New Journal of Chemistry

Europium amphiphilic naphthalene based complex for the enhancement of linearly polarized luminescence in Langmuir-Blodgett films

Journal:	New Journal of Chemistry
Manuscript ID	NJ-LET-08-2018-003976.R1
Article Type:	Paper
Date Submitted by the Author:	10-Dec-2018
Complete List of Authors:	Yoshihara, Koushi; Aoyama Gakuin University College of Science and Engineering Graduate School of Science and Engineering Yamanaka, Masamichi; Shizuoka University, Department of Chemistry Kanno, Shuhei; College of Science and Engineering, Aoyama Gakuin University, Department of Chemistry and Biological Science Mizushima, Souichi; College of Science and Engineering, Aoyama Gakuin University, Department of Chemistry and Biological Science Tsuchiyagaito, Junko; Aoyama Gakuin University, College of Science and Engineering Kondo, Kazuki; College of Science and Engineering, Aoyama Gakuin University, Department of Chemistry Kondo, Takahiro; College of Science and Engineering, Aoyama Gakuin University, Department of Chemistry Iwasawa, Daichi; Aoyama Gakuin University, College of Science and Engineering Komiya, Hiroaki; College of Science and Engineering, Aoyama Gakuin University, Department of Chemistry Iwasawa, Daichi; Aoyama Gakuin University, College of Science and Engineering Komiya, Hiroaki; College of Science and Engineering, Aoyama Gakuin University, Department of Chemistry and Biological Science Saso, Akira; Aoyama Gakuin University College of Science and Engineering Graduate School of Science and Engineering Kawaguchi, Shogo; JARSI/SPring-8, Goto, Kenta; Kyushu University, Institute for Materials Chemistry and Engineering Ogata, Shuhei; College of Science and Engineering, Aoyama Gakuin University, Department of Chemistry Takahashi, Hiromi; System Instruments Co., Ltd., Research Fellow Group Ishii, Ayumi; College of Science and Engineering, Aoyama Gakuin University, Department of Chemistry Hasegawa, Miki; College of Science and Engineering, Aoyama Gakuin University, Department of Chemistry Hasegawa, Miki; College of Science and Engineering, Aoyama Gakuin University, Department of Chemistry

SCHOLARONE[™] Manuscripts

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Europium amphiphilic naphthalene based complex for the enhancement of linearly polarized luminescence in Langmuir-Blodgett films †‡

Koushi Yoshihara^a, Masamichi Yamanaka^{*b,c}, Shuhei Kanno^a, Soichi Mizushima^a, Junko Tsuchiyagaito^a, Kazuki Kondo^a, Takahiro Kondo^a, Daichi Iwasawa^a, Hiroaki Komiya^a, Akira Saso^a, Shogo Kawaguchi^d, Kenta Goto^e, Shuhei Ogata^{a,c}, Hiromi Takahashi^f, Ayumi Ishii ^{*a,c,g} and Miki Hasegawa^{*a,c}

Linearly polarized luminescence (LPL) in films of europium ions was induced by using naphthoic acid adopted alkyl chain (NaphC15), which plays roles of both surfactant and photo-antenna. The synthesis of NaphC15 was newly developed, and of the Eu complex has composed in a 1:3 for Eu³⁺ ion and NaphC15 in the powder for comparison. The structual aspects of LB films with layered scheme were obtained with the measurements of synchrotron XRPD, X-ray photoelectron spectroscopy and waveguide polarized absorption spectra. Luminescence of europium in the film is strengthed more than that in powder complex. The luminescence efficiency calculated from observed luminescence lifetimes and quantum yields also supported their structure-enhanced luminescence. Finally, we revealed that the LPL was sensitized by the electronic dipole moment localized on the NaphC15 moieties aligned independently in Langmuir-Blodgett films.

NaphC15

Introduction

Polarized optical phenomena of europium (Eu) complexes have attracted continuous interest in the past few decades not only as a scientific curiosity¹, but also for applications such as security inks and display materials.² The luminescence assigned to the 4f-4f (abbreviated as ff) transitions localized on the Eu³⁺ ions is sensitized by photo-excitation of π -electronic skeletons of ligands through intramolecular energy transfer³, since the ff transitions of the trivalent lanthanide ions are the Laporte forbidden. Methods and molecular designs to improve luminescence intensities have been extensively researched⁴. Recently, the number of papers on lanthanide complexes related to circularly and linearly polarized luminescence

- ^{a.} College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
 - E-mail: haesmiki@chem.aoyama.ac.jp; Fax: +81-42-759-6221
- ^{b.} Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- E-mail: yamanaka.masamichi@shizuoka.ac.jp
- ^{c.} Mirai Molecular Material Design Institute, Aoyama Gakuin Universitiy, 5-10-1
- Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan ^{d.} Research & Utilization Division, Japan Synchrotron Radiation Research Institute
- (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
- ^e Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
- ^{f.} System Instruments, Co. Ltd., 776-2 Komiya, Hachioji, Tokyo 192-0031, Japan
- ^{g.} JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- [†] Dedicated to Professor Emeritus Dr. Isao Ono on the occasion of his 77th birthday.
 [†] Electronic Supplementary Information (ESI) available: ¹H NMR, Attenuated total
- 57 ^{*}Electronic Supplementary Information (ESI) available: ⁺H NMR, Attenuated total reflection FT-IR, electronic absorption, excitation and luminescence spectra with
- their decay profiles, synchrotron XRD patterns, XPS. For the syntheses, reaction scheme and ¹H-NMR spectra. See DOI: 10.1039/x0xx00000x
- 59 60

Photo-antenna &

ty with C15-alkyl chain Coordination site to Ln ions

Fig. 1 Schematic representation of the design of naphthoic acid derivative (abbreviated as NaphC15) with alkyl chains (top), schematic images of this work. Ln, L and LB are lanthanide, Langmuir and Langmuir-Blodgett, respectively. The present LB films form a Y-type film on the hydrophobic substrate. *d* shows the interlayer distance of aligned Eu³⁺ ions in the Y-type films.

