

Metallomics

New aspects of Fe-Cu crosstalk uncovered by transcriptomic characterization of Col-0 and the copper uptake mutant spl7 in Arabidopsis thaliana

Journal:	Metallomics
Manuscript ID	MT-ART-10-2018-000287.R1
Article Type:	Paper
Date Submitted by the Author:	03-Nov-2018
Complete List of Authors:	Ramamurthy, Raghuprakash Kastoori; University of Nebraska-Lincoln, Department of Agronomy and Horticulture Xiang, Qingyuan; University of Nebraska, Department of Agronomy and Horticulture; University of Florida, Horticultural Sciences Department Hsieh, En-Jung; University of Nebraska-Lincoln, Department of Agronomy and Horticulture; Institute of Plant and Microbial Biology Academia Sinica Liu, Kan; University of Nebraska-Lincoln, School of Biological Sciences Zhang, Chi; University of Nebraska-Lincoln, School of Biological Sciences Waters, Brian; University of Nebraska, Agronomy and Horticulture

1		
2		
4	1	New aspects of iron-copper crosstalk uncovered by transcriptomic characterization of Col-0
5	_	
6	2	and the copper uptake mutant <i>spl7</i> in <i>Arabidopsis thaliana</i>
/ 8 9	3	Raghuprakash Kastoori Ramamurthy ¹ , Qingyuan Xiang ^{1,2} , En-Jung Hsieh ^{1,3} , Kan Liu ⁴ , Chi Zhang ⁴ , and
10 11	4	Brian M. Waters ¹
12 13	5	¹ Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915,
14 15 16	6	USA; ² Current Address, Horticultural Sciences Department, University of Florida, Gainesville, Florida,
17 18	7	32611; ³ Current Address, Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan,
19 20	8	⁴ School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE
21 22 23	9	
24 25	10	Correspondence:
26 27	11	Brian Waters (bwaters2@unl.edu), Department of Agronomy and Horticulture, University of Nebraska-
28 29 20	12	Lincoln, Lincoln, NE 68583-0915, USA
30 31 32	13	Tel: 402-472-0153 Fax: 402-472-7904
33 34	14	Running head: Transcriptomic characterization of Fe/Cu crosstalk in Arabidopsis
35 36	15	The number of tables: 4
37 38 39	16	The number of figures: 6
40 41	17	Number of supplementary tables: 4
42 43	18	Number of supplementary datasets: 1
44 45 46	19	
40		
48		
49		
50		
51 52		
53		
54		
55		
56		
5/		
эө 59		1

20 Abstract

> Iron (Fe) and copper (Cu) are essential micronutrients for energy metabolism and reactive oxygen species (ROS) scavenging. Some Cu-containing proteins can be substituted with Fe-containing proteins, and vice versa, while several Arabidopsis genes are regulated by both metals. Few details of how plants coordinate Fe-Cu crosstalk are known. Gene expression was measured in roots and rosettes of Fe, Cu, and simultaneously Fe and Cu deficient WT and a mutant of the Cu-uptake transcription factor SPL7. The spl7 mutant accumulated excess Fe in normal conditions, and lower Fe supply rescued the growth phenotype and normalized Fe:Cu ratios. Most Fe regulated genes were expressed similarly in WT and spl7, although at higher fold-change levels in spl7 mutants. Expression patterns indicated that both SPL7 and the FIT Fe uptake transcription factor influenced expression of many key Fe uptake genes. Most notably, the newly discovered IMA/FEP genes and the subgroup Ib bHLH genes, which are upstream of Fe uptake responses, were repressed in WT under Cu deficiency. Several AP2/ethylene response factor (AP2/ERF) genes and other redox homeostasis network genes were derepressed in *spl7* mutants. Together, we present new information about Fe-Cu crosstalk in plants that could be applied for developing abiotic stress tolerant crops.

Significance to metallomics: These results give new insights into iron-copper crosstalk mechanisms in
 roots and leaves of plants, and show that many metal and redox homeostasis genes are under control of
 both iron and copper master regulators.

Metallomics

1			
2	40		
4	40		
5 6	41	Introduction	
7 8 9	42	Iron (Fe) and copper (Cu) are essential trace metals that are required by plants for several	
10 11	43	aspects of redox chemistry. These metals form the active sites in numerous proteins involved in variou	IS
12 13	44	processes, such as mitochondrial respiration, photosynthesis, ethylene perception, reactive oxygen	
14 15 16	45	species (ROS) protection, and other metabolic reactions ¹⁻⁵ . For some metabolic functions, organisms	
17 18	46	may alternatively use Fe-containing proteins or Cu-containing proteins to catalyze biochemical	
19 20	47	reactions, depending on the bioavailability of each metal ⁴ . For example, some Fe-containing superoxic	le
21 22 23	48	dismutases (FeSODs) can perform the same functions as some Cu-containing SODs (CuSODs), although	
23 24 25	49	they are products of different genes ^{3, 6-8} .	
26 27	50	Mineral deficiency or excess mineral supply can perturb normal physiology and metabolism in	
28 29	51	plants, resulting in abiotic stress and necessitating adjustments to mineral uptake. Both Fe and Cu	
30 31 32	52	uptake are largely controlled by transcriptional regulation. Fe homeostasis in Arabidopsis thaliana	
33 34	53	depends on the <i>FIT</i> gene ⁹ , which is induced by Fe deficiency and encodes a bHLH family transcription	
35 36	54	factor. The FIT protein forms heterodimers with one of the subgroup-Ib bHLH proteins (bHLH38,	
37 38	55	bHLH39, bHLH100, bHLH101) ^{10, 11} and this heterodimer regulates the expression of a suite of Fe-	
39 40 41	56	regulated genes in roots. These genes include FRO2, which encodes a primary root ferric-chelate	
42 43	57	reductase gene ¹² , and <i>IRT1</i> , which encodes a root iron transporter ^{13, 14} . While <i>FIT</i> expression is limited	
44 45	58	to roots, the subgroup-Ib <i>bHLH</i> genes are also expressed in rosettes, where they are upregulated by Fe	:
46 47 48	59	deficiency ¹⁵ . Cu homeostasis in Arabidopsis depends on the SPL7 gene ^{16, 17} , which is constitutively	
48 49 50	60	expressed and encodes a transcription factor that binds GTAC elements of promoters during Cu	
51 52	61	deficiency to activate expression of Cu-regulated genes. Included in the SPL7 regulon are Cu ²⁺	
53 54	62	reductases FRO4 and FRO5 ¹⁶ , and the high-affinity Cu-transporter COPT2, which is involved in Cu uptal	ĸe
55 56 57	63	and Cu redistribution processes ¹⁸ .	
58			3

Page 4 of 46

1	
2	
3	
4	
5	
6	
7	
, ג	
0	
9 10	
10	
11	
12	
13	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

To cope with environmental stress due to deficiency or excess of nutrients, plants have crosstalk
mechanisms to co-ordinate the uptake, chelation, transport, or regulatory mechanisms to maintain
homeostasis. Cu deficiency can upregulate ferric-chelate reductase activity in roots ¹⁹⁻²¹ , and
simultaneous Fe and Cu deficiencies resulted in synergistic upregulation of Fe deficiency responses ²² . In
addition to being regulated by Fe or Cu deficiencies individually, several metal homeostasis genes are
responsive to both Fe and Cu deficiencies, such as COPT2, ZIP2, and the ferric-chelate reductase FRO3 ^{15,}
²³⁻²⁷ . These results indicate that there is crosstalk between Fe and Cu homeostasis within plants,
however, a full catalog of genes that are regulated by Fe-Cu cross-talk and a clear picture of which genes
are necessary for Fe-Cu crosstalk are not well-defined.
Some mechanisms of certain aspects Fe-Cu crosstalk have been described. Several Cu
responsive genes and/or genes encoding Cu-containing proteins had altered expression under Fe
deficiency in roots and rosettes of Arabidopsis thaliana ^{15, 25} . Additionally, Cu-responsive microRNAs
(miRNAs) miR397 and miR398 changed in abundance under Fe deficiency ¹⁵ . Several mRNA targets of
miRNA398, such as the Cu,Zn superoxide dismutases CSD1 and CSD2, had increased abundance under Fe
deficiency. The miR398s are upregulated under low Cu levels by SPL7 ^{17, 28} , as is the Fe-SOD FSD1. The
presence of miR398 results in degradation of CSDs. In Fe deficient Arabidopsis thaliana, miR398
abundance and expression of FSD1 and FSD2 decreased in rosettes, while expression of CSD1 and CSD2
increased ¹⁵ . These Fe-Cu crosstalk results suggested that a specific role for accumulation of Cu under Fe
deficiency is for replacement of FeSOD proteins with CuSOD proteins, and inability to make this switch
resulted in decreased ability to counteract ROS. Indeed, Cu concentrations were higher in Fe deficient
leaves ^{15, 19, 21, 29} . Furthermore, under Fe deficiency, Cu accumulated in the rosettes of Arabidopsis prior
to upregulation of Fe uptake genes ^{15, 25} , suggesting that Cu uptake, in this growth condition, was
regulated by Fe, but did not use the normal Fe uptake system. However, it remains unclear which genes
may be responsible for Fe-deficiency stimulated Cu uptake. In a further example of Fe-Cu crosstalk, the

Metallomics

2	
3	
4	
-	
ر	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
13	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
<u></u> Δ2	
72 42	
43	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
50	
59	

melon (*Cucumis melo*) iron uptake defective *fefe* mutant, with a lesion in a homolog of Arabidopsis *bHLH38* ³⁰, can be rescued by growing the mutant plants under Cu deficiency, which stimulates Fe
accumulation in the plants ³¹.
Ethylene production under Fe-deficiency is a well-known physiological response ^{32, 33} that at

92 least partially regulates Fe uptake responses ³⁴⁻³⁶. The ETHYLENE RESPONSE FACTOR (ERF) transcription 93 factors contain AP2 domains and can act as activators or repressors of ethylene-responsive genes ³⁷⁻³⁹. 94 Most ERFs participate in ethylene-activated signaling pathways and intracellular signal transduction 95 downstream of EIN3 and EIL1. The AP2/ERF family in Arabidopsis comprises 122 members in 12 groups. 96 The biological functions of the majority of these genes are unknown, but many of the AP2/ERF genes 97 that have been studied are involved in plant responses to abiotic stresses such as drought, cold, heat, salt, and hypoxia ⁴⁰. Arabidopsis ERF4 and ERF72 knockouts are less sensitive to Fe deficiency-induced 98 99 chlorosis and have higher Fe uptake gene expression, suggesting that they are negative regulators of Fe 100 responses ^{41, 42}. However, if or how other ERF genes are involved in Fe or Cu homeostasis is still unclear. 101 The overall purpose of this study was to increase our understanding of Fe-Cu crosstalk 102 mechanisms by examining gene expression patterns and networks in Arabidopsis roots and rosettes 103 treated with Fe deficiency, Cu deficiency, and simultaneous Fe and Cu deficiency. We test the hypothesis 104 that Cu uptake is stimulated by Fe deficiency separately from Fe uptake, and is independent of normal 105 Cu uptake mechanisms by using spl7 mutants that lack normal Cu uptake gene expression. Our results 106 suggest that Fe-deficiency-stimulated Cu uptake is SPL7 independent, and also provide valuable insights 107 into molecular genetic components associated with Fe-Cu crosstalk.

