cl% value is much higher for MPOP-4
(1.078%), which could be attributed to a certain degree of HCl
(by-product of Friedel-Crafts reaction) addition onto the double
bond in the skeletal network since stilbene the monomer
contains a di-substituted double bond, which is relatively
reactive. It was not the case for MPOP-5, however, because the
double bond in tetraphenylethylene is tetra-substituted and
rather inert.

Nitrophenols are widely used in petrochemical synthesis,
including paints, plastics, rubber, pulp, pesticides and dyes
production.19 p-Nitrophenol (PNP), in particular, has an intensive
toxic effect on methemoglobin formation, potentially causing
cyanosis, confusion, and unconsciousness. It has been listed as a
priority pollutant by the U. S. Environmental Protection
Agency.20 The presence of nitrophenols in industrial wastewater
has aroused great concerns in recent years due to the increase in
wastewater discharge and the toxicity of nitrophenols to the
receiving bodies.21 For years, to minimize nitrophenol pollution
from wastewater, the methods of photo-degradation,22
adsorption,23 and chemical oxidation,24 etc, have been
developed. Among them, physical adsorption is one of the most
promising techniques due to the advantages such as low cost,
simple operation, and reuse.21b

The frameworks of these MPOPs are predominantly
aromatic structures, which might implicate strong interactions
with organic pollutants bearing aromatic rings. Therefore, the
two with higher surface areas (MPOP-1 and MPOP-3) were
selected to study their performances in the removal of PNP from
water. Indeed, the characteristic yellow colour of PNP anions in
aqueous solutions under neutral conditions ($\lambda_{\text{max}} \approx 400$ nm)
quickly disappeared when MPOP-1 or MPOP-3 was added
(Figure 4a inset). To quantitate their adsorptive capacity, a UPLC
system (Altus A-30, Perkin Elmer, USA) coupled with a mass
spectrometer (Ionics 3Q 320, Perkin Elmer, USA) was employed
and a calibration curve was first built for PNP with PNC as an
internal standard and was used later on for calculating the
analyte concentrations (Figure 1). For each MPOP, seven sample
solutions were collected at different time intervals and analysed
with LC-MS/MS method as described in Experimental section. All
the tests were performed in triplicates. The detailed adsorption
data and calculated concentrations were in Table S6 and S7. The
maximum adsorption of MPOP-1 and MPOP-3 for PNP were
estimated to be 133.10 mg/g (Figure S14) and 152.51 mg/g
(Figure 4a), respectively. After refluxed in ethanol twice, filtered,
and dried, the recovered MPOP-3 was checked its N₂ adsorption at 77 K. We found that its porosity was about the same as the as-synthesized one, indicating the integrity of the network during the PNP adsorption (Figure S25).

To analyse the adsorption kinetics of MPOPs, the adsorption data in Figure S14 (for MPOP-1) and Figure 4a (for MPOP-3) were fitted with pseudo-first-order and pseudo-second-order kinetic models, respectively. Table S5 summarized the adsorption kinetic parameters of PNP on these two tested sorbents. Comparing with the correlation coefficients (R²) of the Pseudo-first-order and Pseudo-second-order, it can be easily concluded that the Pseudo-second-order kinetic model fits the adsorption process for both tested sorbents better than Pseudo-first-order. The fitting lines of Pseudo-second-order were perfectly plotted in Figure S15 (for MPOP-1) and Figure 4b (for MPOP-3). This suggests that the rate of adsorption of PNP on MPOPs is not simply diffusion controlled, but rather depends on the availability of adsorption sites, in this case, aromatic rings in the framework, therefore, the maximum PNP adsorption capacity is correlated to surface area, with MPOP-3 having the higher PNP adsorption capacity. Compared to other porous materials tested for the removal of PNP from water, our materials exhibit moderate adsorption capacities (Table 1). Considering the cost-effective synthesis and easiness to scale-up, MPOPs are very promising in terms of water treatment applications in this line, not to mention the fact that adsorption capacity is proportional to the surface area in this type of materials, which suggests the possibility of further improving the adsorption capacity through optimization of reaction conditions.

Table 1. Maximum adsortion capacities of PNP for some selected sorbents at room temperature.

<table>
<thead>
<tr>
<th>Sorbents</th>
<th>Surface area (m²/g)</th>
<th>q_max (mg/g)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiAl-LDH</td>
<td>108.7</td>
<td>77.7</td>
<td>15h</td>
</tr>
<tr>
<td>Polymer1</td>
<td>38.45</td>
<td>101.6</td>
<td>25</td>
</tr>
<tr>
<td>MPOP-1</td>
<td>374</td>
<td>133.10</td>
<td>This work</td>
</tr>
<tr>
<td>MPOP-3</td>
<td>556</td>
<td>152.51</td>
<td>This work</td>
</tr>
<tr>
<td>NH₂-MIL101(Al)</td>
<td>1942</td>
<td>195.52</td>
<td>26</td>
</tr>
<tr>
<td>PAC-NUT</td>
<td>679</td>
<td>234.3</td>
<td>27</td>
</tr>
</tbody>
</table>

Conclusions

In this work, we successfully demonstrated a mechano-synthesis of porous organic polymers via a ball-milling procedure. Several readily available benzene derivations were selected to be polymerized through a Friedel-Crafts reaction with anhydrous FeCl₃ as Lewis acid and formaldehyde dimethyl acetal as a crosslinker. All the polymers are not soluble in common organic solvents. The calculated BET surface area can reach over 500 m²/g with biphenyl as the monomer. One of the advantages of applying ball-milling in targeted polymer synthesis is avoiding large quantity of hazardous organic solvents which are commonly used in traditional Friedel-Crafts reactions. Considering the aromatic skeletal network and the hydrophobic nature of these mechano-synthesized porous organic polymers (MPOP), their performances in p-nitrophenol (PNP) adsorption from water were investigated. The quantification was carried out on an LC-MS/MS system with 4-nitrocatechol (PNC) as an internal standard. MPOP-3 shows a maximum PNP adsorption capacity as high as 152.51 mg/g. The adsorption isotherms can be well delineated with a pseudo-second-order equation, indicating the availability of strong adsorption sites in both MPOPs for interacting with PNP.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

This work was supported by Jinan University (W. Lu), Washington State University (L. Hao and Q. Zhang), and Fayetteville State University (W. Lu and Z. Luo). Electron Microprobe Facility at Fayetteville State University was funded by the U.S. Department of Defense grants W911NF-09-1-0011 and W911NF-15-1-0566.

References

3. (a) W. Lu, J. P. Sculley, D. Yuan, R. Krishna, Z. Wei and H.-C. Zhou,