(abbreviated as CPL and LPL, respectively) increases, especially, CPL phenomena of Eu complexes were much reported with ligands. The principle to induce polarized phenomena of Eu complexes is still unknown, because it is generated after the energy transfer, and the electron cloud of the Eu³⁺ ion should be spherical with no polarization.

There are few papers on Eu complexes that generate LPL. For instance, Eu complexes exist in liquid crystals,⁵ or polymer matrixes.⁶⁻⁸ Heegar *et al.* reported a LPL polymer of Eu^{III} by using polymethacryl acid, and suggested the LPL of Eu^{III} would induced the direction of electronic dipole moment localized on the organic photo-antenna.⁶ However, nobody knows the

HEMISTR

1 2

3 4

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

47

48

49 50

51

52

53

54

55

56

57

58

59 60 ARTICLE

Scheme 1 Synthesis of NaphC15. a) Br₂, CH₃COOH, Δ, 64%; b) CH₃OH, H₂SO₄, Δ, 73%; c) 1-pentadecyne, Pd(PPh₃)₂Cl₂, Cul, PPh₃, Et₃N, THF, Δ, 40%; d) H2, Pd/C, EtOAc, rt, 33%; e) KOH, H₂O, THF, CH₃OH, rt, then HCl, 72%.

Scheme 2 Syntheis of Eu(NaphC15)₃.

enough explanation from experimental evidences still now. One of the keys to enhance the LPL of molecular system is the film formation in polymer films or in self-assembly systems. Actually, the differences in molecular orientations of Eu complexes between powder and liquid crystals enhance their polarized photophenomena. There are only a few reports demonstrating polarized luminescence of Eu³⁺ ions in Langmuir-Blodgett (LB) films.⁹ Furthermore, no studies were reported which experimentally elucidated the principle of LPL of Eu complexes as related to molecular aggregation or intramolecular energy transfer.

Here, we examine a new molecular aggregation system to 36 37 induce bright LPL of Eu complexes in LB films made with an 38 amphiphilic 1-naphthoic acid derivative (NaphC15; Fig. 1), and we elucidated possible explanation for LPL. Naphthalene and 39 its derivatives have a high absorption coefficient¹⁰ and 40 fluorescence polarization of naphthalene derivatives was 41 reported for an imaging procedure of biomaterials, since their 42 transition dipole moment is high and their molecular rotation 43 relaxation time on the protein is useful.¹¹ Additionally, the 44 excitation state of naphthalene moiety acts as an efficient 45 energy donor to Eu³⁺ ion.¹² 46

Results and discussion

Synthesis of surfactant ligand, NaphC15, and its Eu complex

NaphC15 was synthesized in five steps from commercial 1naphthoic acid (1) (Scheme 1 and Fig. S1). Bromination of 1 gave 5-bromo-1-naphthoic acid (2).¹³ The carboxyl group of 2 was converted into a methyl ester to afford 3.¹⁴ Sonogashira coupling reaction between 3 and 1-pentadecyne afforded alkynylated product 4. Hydrogenation and subsequent hydroxylation of 5 gave desired NaphC15 as a white solid. For the comparison of luminescence and structural properties between the film and powder, the Eu complex with NaphC15, abbreviated to Eu(NaphC15)₃, was also synthesized (Scheme 2 and Fig. S2). Eu(NaphC15)₃ was characterized as a 1:3 complex, which was reasonable because the same component ratios were reported in a Eu complex with 1-naphthoic acid^{10e} The thermal analyses were also supported that Eu(NaphC15)₃ has one coordination water molecule and one crystalline water in the microcrystals (Fig. S3).

The formation condition and structure of LB films

LB films of NaphC15 was obtained by the deposition from the surface of neat water or aqueous solution. Especially, since the Ln complexes, Ln(NaphC15)₃, are not soluble in solution, the Eu/Gd-containing LB films of NaphC15 were deposited from the surface of europium nitrate-water to the quartz substrate. The isotherm curve of a liquid film of NaphC15 is shown in Fig. 2, and has the characteristic shape for monolayer formation. The 10-layered LB films of NaphC15 were deposited on a hydrophobic quartz substrate¹⁵ from the interface of a 1.0 x10⁵ M aqueous solution of europium nitrate at surface pressures of 30, 35 and 40 mN/m (abbreviated as LB30, LB35 and LB40, respectively).

An X-ray photoelectron spectroscopy (XPS) of **LB30**, and the existence of Eu³⁺ ions in the films was confirmed by Eu 3d XPS bands (Fig. 3). The nitrate ion of europium nitrate was replaced with the anionic 1-naphto ligand, indicated by the disappearance of the bands after complexation in the film. Similar behaviour of Eu 3d and N 1s bands also appeared in both **LB35** and **LB40** (Fig. S4), but intensities of the Eu 3d XPS band of **LB40** was relatively weak and broad more than those of **LB30** and **LB35**. It suggests that the complexation between NaphC18 and Eu in **LB40** will differ from those of other LB films. **LB30**, **LB35** and **LB40** of the synchrotron X-ray diffraction (XRD) patterns observed by using an attachment for small angles

Fig. 2 Isothermal curve of NaphC15.