108

60

58	
59	
60	

_	-	
~	~	
6	υ	

Materials and methods

Plant material and growing conditions

	111	Seeds of Arabidopsis thaliana ecotype Col-0 and mutant spl7 (SALK_109908c), irt1
)	112	(SALK_054554c) and <i>fro2</i> (SALK_201379c) were obtained from the Arabidopsis Biological Resource
<u>)</u> }	113	Center (The Ohio State University). Seeds were imbibed in 0.1% agar at 4°C for 3d. Seeds were planted
 ;	114	onto rockwool that was loosely packed into 1.5 ml centrifuge tubes with the bottoms removed. The
) 7 2	115	tubes were inserted in lids of containers of nutrient solution, composed of: 0.8 mM KNO_3 , 0.4 mM
,)	116	Ca(NO ₃) ₂ , 0.3 mM NH ₄ H ₂ PO ₄ , 0.2 mM MgSO ₄ , 25 μ M Fe(III)-EDDHA, 25 μ M CaCl ₂ , 25 μ M H ₃ BO ₃ , 2 μ M
2	117	MnCl ₂ , 2 μ M ZnSO ₄ , 0.5 μ M CuSO ₄ , 0.5 μ M Na ₂ MoO ₄ , and 1 mM MES buffer (pH 5.5). Lighting was
} 	118	provided at a photoperiod of 16 h of 150 $\mu mol~m^{-2}~s^{-1}$, 4100K fluorescent light. After 10 d, seedlings were
)) 7	119	transferred to containers (4 plants per container) containing 0.75 liters of the same composition
3	120	nutrient solution with constant aeration for an additional 14 d before plants were transferred to
)	121	treatments. The pretreatment conditions for growing Col-0, spl7, irt1 and fro2 was 25 μM Fe and 0.1 μM
<u>2</u> 3	122	Cu, and an additional 'rescue' pretreatment for <i>spl7</i> (which allowed <i>spl7</i> mutant plants to grow
 	123	normally) was 25 μM Fe and 2.5 μM Cu. Pretreated plants were transferred to hydroponic media with
) 7 }	124	25 μ M Fe or without Fe for 3 days, to test for alteration in rosette Cu concentration. In the <i>spl7</i> RNA-seq
)	125	experiment, the plants were transferred from pretreatments into four treatments [25 μ M Fe, 0.5 μ M Cu
2	126	(control); 25 μM Fe, 0 Cu (-Cu); 0 Fe, 0.5 μM Cu (-Fe); 0 Fe, 0 Cu (-Fe/-Cu)] for 3 days. The remaining
} 	127	mineral nutrients were at the same concentrations as described above. Three representative biological
) ;; 7	128	replicates of rosettes and roots were collected after 3 d of treatments and flash frozen in liquid nitrogen
3	129	and stored at -80°C until use for further analysis.
)	130	

2		
3 4	131	Mineral analysis
5 6 7 8 9	132	Rosettes were dried at 60°C for at least 72 h before determining dry weight. Samples were
	133	digested with 3 ml of concentrated HNO $_3$ (VWR, West Chester, PA, USA, Trace metal grade) at room
9 10 11	134	temperature overnight then at 100° C for 1.5 h, followed by addition of 2 ml of 30% H_2O_2 (Fisher
12 13	135	Scientific, Fair Lawn, NJ, USA) and digestion for 1 h at 125° C, and finally heating the samples to dryness
14 15	136	at 150° C. Dried samples were then resuspended in 3 ml of 1% HNO_3 . Fe and Cu concentrations were
16 17	137	determined by inductively coupled plasma-mass spectrometry (ICP-MS) at the University of Nebraska
18 19	138	Redox Biology Spectroscopy and Biophysics Core.
20 21 22	139	
22 23 24	140	Next generation RNA sequencing
25 26	141	Total RNA was isolated from roots and rosettes using the Plant RNeasy kit (Qiagen, Hilden,
27 28	142	Germany). RNA quality and concentration was determined by UV spectrophotometry and by Agilent
29 30 21	143	Bioanalyzer. RNA-sequencing was performed using an Illumina HiSeq 2000 instrument at the University
32 33	144	of Nebraska Medical Center Next Generation Sequencing Core Facility. Barcoded libraries were
34 35	145	constructed from 3 μg of root and rosette total RNA, with three biological replicate libraries per
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	146	treatment. Replicates were run in separate lanes, with a total of six samples from different treatments
	147	in each lane. The short reads were deposited in NCBI's Gene Expression Omnibus and are accessible
	148	through GEO Series accession number GSE104916.
	149	
	150	RNA-seq differential expression analysis
	151	Each 101 bp RNA-seq read was trimmed using Trimmomatic ⁴³ to make the average quality score
	152	larger than 30 and the minimum length 70 bp. All trimmed short reads were mapped to the Arabidopsis
52 53	153	thaliana genome (version TAIR10) using TopHat ⁴⁴ , allowing up to two base mismatches per read. Reads
54 55	154	mapped to multiple locations were discarded. Numbers of reads in genes were counted by the HTSeq-
56 57		
58 59		7
60		

 count tool using corresponding Arabidopsis thaliana gene annotations (available from http://www-huber.embl.de/users/anders/HTSeq/). For pair-wise comparisons, significantly differentially expressed genes were identified by analyzing the numbers of reads aligned to genes with DEseq⁴⁵. The thresholds for differential expression were fold-change > 1 (log2 scale) and adjusted P-values < 0.001 for the null hypothesis. **Bioinformatic analysis** The set of SPL7 responsive genes was determined by first performing several pairwise DEseq comparisons of *spl7* mutants to WT: 1) *spl7* grown under normal conditions (25 μ M Fe and 0.1 μ M Cu) to WT grown under normal conditions, 2) spl7 'rescue' plants (pre-treatment of 25 μ M Fe and 2.5 μ M Cu) to WT grown under normal conditions, 3) spl7 'rescue' plants compared to WT, both genotypes in -Fe treatment, 4) spl7 'rescue' plants compared to WT, both genotypes in -Cu treatment, and 5) spl7 'rescue' plants compared to WT, both genotypes in -Fe-Cu treatment. Sets of differentially expressed genes (DEGs) that were upregulated or downregulated in WT relative to *spl7* were compiled for both roots and rosettes. Genes that were differentially expressed in multiple conditions within roots or rosettes were retained in four sets (upregulated in WT roots, downregulated in WT roots, upregulated in WT rosettes, downregulated in WT rosettes). A Venn diagram of these sets was used to compile a list of 441 genes that was subsequently filtered by removing genes that were less than 2-fold (log2) higher or lower in WT relative to spl7 mutants. This list was then compared to DEGs that responded to Fe deficiency, Cu deficiency, or simultaneous Fe and Cu deficiency within *spl7* or WT, and genes that did not respond to one of these treatments were removed. Finally, since SPL7 is known as a transcriptional activator, DEGs that were only in the root or rosette downregulated sets were removed if they responded only within a single treatment among -Fe, -Cu, or -Fe/-Cu treatments, in spl7 or WT. These filtering steps left a list of 178 SPL7-responsive genes (Table S1).

3 4	179	Venn diagrams were used to compare different subsets of DEGs using Draw Venn Diagram
5 6	180	(http://bioinformatics.psb.ugent.be/webtools/Venn/). DEGs from desired subsets were used as input for
7 8	181	STRING database v10 (<u>http://string-db.org</u>) (Szklarczyk <i>et al.</i> , 2015), using Arabidopsis thaliana as the
9 10 11	182	organism, to identify known protein interactions and novel co-expressed networks. A combined STRING
12 13	183	score of >0.7 (considered high confidence) was used in as a cutoff for subsequent visualization of
14 15	184	networks. The text files (.tsv) from desired subsets were used as input for visualization of modules in
16 17 18	185	Cytoscape v3.5.1 (http://www.cytoscape.org/) (Kohl <i>et al.</i> , 2011). If a cluster of genes was not
19 20	186	connected to another network, then it was considered a module. DAVID 6.8 database (Dennis et al.,
21 22	187	2003) was used for non-redundant functional annotation clustering using TAIR-ID as the input, and
23 24 25	188	Arabidopsis thaliana as the species, with EASE score (p-value) of <0.05 and minimum enrichment cut-off
25 26 27	189	score of >1.3 with "high" as the classification stringency setting.
28 29 30	190	
31 32	191	Results
33 34	192	<i>spl7</i> mutant rescue by low Fe supply
35 36 37	193	Similar to previous reports ^{16, 17} , <i>spl7</i> mutants grew poorly on normal Cu supply, with 49% lower
38 39	194	rosette DW at 0.5 μM Cu and 89% lower DW at 0.1 μM Cu (Fig. 1a-c). Growth was restored when plants
40 41	195	were supplied with 2.5 μ M Cu (Fig. 1a). Surprisingly, rosette Cu concentration under normal Cu supply
42 43	196	(0.5 μ M) was only about 30% lower (Fig. 1d) than in WT. However, rosette Fe concentration was 37%
44 45 46	197	higher at 0.5 μ M Cu and 105% higher at 0.1 μ M Cu (Fig. 1f). Based on this pattern, and because Cu
47 48	198	deficiency can stimulate Fe uptake and recuse the <i>fefe</i> Fe uptake mutant phenotype ³¹ , we hypothesized
49 50	199	that Fe deficiency might stimulate Cu uptake and rescue the <i>spl7</i> mutant. Decreasing the Fe supply from
51 52	200	25 μM to 5 μM or 1 μM largely restored growth of <i>spl7</i> mutants on 0.5 μM or 0.1 μM Cu (Fig 1a, c),
53 54 55	201	decreased their Fe concentration (Fig. 1f) while increasing Fe content to normal or near-normal (Fig. 1g).
56 57	202	At 0.1 uM Cu supply, the Fe:Cu ratio (Fig. 2a) was 47 at 25 μ M Fe, 27 at 5 μ M Fe, and 18 at 1 μ M Fe,
58 59 60		9

2 3	203	compared to ratios of 13-17 in WT plants in all treatments. These results indicate that $sp/7$, in addition
4 5	200	
6	204	to being Cu deficient, tends to overaccumulate Fe in leaves. The results also indicate that Cu uptake
7 8 9	205	induced by Fe deficiency is independent of SPL7, and is not likely to occur by the normal Cu uptake
9 10 11	206	pathway. We recruited <i>fro2</i> and <i>irt1</i> Fe uptake mutants $^{12, 13}$ to test whether the normal Fe uptake
12 13	207	pathway was required for this Fe deficiency-stimulated Cu accumulation. Like WT plants, both of these
14 15	208	mutants were able to increase rosette Cu concentration by at least 2-fold (Fig. 2b) under Fe deficiency,
16 17	209	indicating that the increased Cu accumulation under Fe deficiency did not occur through the normal Fe
18 19 20	210	uptake pathway, and in WT plants is likely not a non-specific effect of increased Fe uptake gene
20 21 22	211	expression.
23 24	212	
25 26	213	Transcriptomic overview
27 28	214	Wilt-type and <i>spl7</i> mutant plants were grown as above (Fig. 1) before subjecting them to Fe, Cu,
29 30 31	215	or simultaneous Fe and Cu deficiency treatments for 3d. The numbers of DEGs are presented in Table 1.
32 33	216	The number of Fe-regulated genes in roots (832 in WT and 763 in <i>spl7</i>) was greater than the number of
34 35	217	Cu-regulated genes (101 in WT and 149 in <i>spl7</i>), while simultaneous Fe and Cu deficiencies resulted in an
36 37	218	intermediate number (341 in WT and 204 in <i>spl7</i>). In Fe-deficient rosettes, there were only 252 DEGs in
38 39	219	WT compared to 775 in <i>spl7</i> mutants, while the numbers were similar for Cu responsive genes in
40 41 42	220	rosettes of each genotype (122 in WT and 119 in <i>spl7</i>). Simultaneous Fe and Cu deficiencies resulted in
43 44	221	greater DEG numbers in WT rosettes (583) than in <i>spl7</i> (244). The number of DEGs that responded to
45 46	222	more than one mineral deficiency treatment ranged from 17-21% of the total number of differentially
47 48 40	223	expressed genes (190/1056 for WT roots, 160/940 for <i>spl7</i> roots, 136/711 for WT rosettes, and 190/915
50 51	224	for <i>spl7</i> rosettes).
52 53	225	
54 55		
56 57		
58 59		10