ARTICLE

Fig. 3 X-ray photoelectron spectra of Eu 3d (left) and N 1s (right) band in Eu30.

Binding energies were corrected by the Au 4f band (84.0 eV).

Fig. 4 Synchrotron XRD patterns of 10-layers in Eu-NaphC15 LB films (red lines) formed under surface pressures of (a) 30, (b) 35 and (c) 40 mN/m. The XRD patterns were recorded by using imaging plates.³⁵ Yellow and black lines in Fig. 2a are the powder diffraction patterns of Eu(NaphC15)₃ and its ligand NaphC15, respectively. Exposure time was 600 s, source light power was λ =1.000050 Å for powders and λ =0.999894 Å for films.

Fig. 5 X-ray diffractions recorded on imaging plates for $\mbox{LB30}$ (left) and $\mbox{LB35}$ (right).

sharply appeared (Fig. 4, and Fig. S5)¹⁶ meaning the high ordering to an out-of-plane periodicity. Furthermore, their patterns in LB films completely differ from that in powderstate Eu(NaphC15)₃ which broadly appeared. It indicates that Eu(NaphC15)₃ LB films form a layered structure. The interlayer distance *d* in **LB30** was estimated to be ca. 49.8 Å ($2\theta = 1.15^{\circ}$) as a bilayer formation from Bragg's equation. This distance is shorter than the theoretical value of 52 Å, when the length of NaphC15 was used as 26 Å with a perpendicular alignment. It indicates the formation of the heling-born structure in the films as our initial assumption in Fig. 1.

The peak position in **LB30** was slightly shifted with an increase in the surface pressure, and appeared at high α angles according to the imaging plate-recording of all diffraction (Fig. 5). This suggests that layered species in the film aggregated randomly, when high surface pressure was applied during the film formation. In fact, each peak in **LB40** is split into two, indicating several molecular orientations existed. Thus,

homogenization at a surface pressure of > 40 mN/m, must be applied in order to eliminate the polarized luminescence phenomenon. XRD patterns of LB films using Gd are similar to above results.

The temperature dependence on the synchrotron XRPD for NaphC15 and $Eu(NaphC15)_3$ in powder states was also

observed

Fig. 7 Linearly polarized fluorescence spectra ($\lambda_{\rm ex}$ = 310 nm) localized on naphthalene moiety by using the 10 layer-LB film of NaphC15 deposited at 20 mN/m. The angles mean the rotation angles of the polarizer in front of the detector.

and have no changed (Fig. S5(d)), which resulting to the stable orientation without shrinking even at 80 K.

Polarized electronic absorption and luminescence spectra localized on NaphC15 in the LB films

Nature of electronic structure of ligand moiety in the lanthanide complexes and the LB films supports to understand the enhancement of ff transitions through excitation energy transfer from the ligand. NaphC15 in chloroform shows the absorption band at 317 and 327 (sh) nm which correspond to the 308 and 325 (sh) nm bands of naphthalene itself (Fig. S6). It means that the electronic bands of naphthalene skeleton after the derivation of alkyl chain are shifted to a longer-wavelength side.

Linearly polarized absorption spectra localized on the ligand in the mainly contributing MO's for its first $\pi\pi^*$ electronic

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49 50 51

52

53

54

55

56

57

58 59 60

ARTICLE

2 transition. The tilt angles of the naphthalene skeletons in the 3 film were determined by using polarized absorption spectra 4 attached with the optical wave guide method (see ESI for the 5 calculation).¹⁷ A bilayer of **LB30** deposited on a waveguide 6 quartz plate show the band at 315 nm assigned to the first 7 $^{1}\pi\pi^{*}$ transition. This band was calculated at 324.7 nm with an 8 oscillator strength, f =0.1413, which contributed the HOMO-9 LUMO transition of 49% from the excited wavefunctions, Ψ_1 10 =0.69 $\varphi_{\rm 65,66}$ +... . The transition dipole moment μ was also 11 calculated and is shown in Fig. 6b. 12

The optical density D_s is much higher than that of D_n at the 13 first ${}^{1}\pi\pi^{*}$ transition position. The peak top in D_{s} is shifted more 14 to the red than that of D_p . These anisotropic results indicate 15 that the naphthoic acid moieties are aligned in the films. The 16 tilt angles φ of the naphthoic acid moieties in the films were 17 estimated¹⁷ as 77° and 67° for LB30 and LB35, respectively (Fig. 18 S10). The film obtained at 40 mN/m showed no intensity 19 differences between its D_p and D_s due to the random 20 molecular assembling. Thus, the surface pressure can be tuned 21 to refine the production of LPL devices by LB techniques. It 22 23 supports to the discussion obtained from the synchrotron XRD. The surface pressure at 40 mN/m is too much strong for their 24 film formation and will affect to collapse the monolayer at the 25 water surface. 26