60

2 3	226	Fe regulon in WT and <i>spl7</i>			
4 5 6	227	Since Fe deficiency stimulated Cu uptake in both WT and <i>spl7</i> plants (Fig. 1), we next			
7 8	228	determined the genes that responded to Fe deficiency in roots and rosettes of <i>spl7</i> and WT plants. In			
9 10 11	229	total, 1361 genes were differentially regulated under Fe deficiency in roots, of which 228 genes were			
12 13	230	common between <i>spl7</i> and WT (Fig. 3a and Dataset S1). Of these DEGs, 173 were upregulated under Fe			
14 15	231	deficiency in both genotypes, including several classical Fe deficiency response genes ^{25, 46} such as the			
16 17 18	232	subgroup Ib bHLH genes, FRO2, IRT1, MYB10 and MYB72, and NAS4 and also newly described IMA3			
19 20	233	(FEP1) ^{47, 48} . Similarly, known Fe responsive genes bHLH38, bHLH39, bHLH100, bHLH101, and FRO3, and			
21 22	234	all of the IMA genes were upregulated in rosettes in both genotypes (Fig. 3b), while Fe deficiency			
23 24 25	235	downregulated genes FER1, FER3, FER4, YSL1, and NAS3 were downregulated in both genotypes. These			
23 26 27	236	results suggested that the <i>spl7</i> mutant has a largely intact Fe deficiency response.			
28 29	237				
30 31	238	Cu regulon in WT and <i>spl7</i> :			
32 33 24	239	Since the SPL7 gene is known to be necessary for normal regulation of Cu uptake, we			
35 36	240	determined DEGs under Cu-deficiency in roots and rosettes of WT and <i>spl7</i> plants from the 'rescue'			
37 38	241	pretreatment. In total from both genotypes, 240 genes were differentially expressed under Cu			
39 40	242	deficiency in roots, with little overlap between WT and <i>spl7</i> (Fig. 3c and Dataset S1). Several genes that			
41 42 42	243	are known SPL7 targets ^{16, 17} were upregulated in WT, but not in the <i>spl7</i> mutant, as expected. These			
43 44 45	244	included ZIP2, FER1, CCH, FSD1, FRO4, FRO5, YSL2, and COPT2. However, several known Fe deficiency-			
46 47	245	responsive genes were downregulated only in <i>spl7</i> mutant roots, including the four subgroup Ib <i>bHLH</i>			
48 49	246	genes, FRO2, IRT1, IMA1 and IMA2, and MYB10. In rosettes (Fig. 3d), 215 genes were differentially			
50 51 52	247	expressed under Cu deficiency. Of these, the Fe-SOD gene <i>FSD1</i> was upregulated in both WT and <i>spl7</i> ,			
52 53 54	248	while the Cu-SOD genes CSD1 and CSD2 were downregulated only in the spl7 mutant. In rosettes, Cu-			
55 56	249	regulated genes CSD1, CSD2, and FSD1 were differentially expressed only in WT, while bHLH100 was			
57 58		11			
59 60					

1 2		
2 3 4	250	upregulated only in <i>spl7</i> mutants. <i>IMA1, 2,</i> and 3 were downregulated in WT, but upregulated in <i>spl7</i>
5 6	251	mutants.
7 8 0	252	
9 10 11	253	Simultaneous Fe-Cu regulon in WT and <i>spl7</i>
12 13	254	When WT plants and <i>spl7</i> plants from the 'rescue' pretreatment were deprived of both Fe and
14 15	255	Cu for three days, the many of the same DEGs from under single Fe or Cu deficiencies were detected
16 17 18	256	(Fig. 3 and Dataset S1). However, the subsets in which they appeared were sometimes different than in
19 20	257	the single deficiencies. In roots (Fig. 3e), the subgroup Ib bHLH genes, FRO2, and IRT1 were differentially
21 22	258	expressed only in WT, where they were downregulated, similar to results in Cu deficiency. The
23 24	259	expression pattern of IMA 1 and 2 also resembled that of roots under Cu deficiency. FRO4, MYB10, and
25 26 27	260	MYB72 were upregulated, but only in <i>spl7</i> mutants. In rosettes (Fig. 3f), CSD2 was upregulated and FSD1
27 28 29	261	was downregulated only in WT. Additionally, the subgroup Ib bHLH genes, FRO3, the IMA genes, and
30 31	262	NAS4 were upregulated, and FER4, YSL1, and NAS3 were downregulated only in spl7 mutants.
32 33	263	
34 35 26	264	SPL7-responsive genes
36 37 38	265	While previous studies have determined sets of genes that had loss of normal regulation in <i>spl7</i>
39 40	266	mutants (SPL7-responsive genes) under Cu deficiency or control conditions ^{16, 17} , our additional
41 42	267	treatments provided an opportunity to detect additional SPL7-responsive genes. By comparing DEGs in
43 44	268	spl7 mutants relative to WT in several conditions, we compiled a list of 178 SPL7-responsive genes
45 46 47	269	(Table 2, Table S1). SPL7 itself was included in the tables as a reference. Several known SPL7 targets
48 49	270	were on the list, such as FSD1, miR389c, ZIP2, YSL2, and COPT2. All of these genes had higher transcripts
50 51	271	in WT roots and/or rosettes than in <i>spl7</i> mutants in multiple conditions. Most of these SPL7-responsive
52 53	272	genes were also downregulated in WT roots under Fe deficiency or upregulated in WT roots under Cu
54 55 56	273	deficiency (or both), but normal regulation was lost in <i>spl7</i> mutants under these conditions. We also
50 57 58		17
59		

Page 13 of 46

1

2		
3 4	274	noted several known Fe uptake genes were among the 178 SPL7-responsive genes, such as IRT1, FRO2,
5 6	275	bHLH38, bHLH39, bHLH100, bHLH101, and F6'H1. Transcripts of these genes were mostly more
7 8	276	abundant in WT roots relative to <i>spl7</i> in control and -Fe conditions, less abundant in WT roots relative to
9 10 11	277	spl7 under -Cu and -Fe-Cu conditions, and generally lower in WT rosettes under mineral deficiencies. In
12 13	278	terms of differential expression by treatment, all of these genes were upregulated in Fe deficient WT
14 15	279	roots, and fold-change in expression was similar in <i>spl7</i> mutants, except for the <i>bHLH</i> genes, where fold-
16 17	280	changes were greater in <i>spl7</i> . In Cu deficient roots of WT, all of these Fe uptake genes were
18 19	281	downregulated, whereas they were not differentially expressed in Cu deficient <i>spl7</i> roots, suggesting
20 21 22	282	that SPL7 is necessary to repress their expression under Cu deficiency. In simultaneous Fe and Cu
23 24	283	deficient WT roots, the expression of these Fe uptake genes was downregulated, similar to that of Cu
25 26	284	deficient roots, rather than being upregulated as in Fe deficient roots. However, in <i>spl7</i> mutants, the
27 28	285	expression of these Fe uptake genes was upregulated, similar to that of Fe deficient WT roots, indicating
29 30 31	286	that loss of SPL7 also affects normal expression patterns under simultaneous Fe and Cu deficiencies. In
32 33	287	Fe deficient rosettes, upregulation of most Fe uptake genes was much greater in <i>spl7</i> mutants than in
34 35	288	WT. In rosettes of <i>spl7</i> mutants, the subgroup Ib <i>bHLH</i> genes were strongly upregulated under Cu or
36 37	289	simultaneous Fe and Cu deficiencies, whereas they were not differentially expressed in WT rosettes
38 39 40	290	under these conditions.
40 41 42	291	
43 44 45	292	Identifying Fe-Cu crosstalk genes in WT and <i>spl7</i>
46 47 48	293	One of our objectives was to determine a catalog of genes that are regulated by Fe-Cu cross-
49 50	294	talk using our treatments of roots and rosettes of WT and <i>spl7</i> . It is possible that because some genes
51 52	295	are regulated differently in WT and <i>spl7</i> , for example upregulated by one treatment in WT but
53 54	296	downregulated in <i>spl7</i> , the single treatment Venn series in Fig. 3 might miss some important cross-talk.
55 56 57	297	To search within a larger set of relevant genes, we used a series of Venn diagrams (Fig. 4) to determine
57 58 50		13
60		

 ³ 298 the totality of DEGs in each genotype, for each tissue type. These steps were designed to 4 							
5 6	299	specific treatments and expression changes to more general and broad categories that contained genes					
7 8 9	300	of interest, so that we could then analyze this set for enriched categories and specific patterns. First,					
10 11	301	four different three-way Venn diagrams for each tissue were used to attain a sum total DEGs within a					
12 13	302	genotype and also to visualize numbers of DEGs that occurred in one or more conditions. The sum of the					
14 15 16	303	genes in these sets (upregulated or downregulated, in WT or <i>spl7</i> , in roots or rosettes) were used as					
17 18	304	input for a four-way Venn; one each for roots and rosettes. The majority of these genes were found in					
19 20	305	only one outer subset which was upregulated and/or downregulated in only one genotype. These genes					
21 22	306	were considered to be of low interest. The central subsets (inside the red circle in Fig. 4) are considered					
23 24 25	307	to be potentially involved in Fe-Cu crosstalk. In roots, the inner sets contained 383 DEGs out of a total of					
25 26 27	308	1607 DEGs, and for rosettes the inner sets contained 243 DEGs out of a total of 1383 DEGs. The final					
28 29 30 31	309	step was to compare the gene sets of interest in roots and rosettes, where 34 were found in both					
	310	tissues, 349 were specific to roots, and 209 were specific to rosettes. The 383 and 243 DEGs (presented					
32 33 34	311	in Table S2) were then subjected to further GO enrichment analysis.					
35 36 37	312						
38	313	Functional annotation clustering of root and rosette regulated genes under simultaneous Fe and Cu					
39 40 41	314	deficiencies:					
42 43	315	We performed DAVID functional annotation clustering of the 383 and 243 genes of interest					
44 45	316	above to identify enriched gene ontology (GO) terms in both roots and rosettes. There were 11 clusters					
46 47	317	in roots and six clusters in rosettes. In the roots, six biological process related clusters were enriched,					
48 49 50	318	which included 'lipid transport', 'oxalate metabolic process', 'redox process', 'hydrogen peroxide					
51 52	319	catabolic process', 'flavonoid glucouronidation' and 'DNA templated transcription' (Table S3). Four GO					
53 54	320	molecular function related clusters were enriched in roots, which included 'serine-type					
55 56	321	carboxypeptidase activity', 'oxidoreductase activity', 'ATPase activity coupled to transmembrane					
57 58		14					
59 60							

Page 15 of 46

1					
2 3 4	322	transport of substances' and 'protein-serine threonine kinase activity' (Table S3). A single GO cellular			
5 6	323	compartment category, 'integral component of the membrane' was enriched in roots which included			
7 8 9	324	the largest number of terms (n=50), compared to any other GO category.			
10 11 12	325	In rosettes, two biological process clusters were enriched; 'DNA templated transcription' and			
13 14	326	'xyloglucan metabolic process' (Table S3). There was a considerable overlap with respect to the GO			
15 16	327	terms in 'DNA templated transcription' in roots and rosettes. However, the enrichment score in rosettes			
17 18 10	328	(2.54) was higher than in roots (0.17). Two GO molecular function categories were enriched; 'iron ion			
19 20 21	329	binding' and 'calcium ion binding'. GO cellular compartment categories of 'integral part of the			
21 22 23	330	membrane' and 'plasma membrane' were enriched in rosettes.			
24 25 26	331				
27 28 20	332	Co-expression analysis of root and rosette regulated genes under Fe-Cu deficiency			
30 31	333	To identify co-expressed genes and/or modules (networks) that are involved in Fe or Cu			
32 33	334	homeostasis in roots, we performed gene co-expression analysis of the 383 genes from Fig. 4 using the			
34 35	335	STRING-DB software. Nodes with evidence-based cutoff values of >0.7 combined score (high stringency)			
36 37	336	were visualized using Cytoscape, and modules representative of networks were further explored using			
38 39 40	337	STRING-DB to obtain GO enrichment. The root network (Fig. 5) comprised 120 nodes and 192 edges. The			
41 42	338	network was further divided into 12 modules, and two of these modules contained the majority of the			
43 44	339	nodes (74%). The largest module in roots consisted of 54 nodes and 95 edges (Fig. 5) and contained			
45 46	340	known Fe or Cu homeostasis genes, such as IRT1, FRO2, and the subgroup Ib bHLH genes. GO			
47 48 40	341	enrichment analysis of this module indicated that the biological processes 'iron ion homeostasis',			
49 50 51	342	'response to external stimulus', 'response to stress' and 'cellular response to ethylene stimulus' were			
52 53	343	most enriched (Table S4). In the molecular function category, 'transcription factor activity, sequence-			
54 55	344	specific DNA binding', 'zinc ion transmembrane transporter activity' and 'monooxygenase activity' were			
56 57					
58 59		15			
60					