The linearly polarized fluorescence (the ${}^{1}\pi\pi^{*}$ transition) of 27 NaphC15 were observed in the LB film (Fig. 7). The 28 fluorescence intensities decreased with increasing the angles 29 of polarizer direction of the a LB film in association with the 30 band shifting from 390 to 375 nm. This indicates that the $\pi-$ 31 electronic system of NaphC15 will act as an energy donor with 32 the refined transition dipole moment for the ff luminescence 33 after the complexation with Eu³⁺ ion. 34

The ff-luminescence spectra of Eu complexes with NaphC15 and their polarized phenomena in LB films

Luminescence and its excitation spectra of Eu(NaphC15)₃ in the solid state were shown in Fig. 8. The luminescence bands of Eu³⁺ ion in the complex appear at 579, 593, 612.5, 649 and 698.3 nm assigned to the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$, ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ transitions, respectively. The excitation spectrum monitored at 612.5 nm has a broad band around 340 nm and a sharp one at 393.1 nm. The former band corresponds to the $\pi\pi^{*}$ electronic absorption band localized on the naphthalene skeleton, and latter one is the ff absorption band of Eu³⁺ ion. The corresponding bands appear at mostly same position in LB30, LB35 and LB40 as shown in Fig. S7. Thus, the ligand acts as an energy donor to enhance ff emission of Eu through the

Fig. 8 Luminescence and excitation spectra of Eu(NaphC15)3 in the powder state. $\lambda_{ex}{=}310$ nm and $\lambda_{mon}{=}612$ nm

coordination bond in LB films. Incidentally, there is no information of all spectra in solution of $Eu(NaphC15)_3$ due to its quite low solubility into solvents.

The fluorescence and phosphorescence band at 385 and 510 nm, respectively, localized on NaphC15 in the Gd-NaphC15 LB film was able to be observed, but was not done in solid state as

Fig. 9 Luminescence spectra of ff emission (red line) of Eu³⁺ ions in **LB30** (a: $\lambda_{ex} = 310$ nm). The excitation spectrum monitored at 615 nm are shown in dotted line. Fluorescence (dashed line) and phosphorescence (dashed line) and phosphorescence (dashed line) to sphorescence (dashed line) is the NaphC15 LB film with Gd ion. (b) Setup for the linearly polarized luminescence (LPL) spectral measurement. LPL of the Eu-NaphC15 LB film deposited at various surface pressures (c: 30; d: 35; and e: 40 mN/m).⁵ Inset in Fig. 3c is a photograph of luminescence of LB30 under UV light (scale bar: 20 mm).

Table 1 Photophysical data of the luminescence lifetimes $\tau_{\rm ff}^*$ (ms; Fig. S8), quantum yields $\varphi_{\rm obs}^{**}$, radiative rate constant $k_{\rm R}$ (s⁻¹), non-radiative rate constant $k_{\rm NR}$ (s⁻¹), net quantum yield $\varphi_{\rm Ln}$ and energy transfer efficiencies $\eta_{\rm EnT}$ of the Eu-NaphC15 LB films and the powder Eu(NaphC15)₃.

$arphi_{Ln}$	$\eta_{_{\rm EnT}}$
2.7%	33 %
16%	49 %
25%	19 %
20%	30 %
	2.7% 16% 25% 20%

* λ_{ex} = 340 nm, λ_{mon} = 615 nm, ** λ_{ex} = 310 nm, λ_{mon} = 550 – 720 nm

a Gd complex. It means that the film formation is also suitable to keep the stable excited triplet state of the ligand moiety. The phosphorescence band position and its broad shape are effective to be an energy donor to Eu, and to induce the ff emission of Eu (Fig. S10).

Journal Name

1 2

3

The LPL of the Eu-containing LB film with NaphC15 was successfully observed as shown in Fig. 9. The intensities were normalized at each electric dipole transition, ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$. The luminescence intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition assigned to the magnetic dipole transition in LB30 or LB35 drastically changed with different angles of the polarizer placed in front of the detector. While LB40 shows no LPL behaviour nor did the complex in solution as well as in powder of Eu(NaphC15)_3. It indicates that the structure as an assembly of LB40 is more random than those in LB30 and LB35. This is supported by the XRD as described above. The similarities of LB30 and LB35 in such LPL and above photophysical properties are enhanced with the periodically stacking of molecular layers more than that in LB40.

It is worthwhile to note that the luminescence quantum yield $\varphi_{\rm obs}$ at the ff emission in **LB30** is 5.8% which is much greater than that in the powder of 0.1% (Table 1). The luminescence decay profiles for Eu(NaphC15)₃, LB30, LB35 and LB40 are shown in Fig. S8 The luminescence lifetimes of the Eu-NaphC15 LB films are also higher than that in the powder. The radiative rate constants $k_{\rm R}$ and efficiencies of energy transfer $\eta_{\rm EnT}$ were calculated. These values in the LB films correspond to those in the powder of $Eu(NaphC15)_3$, while non-radiative rate constants $k_{\rm NR}$ in the LB films are drastically decreased more than that in the powder. The FT-IR, elemental and thermal analyses show the existence of coordinating water in the complex Eu(NaphC15)₃ in the powder. It means that the differences of intermolecular interaction between the powder and films affect to the luminescence ability of Eu with the enhancement of coordinating water molecules resulting in the low $k_{\rm NR}$ value in the films.

That is, the film formation of NaphC15 by the LB method containing Eu³⁺ ions is suitable to obtain LPL of ff emissions according to the assembled independently existing NaphC15 in the film, and to enhance the excitation energy transfer from NaphC15 to Eu without any water interactions

Experimental

Syntheses of and characterization of NaphC15^{14,15} and the Eu complex

5-bromo-1-naphtoic acid(1)

1-Naphthoic acid (9.65 g 56.0 mmol; TCI Co. Ltd.) and acetic acid (40 mL; TCI) were placed in a three-necked flask. This mixture was heated at 110 $^{\circ}$ C and stirred during the addition of bromine (3.20 mL 61 mmol); TCI), then it was refluxed for 2 hours. A yellow solid was precipitated during heating, and then stirred at room temperature overnight. The mixture was poured into ice water. The solid was filtered, washed with water, and crystallized from acetic acid (250 mL; Kanto Chemical Co. Ltd.) to afford 9.05 g (64 %) of bromo acid as a white solid. ¹H NMR (CD₃OD): δ 7.44 (dd, 1H), 7.65 (dd, 1H), 7.86 (dd, 1H), 8.23 (d, 1H), 8.47 (d, 1H) and 8.90 (d, 1H).

Methyl 5-bromo-1-naphthoate(2)

To a suspension of 5-bromo-1-naphthoic acid (9.05 g, 36 mmol) in anhydrous methanol (360 mL) was added

Page 6 of 8

concentrated H_2SO_4 (9 mL), and the resulting mixture was refluxed for 6 hours. The mixture was cooled and concentrated *in vacuo* to one-third the volume. The organic phase was washed with water, dried (MgSO₄), and concentrated in vacuo. Silica gel column chromatography using hexane/EtOAc (2:1) afforded 7.07 g (73%) of methyl 5-bromo-1-naphthylcarboxylate. ¹H NMR (CDCl₃): δ 4.01 (s, 3H), 7.43 (dd, 1H), 7.62 (dd, 1H), 7.83 (dd, 1H), 8.20 (dd, 1H), 8.49 (d, 1H), 8.87 (d, 1H).

Methyl 5-(pentadec-1-yn-1-yl)-1-naphthoate(3)

Methyl 5-bromo-1-naphthoate (1.00 g, 3.81 mmol), 1-3.81 pentadecyne (0.79 g, mmol), bis(triphenylphosphane)palladium(II) dichloride (133 mg, 0.19 mmol), copper(I) iodide (33 mg, 0.19 mmol), and triphenylphosphane (99 mg, 0.38 mmol) were placed in a twonecked flask. After three successive vacuum/argon cycles, THF (20 mL) and triethylamine (20 mL) were introduced, both by syringe. The reaction mixture was stirred at 66 °C. The crude product was concentrated onto silica. Purification by HPLC yielded the product as a white solid (409.9 mg, 40%). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: $\delta = 8.84 (d, 1 \text{ H}), 8.60 (d, 1 \text{ H}), 8.19 (d, 1 \text{ H}),$ 7.66 (d, 1 H), 7.49-7.57 (m, 2 H), 4.01 (s, 3 H), 2.56 (t, 2 H), 1.71 (quint, 2 H), 1.53 (quint, 2 H), 1.39-1.25 (m, 18 H), 0.88 (t, 3H).

Methyl 5-pentadecyl-1-naphthoate(4)

To a solution of Methyl 5-(pentadec-1-yn-1-yl)-1-naphthoate (409.2 mg, 1.04 mmol) in ethyl acetate (60 ml) was added 10% palladium on activated carbon (42 mg, 10 wt%). The mixture was well stirred under an atmospheric pressure of hydrogen for 2 days. The catalyst was removed by filtration. Purification by HPLC yielded the product as a white solid (137 mg, 33%).

5-pentadecyl-1-naphthoic acid(Naph-C₁₅)(5)

66.9 mg of ester and 2.8 mL of THF: methanol = 1 : 1 were placed in round-bottomed flask mounted over magnetic stirrer. 0.56mL 6 *N* KOH aqueous was added and the contents were stirred for 72 hours. The aqueous was acidified to pH = 2 with hydrochloric acid. The carboxylic acid precipitated on standing, was washed with water and filtered off, and dried under vacuum.

Eu(NaphC₁₅)₃

Eu(NO₃)₃·6H₂O (45.4mg, 102 μ M) in ethanol (7 mL) was slowly added to a solution of Naph-C₁₅ (38 mg, 99.3 μ M) with triethylamine (0.07 mL). After stirring 24h, the white precipitate was filtered and washed with ethanol (50.1 mg, 94.4 %). Eu(NaphC15)₃ was characterized as a 1:3 complex with a water molecule. Anal. Calcd for C₇₈H₁₁₃O₇Eu as Eu(NaphC15)₃·H₂O: C 71.3%, H 8.7%; Found: C 71.9%, H 8.6%; yield >94%. The existence of a coordinating- and a crystalwater molecule were also found around 220 and 74 °C, respectively, as endothermic peaks in the thermal gravimetric analyses (Fig. S3).

Deposition of LB films

A Milli-Q water purification system (Millipore Co.) was used to purify water for the subphase. Non-fluorescent quartz substrates were pre-coated with Octadecyl-trichlorsilan, 95% (ACROS ORGANICS Co.) to prepare the surface hydrophobicity.

60

16

17

48

49

59 60

ARTICLE

A mixed chloroform solution of a 1:7 molar ratios of NaphC15
and stearic acid (abbreviated to SA) were used to form the
monolayers on the water/air interface.