2		
3 4	345	most enriched. The second largest module consisted of 35 nodes and 71 edges. GO enrichment analysis
5 6	346	indicated that the biological processes 'response to decreased oxygen levels', 'response to abiotic
7 8 0	347	stimulus', and 'oxidation-reduction processes' were most enriched.
9 10 11	348	The rosette network as determined by STRING-DB (Fig. 6) consisted of 96 nodes and 148 edges.
12 13	349	The network was further divided into 17 modules, and five modules consisted of the majority of nodes
14 15	350	(74%). The largest module in rosettes consisted of 34 nodes and 78 edges. GO enrichment analysis
16 17	351	(Table S5) indicated that the biological processes 'response to oxygen containing compound', 'response
18 19 20	352	to salicylic acid' and 'response to stress' were most enriched. In the molecular function category,
21 22	353	'calcium ion binding' and 'transcription factor activity, sequence-specific DNA binding' were most
23 24	354	enriched. The second largest module consisted of 16 nodes which also contained known Fe-Cu
25 26	355	homeostasis genes. GO enrichment analysis indicated that the biological processes 'iron ion
27 28 20	356	homeostasis' and 'cellular response to stress' were enriched categories.
30 31	357	
32 33	358	Iron deficiency-responsive ethylene related genes
34 35	359	Since the ethylene signaling pathway was enriched in certain subsets in this study, we further
36 37 38	360	investigated the possibility of whether Cu regulation under Fe deficiency is affected by ethylene
39 40	361	biosynthetic pathway or signaling related genes. In total, there were 49 DEGs associated with ethylene
41 42	362	biosynthesis/ activated signaling pathway, combined across all subsets, tissues and genotypes (Table 4).
43 44	363	Many of the ethylene signaling pathway genes were downregulated in WT compared to <i>spl7</i> , both in
45 46 47	364	roots and rosettes. While several ERF family genes and ethylene biosynthetic genes were downregulated
48 49	365	in WT, they were not differentially regulated in <i>spl7</i> . It is also notable that some AP2/ERF genes,
50 51	366	including RRTF1, DDF1, ERF13, ERF10, and DREB26 were upregulated in spl7, while they were either
52 53	367	downregulated or not differentially regulated in WT under Fe deficiency.
54 55 56	368	
50 57 58		16
59 60		10

Page 17 of 46

Metallomics

1 2		
3 4	369	Discussion
5 6	370	One purpose of this study was to increase our understanding of Fe-Cu crosstalk mechanisms
7 8 0	371	examining gene expression patterns and networks in Arabidopsis roots and rosettes treated with Fe
10 11	372	deficiency, Cu deficiency, and simultaneous Fe and Cu deficiency. Upon compiling lists of genes of
12 13	373	interest by various filtering strategies, it became clear that many of the genes involved in Fe-Cu cros
14 15	374	are already known as key players in Fe or Cu homeostasis. A substantial fraction of these genes are
16 17 18	375	regulated by FIT, and even more are known to be regulated by SPL7, or were indicated to be SPL7-
19 20	376	reponsive genes in this study, with a few of these genes being under control of both of these master
21 22	377	regulators. Thus, both FIT and SPL7 contribute to Fe-Cu crosstalk. However, since many genes that w
23 24	378	differentially expressed under Fe and Cu deficiency are not FIT or SPL7-responsive, there are likely or
25 26 27	379	levels of regulation involved that cannot be identified from RNA-seq results alone. It is also possible
27 28 29	380	many of these genes were responding to alterations in metabolism due to Fe and/or Cu levels in the
30 31 32	381	plant cells, rather than being directly regulated by mineral supply.
33 34	382	We tested the hypothesis that Cu uptake is stimulated by Fe deficiency separately from Fe
35 36	383	uptake, and is independent of normal Cu uptake mechanisms by using <i>spl7</i> mutants. On normal nutr
37 38	384	solutions (25 μ M Fe and 0.5 μ M or 0.1 μ M Cu), the <i>spl7</i> mutant had high leaf Fe:Cu ratio and grew
39 40 41	385	poorly, but these parameters were restored by decreasing Fe supply. This growth rescue by
42 43	386	manipulation of mineral supply is similar to previous results for the <i>fefe</i> Fe uptake mutant. The <i>fefe</i>
44 45	387	mutant has high leaf Cu concentration and grows poorly on normal Fe and Cu supplies, but Cu defici
46 47	388	stimulates Fe uptake and the plants begin to grow normally and have leaf Cu and Fe concentrations
48 49 50	389	the expected range 31 . The normal growth of <i>spl7</i> on 5 μ M or lower Fe supply is similar to results of
50 51 52	390	Bernal et al. (2012), where <i>spl7</i> mutants grew normally on 5 μM Fe and 0.25 μM Cu supply. Togethe
53 54	391	our <i>spl7</i> and <i>fefe</i> results demonstrate Fe-Cu crosstalk and show that whenever Cu or Fe uptake are
55 56 57 58 59 60		

Page 18 of 46

blocked, plants accumulate excessive concentrations of the other metal, and that lowering the supply of the excessive metal causes the plants to grow normally again.

In the case of spl7 mutants, our RNA-seq results at least partially explained why Cu accumulation increased under Fe deficiency. In WT roots, SPL7 targets COPT2 and FRO4 were upregulated only under Cu deficiency, and this regulation did not occur in the *spl7* mutant. However, the spl7 mutant roots had significantly higher expression of COPT2 and FRO4 under Fe deficiency and simultaneous Fe and Cu deficiency. Since COPT2 is also a FIT target ⁹ and the FIT regulon appears to be regulated normally in *spl7* mutants (although at higher fold-change levels), FIT can upregulate *COPT2* (and other genes) when SPL7 is not present. To date, the mechanisms of dual regulation of the several genes that are targets of both FIT and SPL7 have not been studied in detail. Some of the most striking DEGs in this study include the subgroup Ib bHLHs; bHLH38, bHLH39, bHLH100, and bHLH101. These four genes always had similar expression patterns, suggesting that they are co-regulated. Most interestingly, under simultaneous Fe and Cu deficiency, Ib bHLH expression in WT roots resembled that of Cu deficiency in that they were downregulated, while an opposite pattern, with strong upregulation, occurred in spl7 roots. In rosettes of WT, the subgroup Ib bHLH genes were strongly upregulated only under Fe deficiency, while upregulation was much stronger in the spl7 mutant, and occurred not only under Fe deficiency but also under simultaneous Fe and Cu deficiency. Together, these results suggest that SPL7 could act directly or indirectly as a repressor of this class of bHLH genes. Our filtering criteria indicated that the lb bHLH genes are among the SPL7-responsive genes. Several other known Fe uptake genes are included in this list, including FRO2, IRT1, and F6'H1^{49,} ⁵⁰, which were also downregulated under Cu deficiency and simultaneous Fe and Cu deficiency. These Fe uptake genes are confirmed targets of FIT ^{9, 51}. *FIT* expression is activated in a *bHLH39* overexpression

line ⁵², suggesting that the Fe uptake genes may be downstream of subgroup Ib *bHLH* genes activation.

We also noted that the newly discovered *IMA/FEP* genes ^{47, 48} had a pattern of expression similar to that

Page 19 of 46

Metallomics

2		
3 4	416	of the subgroup Ib bHLH genes. The IMA/FEP genes encode small polypeptides that upregulate Fe
5 6 7	417	uptake at the gene expression and physiological levels, and are upstream in the upregulation of the
/ 8 9	418	subgroup Ib bHLH genes. It is also noteworthy that the genes discussed above were contained in the Fe-
10 11 12	419	Cu homeostasis-related modules of gene expression networks.
12 13 14	420	Previous studies of <i>spl7</i> mutants carried out to identify the SPL7 regulon ^{16, 17} did not identify the
15 16	421	primary Fe uptake or regulatory genes discussed above as SPL7-dependent. However, these previous
17 18	422	studies did not include Fe deficiency or simultaneous Fe and Cu deficiency treatments, which are where
19 20 21	423	the lack of SPL7 allowed its role to become apparent. To further determine whether SPL7 might directly
22 23	424	repress these genes by binding to their promoters under Cu deficiency, we identified Cu response
24 25	425	elements (GTAC) in the 3000 bp upstream of these and other genes. The numbers of GTAC elements in
26 27 28	426	some known SPL7 targets are: COPT2, 3; CCH, 4; FRO4, 6; and FSD1, 11; while the numbers in some
28 29 30	427	potential SPL7 targets are: bHLH38, 5; bHLH39, 6; bHLH100, 7; bHLH101, 8; IMA1 and IMA2, 9; IMA3, 5;
31 32	428	WRKY40, 4, and RRTF1, 7. While the presence of these GTAC elements does not conclusively show that
33 34	429	SPL7 represses their expression, their identification leads to a testable hypothesis that we will address in
35 36 37	430	future studies. Alternatively, SPL7 may indirectly repress the Ib bHLH, IMA/FEP genes, and other de-
37 38 39	431	repressed genes by activating expression of an unidentified repressor that is not produced in <i>spl7</i>
40 41 42	432	mutants.
43 44	433	The subgroup-Ib <i>bHLH</i> genes are also upregulated under Fe deficiency in rosettes ^{15, 53} , where
45 46	434	they were strongly upregulated by Fe deficiency in both WT and <i>spl7</i> mutants. However, since the FIT
4/	425	and the second second second to be a second to be second at the second second second second second second second

protein with which they interact in roots to upregulate Fe uptake genes is not expressed in leaves, the
subgroup Ib bHLH proteins must be involved in regulating processes other than primary Fe uptake. It is
possible that they interact with themselves, with each other, or with unknown proteins to upregulate
other aspects of Fe homeostasis that occur in leaves. Some potential general roles for the subgroup IB

Page 20 of 46

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
22
2J 2/
24
25
26
27
28
29
30
31
27
5Z
33
34
35
36
37
38
30
10
40
41
42
43
44
45
46
47
<u>1</u> 2
10 10
49 50
50
51
52
53
54
55
56
50
57
58
59

60

1 2

bHLHs are in rapid growth of leaf cells ⁵⁴ and in regulation of ROS accumulation or signaling ⁵⁵. So far, no
conclusive roles for Ib *bHLH* genes in leaf metal homeostasis have been established.