Owing to the Ln containing deposition of the films, above 6 solution of NaphC15 was spread on the water subphase 7 containing $Ln(NO_3)_3 \cdot 6H_2O$ (1.0×10⁻⁵ M; Ln = Eu or Gd) in a 8 Langmuir trough (Filgen, Inc.) at 293 K. The monolayers were 9 transferred on the hydrophobic quartz substrate¹⁶ as a Y-type 10 model (10 layers) at a surface pressure of 30, 35 or 40 mN/m 11 by the vertical depositing method with a transfer rate of 10 12 mm/min. At the same condition, the single monolayer was 13 deposited on a 0.2 mm-thickness quartz plate for the ATR 14 absorption spectral measurement. 15

Apparatus

18 1 H-NMR spectra were recorded on a JEOL JMN-500II19spectrometer in CDCl3 with tetramethylsilane. ATR FT-IR20spectra were measured using a Nicolet iS5 spectrometer21(Thermo Scientific). XPS measurements were performed on a22KRATOS AXIS ULTRA DLD (Shimadzu) equipped with a23monochromatic AI-K α X-ray source (1253.6 eV); the binding24energies were calibrated at the Au 4f level (84.0 eV).

Synchrotron XRPD patterns were recorded on a large Debye Scherrer camera installed at SPring-8 BL02B2 (JASRI/SPring-8)
 using an imaging plate as a detector.^{18a} Powder samples were
 prepared in capillaries with a 0.3 mm radius and observed an
 automatically recording system.^{18b}

Fast atom bombardment mass spectrometry (FAB-MS) was
 performed using the MStation JMS-700A (JEOL). Thermal
 analysis and differential scanning calorimetry were performed
 with DTA50 and DSC60 (Shimadzu), respectively.

Electronic absorption spectra in the solid state and in solution were obtained using the diffused reflection method with conversion of the *y*-axis by UV-3100 and UV-3600S (Shimadzu), respectively. Polarized electronic absorption spectra using optical waveguide system was used a modified SIS5100 attached with a Glan-Taylor polarizer prism (System Instruments Co.)

Luminescence and excitation spectra were recorded on a
Fluorolog 3-22 (Horiba Jobin Yvon). Absolute luminescence
quantum yields and luminescence lifetimes were determined
using an absolute luminescence quantum yield C9920-02
spectrometer (Hamamatsu Photonics K. K.) and a QuantaurusTau C11367-12 spectrometer (Hamamatsu Photonics K. K.),
respectively, with pulsed excitation light sources.

Time-dependent (TD) DFT calculation

The singlet ground state of NaphC15 was optimized using DFT 50 with three-parameterized Becke-Lee-Yang-Parr (Restricted 51 B3LYP) hybrid exchange-correlation functional, combined with 52 the 6-31G(d,p) basis set for the non-metal atoms. The 53 optimization was performed using a single crystal X-ray 54 structure of 1-naphthoic acid¹⁹ as a starting geometry. UV-vis 55 spectrum was studied using the TD-DFT method on the basis of 56 optimized ground states with the same functional and basis 57 set. 58

Estimation of photophysical constants

The total emission quantum yield of EuIII sensitized by the ligand (ϕ_{obs}) was determined by the triplet yield of the ligand (ϕ_{ISC}), the efficiency of energy transfer (η_{EnT}) and the efficiency of the metal centred luminescence (ϕ_{Ln}), as follows.²⁰

$$\phi_{obs} = \phi_{\rm ISC} \times \eta_{\rm EnT} \times \phi_{\rm Ln} \tag{1}$$

Because of the n π^* character of the ligand and the high spinorbit coupling constants of the lanthanide ion, it can be assumed that $\phi_{\rm ISC}$ was approximately 1.^{21, 22} The value of $\phi_{\rm Ln}$ can be calculated from the observed emission lifetime ($\tau_{\rm ff}$) and the radiative rate constant ($k_{\rm R}$) of the lanthanide ion, as shown below.

$$\eta_{\rm Ln} = k_{\rm R} \times \tau_{\rm ff}$$
 (2)

The $k_{\rm R}$ value of the emissive excited state, ${}^{5}D_{0}$, is the sum of the spontaneous emission probabilities, $A_{(0,J)}$, to the lower ${}^{7}F_{J}$ levels in Eu^{III}, and can in turn be calculated from the following equation.

$$k_{\rm R} = \sum_{J} A(0, J) = A(0, 1) \times \frac{I_{\rm Total}}{I(0, 1)} \times n^3$$
(3)

Here, $I_{\text{Total}}/I_{(0, 1)}$ is the ratio of the total integrated intensity of the corrected Eu^{III} emission spectrum to the intensity of the ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{1}$ band. In this case, we obtained values of 9.0, 10, 8.3, and 8.9 for $I_{\text{Total}}/I_{(0, 1)}$ in powder, LB30, LB35, and LB40, respectively. The spontaneous emission probability of the magnetic dipole ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{1}$ transition, $A_{(0,1)}$, is virtually independent of the ligand field or the environment of the ions (14.65 s⁻¹ in vacuo)²³.