441 In addition to including several key Fe homeostasis genes, the gene co-expression networks we 442 identified also included several AP2/ethylene response factors (ERFs). Many ERFs are downstream of EIN3 and EIL1 ethylene signaling proteins ³⁷⁻³⁹, which can also interact with FIT to stabilize the FIT protein 443 ⁵⁶. Several of these *ERFs* respond to multiple stress conditions, such as cold, salt, and high light ⁴⁰. One 444 445 transcription factor, Redox Responsive Transcription Factor 1 (RRTF1), which was identified as both FIT-446 and SPL7-responsive in previous studies ^{16, 51}, was downregulated in Fe-deficient WT roots but had the 447 opposite response in *spl7* roots. This transcription factor gene was strongly downregulated in all mineral 448 deficiency treatments in WT rosettes, but not in *spl7* rosettes, where it was upregulated under 449 simultaneous Fe and Cu deficiencies. Targets of RRTF1 (e.g. ERF6, RAP2.6, DDF1, and WRKY40) are involved in regulating redox homeostasis ^{57, 58}, and these genes had similar expression patterns 450 451 (downregulated in WT and not differentially regulated or upregulated in spl7) and were present in the 452 co-expression networks. WRKY40 is also required for full activation of *RRTF1* expression⁵⁸. While the 453 specific targets of many of these ERFs have not been determined, some of the ERFs are transcriptional 454 repressors (e.g. ERF11) while others are activators. However, overexpression of RRTF1 resulted in 455 increased ROS production, while its inactivation resulted in less ROS accumulation ⁵⁸. Overexpression of 456 another highly Fe and Cu responsive AP2/ERF gene, DDF1, resulted in decreased bioactive gibberellins 457 and dwarfed plants ⁵⁹, suggesting that lower DDF1 expression might help to maintain growth. Mutants of Arabidopsis ERF4⁴¹, ERF72⁴², and apple ERF4⁶⁰ indicate that these proteins act as repressors of Fe 458 459 deficiency responsive genes. However, that ERF genes are well known for roles in other stresses, and 460 their especially strong downregulated response in WT leaves, suggest that their roles are not limited to regulating root Fe uptake. Thus, the lower expression of several ERF genes observed in this study 461

2		
3 4	462	suggests a more general (but not necessarily less important) role in metal homeostasis and ROS
5 6	463	production/scavenging rather than a role specifically in Fe-Cu cross-talk.
7 8	464	In conclusion, this study provided new insights into Fe -Cu crosstalk. We were able to identify
9 10 11	465	gene expression patterns that explained why low Fe supply allowed <i>spl7</i> mutants to grow normally.
12 13	466	Also, use of the <i>spl7</i> mutant under Fe deficiency and simultaneous Fe and Cu deficiency revealed
14 15	467	potential new roles for SPL7 as a repressor of some aspects of Fe uptake, such as the IMA/FEP genes,
16 17	468	subgroup Ib bHLHs, and the ERF redox homeostasis network. We have built a model (Fig. 7) that
18 19 20	469	indicates the opposite effects of Fe and Cu deficiencies on the Fe uptake genes upstream of FIT, and the
21 22	470	similar effects on the redox homeostasis network. Future studies will test critical aspects of this model.
23 24 25	471	
26 27	472	Conflicts of Interest
28 29 30	473	There are no conflicts of interest to declare.
31	474	Acknowledgements
32 33 24	475	The authors thank Javier Seravalli for ICP-MS analysis. This project was partially supported by the
34 35 36	476	Nebraska Agricultural Experiment Station with funding from the Hatch Act (Accession Number 22-375)
37 38	477	through the USDA National Institute of Food and Agriculture, and by the National Science Foundation
39 40	478	(NSF-IOS-1257568). The UNMC DNA Sequencing Core Facility receives partial support from the Nebraska
41 42 43	479	Research Network In Functional Genomics NE-INBRE P20GM103427-14, The Molecular Biology of
44 45	480	Neurosensory Systems CoBRE P30GM110768, The Fred & Pamela Buffett Cancer Center - P30CA036727,
46 47	481	The Center for Root and Rhizobiome Innovation (CRRI) 36-5150-2085-20, and the Nebraska Research
48 49	482	Initiative.
50 51 52 53	483	
54	484	Supplementary material
55 56 57	485	Supplementary dataset 1. RNA-seq gene expression results for genes in Venn diagrams shown in Fig. 3.
57 58 59 60		21

1			
2			
3 4	486	Table S	1. SPL7-responsive genes with fold change in abundance shown in <i>spl7</i> relative to WT and also
5 6	487	within	each genotype relative to the control treatment.
7 8	488	Table S	2. Probable Fe-Cu crosstalk-related genes from central Venn diagram in Fig. 4.
9			
10 11	489	Table S	3. Enriched gene ontology (GO) terms in Fe-Cu crosstalk-related genes from central Venn diagram
12 13	490	in Fig. 4	4 based on DAVID functional annotation clustering.
14 15 16	491	Table S	4. GO enrichment analysis of co-expression network genes (Fig. 5) in roots as determined by
10 17 18	492	STRING	analysis.
19 20	493	Table S	5. GO enrichment analysis of co-expression network genes (Fig. 5) in rosettes as determined by
21 22	494	STRING	analysis.
23 24	495		
25 26 27	496	References	
28	497	1.	J. L. Burkhead, K. A. G. Reynolds, S. E. Abdel-Ghany, C. M. Cohu and M. Pilon, Copper
29	498		homeostasis. New Phytol., 2009, 182 , 799-816.
30	499	2.	R. Hansch and R. R. Mendel. Physiological functions of mineral micronutrients (Cu. Zn. Mn. Fe.
31	500		Ni Mo B Cl) Curr Onin Plant Biol 2009 12 259-266
32	500	3	M Pilon K Ravet and W Tanken. The biogenesis and physiological function of chloroplast
33	502	5.	superovide dismutases. <i>Biochimica Et Biophysica Acta-Bioenergetics</i> 2011 1807 989-998
34	502	Λ	Superoxide distributes; Diochimica Li Diophysica Acta Diochergenes; 2011, 1007, 505 550.
35	505	4.	S. Fulg, N. Anules-Colas, A. Galcia-Molina and L. Fenantubia, Copper and non-momentasis and interactions and histochaplagical applications
30 27	504		Arabidopsis: responses to metal denciencies, interactions and biotechnological applications,
20	505	-	Plant Cell Environ., 2007, 30 , 271-290.
30	506	5.	I. Hirayama, J. J. Kieber, N. Hirayama, M. Kogan, P. Guzman, S. Nourizadeh, J. M. Alonso, W. P.
40	507		Dailey, A. Dancis and J. R. Ecker, RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease–
41	508		related copper transporter, is required for ethylene signaling in Arabidopsis, <i>Cell</i> , 1999, 97 , 383-
42	509		393.
43	510	6.	R. G. Alscher, N. Erturk and L. S. Heath, Role of superoxide dismutases (SODs) in controlling
44	511		oxidative stress in plants, J. Exp. Bot., 2002, 53, 1331-1341.
45	512	7.	D. J. Kliebenstein, RA. Monde and R. L. Last, Superoxide dismutase in Arabidopsis: An eclectic
46	513		enzyme family with disparate regulation and protein localization, <i>Plant Physiol.</i> , 1998, 118 , 637-
47	514		650.
48	515	8.	F. Myouga, C. Hosoda, T. Umezawa, H. Iizumi, T. Kuromori, R. Motohashi, Y. Shono, N. Nagata,
49	516		M. Ikeuchi and K. Shinozaki. A heterocomplex of iron superoxide dismutases defends chloroplast
50	517		nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis.
51	518		The Plant Cell Online. 2008. 20 . 3148-3162.
52	519	9	F. P. Colangelo and M. L. Guerinot. The essential basic belix-loop-belix protein FIT1 is required
ンン 51	520	5.	for the iron deficiency response The Plant Cell 2004 16 3400-3412
54 55	520		$\frac{1}{2} \frac{1}{2} \frac{1}$
55			
57			

1 ว			
2	521	10	N Wang Y Cui Y Liu H Fan I Du 7 Huang Y Yuan H Wu and H -O Ling Requirement and
4	522	10.	functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in
5	523		Arabidonsis thaliana, Molecular plant, 2013, 6 , 503-513
6	524	11	Y X Yuan H L Wu N Wang I Li W N Zhao I Du D W Wang and H O ling FIT interacts
/	525		with AtbHI H38 and AtbHI H39 in regulating iron untake gene expression for iron homeostasis in
0 0	526		Arabidonsis Cell Res 2008 18 385-397
10	520	12	N L Robinson C M Procter F L Connolly and M L Guerinot A ferric-chelate reductase for
11	528	12.	iron untake from soils Nature 1999 397 694-697
12	529	13	G Vert N Grotz E Dedaldechamp E Gaymard M L Guerinot L E Briat and C Curie IBT1 an
13	530	10.	Arabidonsis transporter essential for iron untake from the soil and for plant growth <i>Plant Cell</i>
14	531		2002 14 1223-1233
15	532	14	D Fide M Broderius I Fett and M I Guerinot A novel iron-regulated metal transporter from
16	532	±	plants identified by functional expression in yeast <i>Proc Natl Acad Sci USA</i> 1996 93 5624-
17 10	534		5628
10	535	15	B M Waters S A McInturf and B I Stein Rosette iron deficiency transcript and microRNA
20	536	10.	profiling reveals links between conner and iron homeostasis in Arghidonsis thaliang. I Exp. Bot
21	537		2012 63 5903-5918
22	538	16	M Bernal D Casero V Singh G T Wilson A Grande H Yang S C Dodani M Pellegrini P
23	539	10.	Huiser F L Connolly S S Merchant and LL Krämer Transcriptome sequencing identifies SPI 7-
24	540		regulated conner acquisition genes ERO4/ERO5 and the conner dependence of iron homeostasis
25	5/1		in Arabidonsis The Plant Cell 2012 24 738-761
26	542	17	H Vamacaki M Havashi M Eukazawa V Kobayashi and T Shikanai SOUAMOSA promoter
2/ 20	5/12	17.	hinding protein-like7 is a central regulator for conner homeostasis in Arabidonsis. The Plant Cell
20 29	545		2009 21 347_361
30	544	18	A Perez-García A Garcia-Molina N Andrés-Colás E Vera-Sirera M A Pérez-Amador S Puig
31	545	10.	and L. Deñarruhia, Arabidonsis conner transport protein COPT2 participates in the cross talk
32	540		between iron deficiency responses and low-phosphate signaling <i>Plant Physiol</i> 2013 162 180-
33	547		
34	540	10	V Chaignon D Di Malta and P Hinsinger Fe-deficiency increases Cu acquisition by wheat
35	550	19.	cronned in a Cu-contaminated vinevard soil New Phytol 2002 154 121-130
36 27	551	20	V X Chen I V Shi G M Tian S I Zheng and O Lin Fe deficiency induces Cu untake and
27 28	552	20.	accumulation in Commeling communis Plant Science 2004 166 1371-1377
39	552	21	B M Welch W A Norvell S C Schaefer J E Shaff and J V Kochian Induction of iron(III) and
40	557	21.	conper(II) reduction in pea (<i>Pisum sativum</i> L) roots by Fe and Cu staus: Does the root-cell
41	555		nlasmalemma Ee(III)-chelate reductase perform a general role in regulating cation untake?
42	556		Dianta 1002 1002 555-561
43	550	22	Flumer, 1993, 1993, 393-301.
44	558	22.	accelerates the induction of several Fe-deficiency stress responses in Strategy I plants. <i>Diant</i>
45	220		Devial Piocham 2002 41 921 927
46	559	22	T del Deze V. Cambiazo and M. Conzólez. Cono expression profiling analysis of conner
47 79	500	25.	homoostasis in Arabidonsis thaliang Riochem Rionbus Res Commun. 2010. 202, 248 252
40 49	501	24	Noneostasis in Arabidopsis indiana, Biochem. Biophys. Res. Commun., 2010, 353, 246-252.
50	502	24.	v. Sancenon, S. Pulg, I. Mateu-Andres, E. Dorcey, D. J. There and E. Penarrubia, The Arabidopsis
51	202		2004 270 15248-15255
52	504	25	2004, 279 , 15546-15555.
53	202	۷۵.	iron-deficient Arabidoncis thaliang roots 1 Eve Dat 2012 62 1020 1055
54	200		non-dencient Arubidopsis thundha 100ts, J. Exp. Dol., 2012, 03 , 1039-1055.
55			
20 57			
58			73
59			23