Conclusions

The valuable ligand, NaphC15, was synthesized to induce the LPL of the ff transition on Eu³⁺ ions in LB films. The luminescence of the Eu³⁺ ions incorporated into the films was induced through the excited triplet state of coordinating NaphC15, and was more intense than that in the powder. The conformation and transition dipole moment of the naphthalene skeleton both play a role in inducing LPL of the Eu³⁺ ion through energy transfer. Additionally, our previous report^{8, 9b} was not enough luminescence intensity for more evaluation. For instance, the luminescence quantum yield of ff emission was less than 1% of the Eu³⁺ ion in the film. Here, the ligand design was successful to obtain the film and strong luminescence through energy transfer from the ligand to Eu³⁺. The LB film technique is a historical methodology,²⁴ but this work suggests new possibilities for optical device or bioactive membrane materials.

Conflicts of interest

There are no conflicts to declare.

Journal Name

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

Author Contributions

M. Hasegawa, M. Yamanaka, A. Ishii and K. Goto conceived and designed the study. K. Yoshihara performed the syntheses, LB film formation, and most spectral and structural observations. S. Ogata, S. Mizushima, S. Kanno, J. Tsuchiyagaito, K. Kondo, T. Kondo, D. Iwasawa, H. Komiya and A. Saso, S. Kawaguchi contributed to optimizing the experiments at SPring-8. H. Takahashi precisely modified the optical waveguide spectrometer for the LB films and evaluated the spectra.

Acknowledgements

The authors acknowledge Prof. Mir Wais Hosseini (University of Strasbourg) for helpful discussions. Professors Makoto Handa and Michiko Egawa (Shimane University) also gave important discussion. This work was partly supported by Grants-in-Aid for Scientific Research on Innovative Areas of "Soft Crystals (Area Number: 2903)" (No. 17H06374; MH and MY), MEXT Supported Program for the Strategic Research Foundation at Private Universities (2013-2017; MH), Network Joint Research Centre for Materials and Devices (2018; MH) and a SOKEN Project provided by Aoyama Gakuin University Research Institute (2016-2017; MH). MH also thanks Izumi Science and Technology Foundation for their financial support. AI acknowledges the support of the FRONTIER project, JST PRESTO. The synchrotron radiation experiments were performed at the BL02B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (Proposal Nos. 2017A1648, 2017A1380, 2017B1268, 2016B1342, 2016B1706, 2016A1336, 2016A1333, 2014B1316, 2013B1776, 2013B1679, and 2013A1020).

References

- (a) G. Muller and J. P. Riehl, J. Fluoresc., 2005, **15**, 553; (b) C. Piguet and J.-C. G. Bünzli, in Handbook of the Physics and Chemistry of Rare Earths, Vol. 40, Eds. K. A. Gschneider, Jr., J.-C. G. Bünzli and V. K. Pecharski, Elsevier, **2010**, Chapter 247, pp 303; (c) D. Shirotani, T. Suzuki, S. Kaizaki, J. Alloys Comp., 2008, **451**, 325-328; (d) T. Harada, Y. Nakano, M. Fujiki, M. Naito, T. Kawai and Y. Hasegawa, Inorg. Chem., 2009, **48**, 11242.
- (a)M. Grell and D. D. C. Bradley, Adv. Mater., 1999, 11, 895;
 (b) J. Kido, K. Nagai and Y. Ohashi, Chem. Lett., 1990, 657; (c)
 Y. Kubo, K. Nakabayashi, S. Kitamura, M. Shizuma, M. Fujiki and Y. Imai, RSC Adv., 2016, 6, 40219; (d) J. Yuasa, H. Ueno and T. Kawai, Chem. Eur. J., 2014, 20, 8621; (e) M. Iwamura, Y. Kimura, R. Miyamoto and K. Nozaki, Inorg. Chem., 2012, 51, 4094; (f) S. Shi, L.-D. Sun, Y.-X. Xue, H. Dong, K. Wu, S.-C. Guo, B.-T. Wu, C.-H. Yan, Nano Lett., 2018, 18, 2964.
- 3 For instance; "Lanthanide Luminescence", Eds. P. Hänninen, H. Härmä, Springer, 2011.
- 4 (a) G. A. Crosby, R. E. Whan and R. M. Alire, *J. Chem. Phys.*, 1961, **34**, 743. (b) S. V. Eliseeva and J.-C. G. Bünzli, *Chem. Soc. Rev.*, 2010, **39**, 189; (c) D. Parker, *Coord. Chem. Rev.*, 2000, **205**, 109.
- (a)A. A. Knyazev, M. E. Karyakin, K. A. Romanova, B. Heinrich,
 B. Donnio, Y. G. Galyametdinov, *Eur. J. Inorg. Chem*, 2017,
 639; (b) K. Driesen, C. Vaes, T. Cardinaels, K. Goossens, C.

Görller-Walrand and K. Binnemans, *J. Phys. Chem. B*, 2009, **113**, 10575; (*c*) A. A. Knyazev, A. S. Krupin, B. Benoit, B. Donnio and Y. G. Galyametdinov, *Dyes and Pigments*, 2018, **148**, 492.

- 6 C. Y. Yang, V. I. Srdanov, M. R. Robinson, G. C. Bazan and A. J. Heegar, *Adv. Mater.*, 2002, **14**, 980.
- 7 V. I. Srdanov, M. R. Robinson, M. H. Bartl, X. Bu and G. C. Bazan, *Appl. Phys. Lett.*, 2002, **80**, 3042.
- 8 (a) M. Hasegawa, A. Ishii, K. Furukawa and H. Ohtsu, J. Photopolymer Sci. Technol., 2008, 21, 333; (b) M. Hasegawa, S. Kunisaki, H. Ohtsu and W. Franz, Monatsh. Chem., 2009, 140, 751.
- 9 (a) J. A. Kitchen, D. E. Barry, L. Mercs, M. Albrecht, R. D. Peacock and T. Gunnlaugsson, *Angew. Chem. Int.*, 2012, 51, 704; (b) M. Hasegawa and T. Fukawa, *Mirai Zairyo*, 2012, 10, 15.
- 10 (a) M. Kobayashi, Y. Tanizaki, T. Hoshi, J. Yoshino and M. Komuro, *Ber. Bunseng. Phys. Chem. Chem. Phys.*, 1979, 83, 821; (b) R. Gahlaut, H. C. Joshi, N. K. Joshi, N. Pandey, P. Arora, R. Rautela, K. Suyal ans S. Pant, *J. Lumin.*, 2013, 138, 122; (c) N. O. Lipari and C. B. Duke, *J. Chem. Phys.*, 1975, 63, 1768; (d) S. Maji and K. S. Viswanathan, *J. Lumin.*, 2008, 128, 1255; (e) M. Hilder, P. C. Junk, U. H. Kynast and M. M. Lezhnina, *J. Photochem. Photobiol. A, Chem.*, 2009, 202, 10.
- 11 D. M. Jameson, J. A. Ross, Chem. Rev., 2010, 110, 2685.
- 12 S. E. Plush, N. A. Clear, J. P. Leonard, A.-M. Fanning and T. Gunnlaugsson, *Dalton Trans.*, 2010, **39**, 3644.
- 13 (a) B. B. He, U. Preckwinkel and K. L. Smith, Advances in X-ray Analysis, 2000, **43**, 304; (b) A. Ishii, A. K. Jena and T, Miyasaka, APL Materials, 2014, **2**, 091102.
- 14 J. T. Repine, D. S. Johnson, A. D. White, D. A. Favor, M. A. Stier, J. Yip, T. Rankin, Q. Ding and S. N. Maiti, *Tetrahedron Lett.*, 2007, **48**, 5539.
- P. Madsen, A. Ling, M. Plewe, C. K. Sams, L. B. Knudsen, U. G. Sidelmann, L. Ynddal, C. L. Brand, B. Andersen, D. Murphy, M. Teng, L. Truesdale, D. Kiel, J. May, A. Kuki, S. Shi, M. D. Johnson, K. A. Teston, J. Feng, J. Lakis, K. Anderes, V. Gregor and J. Lau, *J. Med. Chem.*, 2002, **45**, 5755.
- 16 M. Hasegawa, A. Ishii, K. Habu, H. Ichikawa, K. Maeda, S. Kishi, *Sci. Tech. Adv. Mater.*, 2006, **7**, 72.
- 17 (a) D. M. Cropek and P. W. Bohn, J. Phys. Chem., 1990, 94, 6452; (b) H. Ohno, K. Taniguchi and K. Fujita, Opt. Rev., 2009, 16, 233; (c) H. Takahashi, K. Fujita and H. Ohno, Analytical Sci., 2017, 33, 465; (d) P.L. Edmiston, J. E. Lee, L. Wood and S. S. Saavedra, J. Phys. Chem., 1996, 100, 775; (e) M. Mitsuishi, T. Tanuma, J. Matsui and T. Miyashita, Talanta, 2005, 65, 1091; (f) K. Tsunoda, Y. Kasuya and T. Umemura and T. Okada, Talanta, 2005, 65, 1097; (g) M. Eguchi, H. Tachibana, S. Takagi, Donald A. and H. Inoue, Bull. Chem. Soc. Jpn., 2007, 80, 1350.
- (a) K. Ohashi, R. Tanigaki, S. Kumashiro, S. Sugihara, S. Hiroshiba, S. Kimura, K. Kato and M. Takata, *Appl. Phys. Lett.*, 2004, **84**, 520; (b) S. Kawaguchi, M. Takemoto, K. Osaka, E. Nishibori, C. Moriyoshi, Y. Kubota, Y. Kuroiwa and K. Sugimoto, *Rev. Sci. Instrum.*, 2017, **88**, 085111.
- 19 J. Trotter, Acta Cryst., 1960, 13, 732.
- 20 A. Beeby, L. M. Bushby, D. Maffeo and J. A. G. Williams, J. Chem. Soc. Dalton Trans., 2002, 1, 48.
- 21 M. A. El-Sayed, J. Chem. Phys., 1963, 38, 2834.
- 22 M. L. Bhaumik, M. A. El-Sayed, J. Chem. Phys., 1965, 42, 787.
- 23 (a) S. Viswanathan and A. de Bettenacourt-Dias, *Inorg. Chem.*, 2006, **45**, 10138; (b) Y. H. Kim, N. S. Baek and H. K. Kim, *ChemPhysChem.*, 2006, **7**, 213.
- 24 (a) B. Franklin, *Personal report to W. Brownrigg*, 1773; (b) K.
 B. Blodgett, *J. Am.Chem. Soc.*, 1935, **57**; 1007 (c) K. B.
 Blodgett, *Phys. Rev.*, 1939, **55**, 391; (d) K. B. Blodgett and I.
 Langmuir, *Phys. Rev.*, 1937, **51**, 964.

Table of Contents

The complexation in LB films induces the linearly polarized luminescence of europium by the excitation energy transfer of amphiphilic 1-naphthoic acid.

(40 x 60 mm; 400 dpi)