F 6 7	20	II Wints T. Fox V. V. Wu, V. Fong W. O. Chan, I. S. Chang, T. Zhu and C. Vulna, Expression
562	20.	n. williz, T. Fox, T. T. Wu, V. Felig, W. Q. Chell, H. S. Chang, T. Zhu and C. Vulpe, Expression
560		metal homeostasis / Biol Chem 2003 278 47644-47653
570	27	Metal homeostasis, J. Diol. Chem., 2003, 276 , 47044-47033.
570	27.	ferric chelate reductase (EPO) gene family reveals differential regulation by iron and copper
571		Dignta 2006 222 1178 1100
572	20	H. Vamasaki, S. F. Abdel-Ghany, C. M. Coby, Y. Kohayashi, T. Shikanai and M. Bilon, Begulation of
575	20.	connor homoostasis by micro PNA in Arabidonsis / Piol Cham 2007 292 16260 16279
574	20	P. M. Waters and G. C. Troupe, Natural variation in iron use officiency and mineral
575	29.	B. W. Waters and G. C. Houpe, Natural variation in non use enciency and inmeral remobilization in susumber (Cusumic setimus). Plant Sail 2012, 252, 195, 107
570	20	P. K. Pamamurthy and P. M. Waters, Manning and characterization of the fefe gone that
577	50.	K. K. Kalilaliururury aliu B. W. Waters, Mapping aliu Characterization of the Jeje gene that
576	21	Controls from plake in melon (<i>Cucums melo</i> L.), <i>Fronciers in Plant Science</i> , 2017, 6 .
5/9	51.	B. W. Waters, S. A. Michaelan (Cucumic mole) reveals new senests of iron, conner crossfally. New
580		of the jeje mutant of meion (cucums meio) reveals new aspects of from-copper crosstark, new
201	22	Privilor., 2014, 203 , 1128-1145.
582	32.	F. J. Romera, E. Alcantara and M. D. De la Guardia, Ethylene production by Fe-deficient roots and
583		its involvement in the regulation of Fe-denciency stress responses by strategy i plants, Ann. Bot.,
584	22	1999, 83 , 51-55.
585	33.	B. M. Waters and D. G. Bievins, Ethylene production, cluster root formation, and localization of
580	24	iron(iii) reducing capacity in Fe deficient squash roots, <i>Plant Soli</i> , 2000, 225 , 21-31.
587	34.	IVI. J. Garcia, C. Lucena, F. J. Romera, E. Alcantara and R. Perez-Vicente, Ethylene and hitric oxide
588		involvement in the up-regulation of key genes related to iron acquisition and homeostasis in
589		Arabidopsis, J. Exp. Bot., 2010, 61 , 3885-3899.
590	35.	C. Lucena, B. M. Waters, F. J. Romera, M. J. Garcia, M. Morales, E. Alcantara and R. Perez-
591		Vicente, Ethylene could influence ferric reductase, iron transporter, and H+-Al Pase gene
592		expression by affecting FER (or FER-like) gene activity, <i>J. Exp. Bot.</i> , 2006, 57 , 4145-4154.
593	36.	B. M. Waters, C. Lucena, F. J. Romera, G. G. Jester, A. N. Wynn, C. L. Rojas, E. Alcantara and R.
594		Perez-Vicente, Ethylene involvement in the regulation of the H ⁺ -ATPase <i>CsHA1</i> gene and of the
595		new isolated ferric reductase <i>CSFRO1</i> and iron transporter <i>CSIR11</i> genes in cucumber plants,
596	~ 7	Plant Physiol. Biochem., 2007, 45 , 293-301.
597	37.	M. Dubois, L. Van den Broeck and D. Inze, The pivotal role of ethylene in plant growth, <i>Trends</i>
598	20	Plant Sci., 2018, 23 , 311-323.
599	38.	F. Licausi, M. Ohme-Takagi and P. Perata, APETALA2/Ethylene Responsive Factor (AP2/ERF)
600		transcription factors: mediators of stress responses and developmental programs, New Phytol.,
601	20	2013, 199 , 639-649.
602	39.	M. Muller and S. Munne-Bosch, Ethylene response factors: a key regulatory hub in normone and
603		stress signaling, Plant Physiol., 2015, 169 , 32-41.
604	40.	U. J. Phukan, G. S. Jeena, V. Tripathi and R. K. Shukia, Regulation of Apetala2/Ethylene response
605		factors in plants, Frontiers in Plant Science, 2017, 8 , 150.
606	41.	W. Liu, N. J. U. Karemera, T. Wu, Y. Yang, X. Zhang, X. Xu, Y. Wang and Z. Han, The ethylene
607		response factor AtERF4 negatively regulates the iron deficiency response in Arabidopsis
608		thaliana, <i>PLOS ONE</i> , 2017, 12 , e0186580.
609	42.	w. Liu, Q. Li, Y. Wang, T. Wu, Y. Yang, X. Zhang, Z. Han and X. Xu, Ethylene response factor
610		AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency, <i>Biochem</i> .
611		Biophys. Res. Commun., 2017, 491 , 862-868.
612	43.	A. M. Bolger, M. Lohse and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence
613		data, Bioinformatics, 2014, btu1/0.
		24
	$\begin{array}{c} 567\\ 568\\ 569\\ 570\\ 571\\ 572\\ 573\\ 576\\ 577\\ 578\\ 579\\ 580\\ 581\\ 582\\ 583\\ 584\\ 586\\ 587\\ 588\\ 590\\ 591\\ 592\\ 593\\ 596\\ 597\\ 598\\ 590\\ 601\\ 602\\ 603\\ 604\\ 605\\ 606\\ 607\\ 608\\ 600\\ 611\\ 612\\ 613\end{array}$	56726.56856957027.57157257328.57429.57529.57630.57730.57831.58032.58332.58433.58633.58634.58734.58935.59159259336.59459559637.59838.60060160239.60340.60541.60760860942.61061161243.61343.

1 2			
3	614	44	C Trappell A Roberts I Goff G Pertea D Kim D R Kelley H Pimentel S I Salzberg I I
4	615		Rinn and L. Pachter, Differential gene and transcript expression analysis of RNA-seq experiments
5	616		with TopHat and Cufflinks, Nature protocols, 2012, 7, 562-578.
7	617	45.	S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome
8	618		<i>biology</i> , 2010, 11 , R106.
9	619	46.	W. Schmidt and T. J. Buckhout, A hitchhiker's guide to the Arabidopsis ferrome, Plant Physiol.
10	620		Biochem., 2011, 49 , 462-470.
11	621	47.	L. Grillet, P. Lan, W. Li, G. Mokkapati and W. Schmidt, IRON MAN, a ubiquitous family of
12	622		peptides that control iron transport in plants, <i>Nature Plants</i> , 2018, (in press).
13	623	48.	T. Hirayama, G. J. Lei, N. Yamaji, N. Nakagawa and J. F. Ma, The putative peptide gene FEP1
15	624		regulates iron deficiency response in Arabidopsis, <i>Plant Cell Physiol.</i> , 2018, DOI:
16	625		10.1093/pcp/pcy145, pcy145-pcy145.
17	626	49.	N. B. Schmid, R. F. Giehl, S. Döll, HP. Mock, N. Strehmel, D. Scheel, X. Kong, R. C. Hider and N.
18	627		von Wirén, Feruloyl-CoA 6'-Hydroxylase1-dependent coumarins mediate iron acquisition from
19	628		alkaline substrates in arabidopsis, <i>Plant Physiol.</i> , 2014, 164 , 160-172.
20	629	50.	H. Schmidt, C. Günther, M. Weber, C. Spörlein, S. Loscher, C. Böttcher, R. Schobert and S.
21	630		Clemens, Metabolome Analysis of Arabidopsis thaliana Roots Identifies a Key Metabolic
23	631		Pathway for Iron Acquisition, <i>PLoS ONE</i> , 2014, 9 , e102444.
24	632	51.	HJ. Mai, S. Pateyron and P. Bauer, Iron homeostasis in Arabidopsis thaliana: transcriptomic
25	633		analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene
26	634	50	networks, BMC Plant Biol., 2016, 16 , 211.
27	635	52.	M. A. Naranjo-Arcos, F. Maurer, J. Meiser, S. Pateyron, C. Fink-Straube and P. Bauer, Dissection
28	636		of iron signaling and iron accumulation by overexpression of subgroup ib bHLH039 protein,
29 30	637	F 2	Scientific Reports, 2017, 7, 10911.
31	638	53.	H. Y. Wang, M. Klatte, M. Jakoby, H. Baumiein, B. Weissnaar and P. Bauer, Iron deliciency-
32	639		mediated stress regulation of four subgroup to BHLH genes in Arabidopsis tridiland, Planta,
33	640 641	Γ 4	2007, 220 , 897-908. M. E. Andriankaia, S. Danisman, L. E. Mignalat Spruut, H. Claave, L. Kashanka, M. Vermaarseh, L.
34	641	54.	M. E. Anunankaja, S. Danisman, L. F. Migholet-Spruyt, H. Cideys, I. Kochanke, M. Vermeersch, L.
35	642		Broussgem G. C. Angenent P. H. Immink and D. Inzá. Transcriptional coordination between leaf
36	643		cell differentiation and chloronlast development established by TCD20 and the subgroup lb
37 38	645		herein the subgroup is here and the subgroup is here and the subgroup is
39	646	55	M Noshi N Tanahe V Okamoto D Mori M Ohme-Takagi M Tamoi and S Shigeoka Clade Ib
40	647	55.	hasic helix-loon-helix transcription factor hHI H101 acts as a regulatory component in photo-
41	648		oxidative stress responses. <i>Plant Science</i> , 2018, 274 , 101-108
42	649	56.	S. Lingam, J. Mohrbacher, T. Brumbarova, T. Potuschak, C. Fink-Straube, F. Blondet, P. Genschik
43	650		and P. Bauer. Interaction between the bHLH Transcription Factor FIT and ETHYLENE
44 45	651		INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 Reveals Molecular Linkage between the Regulation
45 46	652		of Iron Acquisition and Ethylene Signaling in Arabidopsis. The Plant Cell Online. 2011. 23. 1815-
47	653		1829.
48	654	57.	A. Khandelwal, T. Elvitigala, B. Ghosh and R. S. Quatrano, Arabidopsis Transcriptome Reveals
49	655		Control Circuits Regulating Redox Homeostasis and the Role of an AP2 Transcription Factor,
50	656		Plant Physiol., 2008, 148 , 2050-2058.
51	657	58.	M. Matsuo, Joy M. Johnson, A. Hieno, M. Tokizawa, M. Nomoto, Y. Tada, R. Godfrey, J. Obokata,
52	658		I. Sherameti, Yoshiharu Y. Yamamoto, FD. Böhmer and R. Oelmüller, High REDOX RESPONSIVE
55 54	659		TRANSCRIPTION FACTOR1 Levels Result in Accumulation of Reactive Oxygen Species in
55	660		Arabidopsis thaliana Shoots and Roots, <i>Molecular Plant</i> , 2015, 8 , 1253-1273.
56			
57			
58			25
59			

59. H. Magome, S. Yamaguchi, A. Hanada, Y. Kamiya and K. Oda, dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor, The Plant Journal, 2004, 37, 720-729. W. Liu, T. Wu, Q. Li, X. Zhang, X. Xu, T. Li, Z. Han and Y. Wang, An ethylene response factor 60. (MxERF4) functions as a repressor of Fe acquisition in Malus xiaojinensis, Scientific Reports, 2018, **8**, 1068.

1 2		
3	668	Figure Legends
4 5	669	
6 7	670	Figure 1. Rescue of <i>spl7</i> mutants by low iron supply. a, Photograph of rosettes of WT (Col-0) and <i>spl7</i>
8 9 10	671	mutants grown on Cu supply of 0, 0.5, 1.0, 2.5, or 5 μ M with Fe supplied at 5 or 25 μ M. b, Photograph of
11 12	672	rosettes of WT (Col-0) and <i>spl7</i> mutants grown on Cu supply of 0.1 μ M with Fe supplied at 1, 5, or 25
13 14	673	μ M. c, Dry mass of rosettes of WT (Col) and <i>spl7</i> mutants grown as in A and B. d, rosette Cu
15 16	674	concentration, e, rosette Cu content, f, rosette Fe concentration, and g, rosette Fe content of WT (Col)
17 18 19	675	and <i>spl7</i> mutants grown as in A and B.
20 21	676	
22 23	677	Figure 2. a, Rosette Fe:Cu ratio in WT (Col) and <i>spl7</i> mutants grown as in Fig. 1 plotted against rosette
24 25	678	dry mass. Numbers near data points represent nutrient solution Cu and Fe concentrations (Cu/Fe) in
26 27 28	679	μ M. b, Rosette Cu concentration in WT (Col-0), <i>fro2</i> mutants, and <i>irt1</i> mutants grown with 25 μ M Fe
20 29 30	680	(+Fe) or without Fe (-Fe) for three days after a pre-treatment period with 25 μ M Fe.
31 32	681	
33 34	682	Figure 3. Venn diagrams of gene expression in WT and spl7 plants under single mineral deficiencies (-Fe
35 36 27	683	or -Cu) and simultaneous Fe and Cu deficiency (-Fe-Cu) in roots and rosettes. a, Fe deficiency DEGs in
37 38 39	684	roots; b, Fe deficiency DEGs in rosettes; c, Cu deficiency DEGs in roots; d, Cu deficiency DEGs in rosettes;
40 41	685	e, simultaneous Fe and Cu deficiency DEGs in roots; f, simultaneous Fe and Cu deficiency DEGs in
42 43	686	rosettes. Genes of interest known to be involved in Fe or Cu homeostasis are labeled in red, and
44 45	687	indicated to the appropriate set in each diagram. Abbreviations: dn, downregulated; up, upregulated;
40 47 48	688	s7, <i>spl7</i> mutant.
49 50	689	
51 52	690	Figure 4. Venn diagram series used to isolate potential Fe-Cu crosstalk genes. Outer Venn diagrams on
53 54	691	the upper half are genes from WT (left) and <i>spl7</i> (right) that were upregulated or downregulated in -Fe, -
55 56 57	692	Cu, or -Fe-Cu treatments. Outer Venn diagrams on the lower half are genes from WT (left) and <i>spl7</i>
57 58 50		27
60		

1 2		
2 3 4	693	(right) that were upregulated or downregulated in -Fe, -Cu, or -Fe-Cu treatments. The center upper
5 6	694	(roots) and lower (rosettes) Venn diagrams contain all genes that were upregulated or downregulated in
7 8 0	695	any of the -Fe, -Cu, or -Fe-Cu treatments in WT or <i>spl7</i> mutants. The red circle shows genes that were
) 10 11	696	advanced to the central Venn diagram that contains likely Fe-Cu crosstalk genes in roots and/or rosettes.
12 13	697	
14 15	698	Figure 5. Gene co-expression networks in roots as determined by STRING analysis and visualized in
16 17 18	699	Cytoscape. The largest module on the left was designated as the Fe-Cu crosstalk module of interest.
19 20	700	
21 22	701	Figure 6. Gene co-expression networks in rosettes as determined by STRING analysis and visualized in
23 24	702	Cytoscape. The second-largest module on the upper right was designated as the Fe-Cu crosstalk module
25 26 27	703	of interest.
27 28 29	704	
30 31	705	Figure 7. Model of roles of FIT and SPL7 in Fe-Cu crosstalk based on RNA-seq gene expression results.
32 33	706	Transcription factors (FIT, bHLH Ib, SPL7, WRKY40, RRTF1) are represented as ovals; the peptides
34 35 26	707	IMA/FEP are represented by a diamond, and downstream targets are represented by a green box. In this
30 37 38	708	model, subgroup Ib bHLH proteins act upstream of and interact with FIT to activate Fe uptake target
39 40	709	genes under Fe deficiency conditions. IMA/FEP peptides are upstream of subgroup Ib bHLH proteins.
41 42	710	SPL7 protein represses (directly or indirectly) IMA/FEP and subgroup Ib bHLH expression under Cu
43 44	711	deficiency and simultaneous Fe and Cu deficiency. SPL7 also represses WRKY40, which is upstream of
45 46 47	712	RRTF1. RRTF1 is also a potential FIT target ⁵¹ and is repressed under Fe deficiency. WRKY40 and RRTF1
48 49	713	are upstream of the redox homeostasis network (see Table 2) which includes certain ERF proteins
50 51	714	among others.
52 53		
54 55 56		
57		
58 59		28
60		

Table	e 1. Summary statistics of numbers of differentially expressed genes in WT (
spl7	mutant roots or rosettes under Fe deficiency (-Fe), Cu deficiency (-Cu), or
simu	Iltaneous Fe and Cu deficiencies (-Fe-Cu).

						<u>Multiple as %</u>
<u>Treatment</u>	<u>Total</u>	<u>-Fe</u>	<u>-Cu</u>	-Fe-Cu	<u>Multiple</u>	<u>of total</u>
WT root	1056	832	101	341	190	18.0
spl7 root	940	763	149	204	160	17.0
WT rosette	711	252	122	583	136	19.1
spl7 rosette	915	775	119	244	190	20.8

					Transcrir	t abunda	nce differe	ance in col	7 relative t	o WT in e	ach condit	ion (log2											
					manacin	i abunua	fold ch:	ange nairv	vise compa	arisons)	acri conun	1011 (1052		Fo	ld-change (I	og2) with	in same ø	enotyne i	n each cor	dition rela	ative to +Er	+Cu condi	ition
					Roots	Roots	Roots	Roots	Shoots	Shoots	Shoots	Shoots	Boots	Roots	Roots	Roots	Roots	Roots	Shoots	Shoots	Shoots	Shoots	Shoo
			Fit	SPL7																			
			regulated	regulated																			
elements	Gene name	Description	1	2	+Fe+Cu	-Fe	-Cu	-Fe-Cu	+Fe+Cu	-Fe	-Cu	-Fe-Cu	WT-Fe	WT-Cu	WT-Fe-Cu	spl7-Fe	spl7-Cu	spl7-Fe-C	WT-Fe	WT-Cu	WT-Fe-Cu	spl7-Fe	spl7-0
AT5G18830	SPL7	squamosa promoter binding protein-like 7			-1.5	-1.5	-1.4	-1.4	-1.2	-1.2	-1.3	-1.2											
viously known SPL7	responsive g	enes																					
AT3G56240	CCH	copper chaperone	Yes	Yes	-1.2		-2.5	-1.2			-1.6			1.4					-1.1				
AT3G46900	COPT2	copper transporter 2	Yes	Yes	-3.4		-4.8				-2.0	-1.7		2.0		2.6		2.4					
AT5G38820		Transmembrane amino acid transporter family protein	Yes	Yes	-1.3	-1.8	3.2	4.0					2.1	-4.4	-2.3	1.6		2.9					
AT4G29780		unknown protein	Yes	Yes	-1.1	1.4			-3.3		-1.7	1.4	-1.5		-1.7				-2.8	-1.5	-3.5	1.0	
AT1G47395	IMA2/FEP2	Iron Man/ Fe uptake Inducing peptide		Yes	-1.2	2.6	2.7	3.2	-5.1	3.8	3.9	3.1		-4.1	-2.2	4.7		2.2	3.1	-4.0		12.0	5.1
AT1652690		Late embryogenesis abundant protein (LEA) family		Ves					72		15		23			27						-6.9	-37
7112052050		basic belix-loop-belix (bHLH) DNA-binding superfamily		105					7.2		1.5		2.5			2						0.5	5.7
AT1G71200	CITE1	protein		Voc	-5.6		-7.2	-5.5						2.9									
AT1071200	TAT2	broceni		Voc	- 3.0		2.2	-3.5	14		2.4	2.0		5.0				2.2		10	12		
AT2G24850	1415	lacence 2	-	Voc	5.2		2.2		1.4	2.0	2.4	1.2				12		-2.3	-	1.0	1.2	1.2	10
AT2G25130	LACZ	unknown protein		Voc	-12		-2.2			2.0	-12	1.5		14		-1.2		-	1	-1.2	-1.5	1.5	-1.0
A1204/010		P-loop containing nucleoside triphosphate hud1		res	-1.5		-5.5				-1.5			1.4				-	1	+	1		
472020040		r-loop containing nucleoside tripnosphate hydrolases		Voc		2.0		1.2		1.2	26	26	17		2.0				1		27	21	
A13G28510	PCI 2	beta 1.2 glucapaso 2		Yes		2.0		1.3	2.0	1.2	2.0	2.0	-1./		-2.0	2.0			17		-2.7	2.1	
A13G57260	BGL2	peta-1,3-grucanase 2		Yes			-		2.0		2.3					3.0		-	1.7				-
		2-oxogrutarate (20G) and Fe(II)-dependent oxygenase										10											
AT4G10500		superfamily protein		Yes					2.6	1.4	3.3	1.3							1.9				_
AT4G25100	FSD1	Fe superoxide dismutase 1		Yes	-8.8	-5.0	-12.9	-12.1	-9.5	-7.5	-8.7	-8.8	-6.1	2.1					-5.5	1.3	-1.0		2.2
AT5G14565	MiR398c	mirna MIR398C		Yes	-5.7		-5.7						-5.8										
AT5G22570	WRKY38	WRKY DNA-binding protein 38		Yes		1.9		1.3		1.6		3.1	-1.5		-2.2							1.6	
AT5G23980	FRO4	ferric reduction oxidase 4		Yes	-5.6		-8.2	-3.3					-1.3	3.7		3.6		2.6				-1.0	
AT5G24380	YSL2	YELLOW STRIPE like 2		Yes	-1.0		-2.4		-1.5		-2.7	-1.4	_	1.2					-1.1				
		Xyloglucan endotransglucosylase/hydrolase family																					
AT5G57560	TCH4	protein		Yes	-1.0	1.4			-3.4	1.0	-2.5	1.2	-1.7						-2.4	-1.7	-3.2	2.0	
AT5G59520	ZIP2	ZRT/IRT-like protein 2		Yes	-3.6		-5.6	-3.3					-3.4	1.6									
own Fe uptake gene	s																						
AT4G19690	IRT1	iron-regulated transporter 1	Yes		-1.4	-1.3	2.9	3.7		2.0		2.0	2.0	-3.6	-2.8	2.0		2.3	1.4			2.7	
AT1G01580	FRO2	ferric reduction oxidase 2	Yes		-1.2	-1.7	3.4	3.2		1.6			2.0	-3.9	-2.0	1.6		2.4				1.4	
		2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase																					
AT3G12900	F6'H1	superfamily protein	Yes		-2.0	-3.4	5.2	4.6					2.3	-7.0	-2.4			4.2					
AT2G41240	bHLH100	basic helix-loop-helix protein 100			-1.2	1.1	2.7	4.4		5.2	6.5	6.5	2.7	-4.0	-3.2	5.1		2.4	4.1			14.5	6.5
		basic helix-loop-helix (bHLH) DNA-binding superfamily																				1	
AT5G04150	bHLH101	protein BHLH101					1.8	3.3		3.6		2.5	1.3	-2.5	-2.1	2.4		1.6	1.5			7.4	
		basic helix-loop-helix (bHLH) DNA-binding superfamily																				1	
AT3G56970	bHLH38	protein					2.3	3.4		4.1		7.5	2.1	-3.4	-2.4	3.8		1.9	6.6			13.0	
		basic helix-loop-helix (bHLH) DNA-binding superfamily																				1	
AT3G56980	bHLH39	protein			-1.0			2.6		4.6		4.8	1.6	-1.5	-1.6	3.1		1.9	6.5			11.7	
or other metal home	eostasis-relate	ed																		1			1
AT5G01600	FER1	ferretin 1				-2.0				-2.5		-2.5		1.2		-2.5		-1.3	-3.3		-1.7	-6.5	
AT2G40300	FER4	ferritin 4								-2.4		-1.3				-1.8			-1.6			-4.4	
		Heavy metal transport/detoxification superfamily																					
AT5G26690		protein								1.7		2.0	-1.9						1			2.3	
AT1G47400	IMA1/FEP3	Iron Man/ Fe uptake Inducing peptide				2.1		3.0	-4.5	3.5	2.4	3.4		-4.1	-2.0	3.9		1.9	3.0	-2.5		10.9	4.4
AT2G30766	IMA3/FEP1	Iron Man/ Fe uptake Inducing peptide							-4.8	2.0	3.2	3.1	4.5			5.4			2.8	-2.9		9.5	5.1
AT1G21140	1	Vacuolar iron transporter (VIT) family protein				-2.9		1.1		-1.4		-1.2			-1.1	-2.3	1.0		-1.3		1	-3.4	
AT3G18290	BTS	BRUTUS (BTS), a putative E3 ligase protein								2.2		1.2				1.4						3.3	
lox Homeostasis																			1	1	1		
AT4G34410	RRTF1	redox responsive transcription factor 1	Yes		-2.5	4.2			-6.6		-3.2	7.7	-3.3		-3.1	3.4			-3.9	-2.7	-8.3		1
AT1680840	WRKY40	WRKY DNA-binding protein 40			2.5	1.9			-3.2		-1.4	2.7	-1.4		-1.4	5.4	1.1		-3.1	-2.1	-4.5		
1112000340						1.5			5.2		1.4	2.7			1.4				5.1				
AT1G12610	DDF1	DDE1/Integrase-type DNA-binding superfamily protein			-4.2	4.1			-6.6	-1.6		6.1	-3.1		-6.2	5.2			-2.1	-3.0	-7.4		
AT1G27720	74710	salt tolerance zinc finger			-12	1.4	-11	-11	-2.1	1.0	-11	1.6	-1.0		0.2	5.2		-	-2.2	-16	-2.4		
AT1G27730	\$751	salt_inducible zinc finger 1			-1.2	1.4	-1.1	-1.1	-2.1		-1.1	1.0	-1.9					-	-2.2	-1.0	-3.4		+
A13055980	3211	2 overluterate (200) and Eq.(II) dependent							-2.3		-1.3		-1.5						-2.1	-1.5	-2.8	<u> </u>	
4 730 40030		2-0x0grutarate (200) and Fe(II)-dependent 0xygenase			10	1.0	20						1.2		17	2.5	1.2	4.2					
AT3649620		supertamily protein			1.9	-1.9	3.6						1.2		-1.7	-2.5	1.2	-4.3			1	1	
7115045020																							

Metallomics

Module 1	L Fe-Cu hom	neostasis rela	ted			Roots	Roots	Roots	Roots	Roots	Roots	Shoots	Shoots	Shoots	Shoots	Sh
				Fit	SPL7											
	Gene ID		Description	1 1	2	WT-Fe	WT-Cu	WT-Fe-Cu	spl7-Fe	spl7-Cu	spl7-Fe-Cu	WT-Fe	WT-Cu	WT-Fe-Cu	spl7-Fe	spl
			2-oxoglutarate (2OG) and Fe(II)-dependent													
	AT3G12900	F6'H1	oxygenase superfamily protein	Yes	Yes	2.3	-7.0	-2.4			4.2					
	AT4G19690	IRT1	remic reduction oxidase 2	Yes	Yes	2.0	-3.9	-2.0	1.6		2.4	1.4			1.4	
	AT4G34410	RRTF1	redox responsive transcription factor 1	Yes	Yes	-3.3	5.0	-3.1	3.4		2	-3.9	-2.7	-8.3	2.17	
			Transmembrane amino acid transporter family													
/	AT5G38820		protein	Yes	Yes	2.1	-4.4	-2.3	1.6		2.9					
/	AT4G27654	CVD92C4	unknown protein	Yes	Yes	-3.3	67	2.1	2.1		4.2	-4.0	-2.3	-5.8		
	A14G31940	C1P82C4	basic helix-loop-helix (bHLH) DNA-binding	res	res	1.4	-0.7	-3.1	1.1		4.2					-
1	AT5G04150	bHLH101	superfamily protein BHLH101		Yes	1.3	-2.5	-2.1	2.4		1.6	1.5			7.4	
			basic helix-loop-helix (bHLH) DNA-binding													
	AT3G56970	bHLH38	superfamily protein		Yes	2.1	-3.4	-2.4	3.8		1.9	6.6			13.0	
	AT2656090	bHI H30	basic nelix-loop-nelix (bHLH) DNA-binding		Vos	1.6	-15	-16	2.1		10	6.5			11.7	
1	AT2G41240	bHLH100	basic helix-loop-helix protein 100		Yes	2.7	-4.0	-3.2	5.1		2.4	4.1			14.5	
1	AT1G47400	IMA1/FEP3	Iron Man/ Fe uptake Inducing peptide		Yes		-4.1	-2.0	3.9		1.9	3.0	-2.5		10.9	
1	AT1G47395	IMA2/FEP2	Iron Man/ Fe uptake Inducing peptide		Yes		-4.1	-2.2	4.7		2.2	3.1	-4.0		12.0	
/	AT5G05250		unknown protein		Yes		-1.6		2.9		1.3	1.3	-1.8	_	6.7	
	AT1G76650	CML38	calmodulin-like 38		Yes	-1.6			1.8	1.2	1.4	-2.8	-2.2	-3.7	-1.3	
	ATSG01600	EKF11 FFP1	ERF uomain protein 11 ferretin 1		Yes	-1.1	12		-25		-1.4	-3.3	-1.9	-4.5	-6.5	
	AT2G29460	GSTU4	glutathione S-transferase tau 4		Yes		1.2	-1.7	1.3	1.2	-2.9	-3.5		-1.7	-0.5	-
'			DDF1/Integrase-type DNA-binding superfamily													
	AT1G12610	DDF1	protein		Yes	-3.1		-6.2	5.2			-2.1	-3.0	-7.4		
1	AT1G80840	WRKY40	WRKY DNA-binding protein 40		Yes	-1.4		-1.4		1.1		-3.1	-2.1	-4.5		
	AT5G36890	BGLU42	beta glucosidase 42	Yes		1.4			20		1.6					
	A13G58060	CYP71DC	cation efflux family protein	Yes	l	3.1			3.0		2.6					
		C.171D3	Galactose oxidase/kelch repeat superfamily	ies		3.0					5.0			-		
	AT3G07720		protein	Yes		2.1	-1.3	-1.5			2.1					
1	AT4G19680	IRT2	iron regulated transporter 2	Yes		4.2			3.2		1.9					
/	AT1G52120		Mannose-binding lectin superfamily protein	Yes		4.8	1.6		3.0	1.7						
/	AT3G58810	MTPA2	metal tolerance protein A2	Yes		1.7	-1.5	-1.6	1.3		1.6					
	AT1G56160	MYB72	myb domain protein 72	Yes		3.1			3.4		3.5					
	AT3G25190		Vacuolar iron transporter (VIT) family protein	Yes		2.5		-1.2	-2.2		2.0					
1	AT2G32270	ZIP3	zinc transporter 3	Yes		-1.2			-1.1							
1	AT3G22910		ATPase E1-E2 type family protein					-1.8	1.6					-1.2		
/	AT1G74770	BTSL1	zinc ion binding BRUTUS-like			1.5	-1.0		1.7		1.1	3.9			4.6	
/	AT3G01830		Calcium-binding EF-hand family protein					-2.0	2.1			-1.3	-1.6	-4.0		
	AT1G72805		Calcium-binding EF-nand family protein			-12		-1.4	2.5					-17	16	
	AT5G42380	CMI 37	calmodulin like 37			-1.8		-1.4	2.0			-1.5	-2.1	-3.0	1.0	
1	AT5G26920		Cam-binding protein 60-like G			-1.0		-1.4	1.3							
1	AT3G26830	PAD3	cytochrome p450			1.0			2.0					-1.5		
/	AT2G30750	CYP71A12	cytochrome p450			1.6		-1.5	2.8	1.6						
/	AT3G26200	CYP71B22	cytochrome p450			2.6		1.0	2.1	1.2						
	AT1G66090	CIPOIFZ	Disease resistance protein (TIR-NBS class)					-1.3	2.2	1.5		-1.2	-1.7	-2.6		
1	AT5G47220	ERF2	ethylene responsive element binding factor 2			-1.0			1.4							
1	AT2G44840	ERF13	ethylene-responsive element binding factor 13			-1.8		-1.7	1.7		-1.3	-2.1	-1.3	-3.3		
	AT1G26390		FAD-binding Berberine family protein			3.6			3.8							
/	AT1G56430	NAS4	nicotianamine synthase 4			2.2		13	5.1	12					3.4	
	AT5G67370	DUF1230	Protein of unknown function (DUE1230)			2.1		-1.2	4.7	1.2					2.5	
- ľ		55.1250	SPFH/Band 7/PHB domain-containing membrane-												2.13	
/	AT5G25260		associated protein family					-1.2	1.4	1.2						
1	AT5G38900		Thioredoxin superfamily protein					-1.2	1.5							
			Toll-Interleukin-Resistance (TIR) domain family													
	A 11G57630		protein transmombrane recentor	-				-1.1	1.9	1.1				10		
— <u> </u>	AT1G25400		unknown protein	-		1		-1.2	1.6			-13	-14	-1.3	14	
									1.5			1.5	1.4	2.4	1.4	
oots						Roots	Roots	Roots	Roots	Roots	Roots	Shoots	Shoots	Shoots	Shoots	SI
lodule2	-Fe-Cu hom	eostasis_rel	ated			WT-Fe	WT-Cu	WT-Fe-Cu	spl7-Fe	spl7-Cu	spl7-Fe-Cu	WT-Fe	WT-Cu	WT-Fe-Cu	spl7-Fe	sp
/	AT4G19690	IRT1	Iron-regulated transporter 1	Yes	Yes	2.0	-3.6	-2.8	2.0		2.3	1.4			2.7	
	AT2604050		IVIA LE efflux family protein MATE efflux family protein	Yes	Vec				4.1			2.9			17	
	n 12004050		basic helix-loop-helix (bHIH) DNA-binding	res	res				4.1			2.9		-	1.7	-
	AT5G04150	bHLH101	superfamily protein BHLH101		Yes	1.3	-2.5	-2.1	2.4		1.6	1.5			7.4	
			basic helix-loop-helix (bHLH) DNA-binding													
1	AT3G56970	bHLH38	superfamily protein		Yes	2.1	-3.4	-2.4	3.8		1.9	6.6			13.0	
			basic helix-loop-helix (bHLH) DNA-binding													
	AT3G56980	bHLH39	superfamily protein		Yes	1.6	-1.5	-1.6	3.1		1.9	6.5			11.7	
	AT1647400	DHLH100	pasic nellx-loop-nellx protein 100		Yes	2.7	-4.0	-3.2	5.1		2.4	4.1	-25		14.5	
	AT1G47395	IMA2/FFP2	Iron Man/ Fe uptake Inducing peptide	-	Yes		-4.1	-2.0	4.7		2.2	3.1	-2.5		12.0	
Í	AT5G05250		unknown protein		Yes		-1.6	2.12	2.9		1.3	1.3	-1.8		6.7	
1	AT4G25100	FSD1	Fe superoxide dismutase 1		Yes	-6.1	2.1					-5.5	1.3	-1.0		
1	AT5G01600	FER1	ferretin 1		Yes		1.2		-2.5		-1.3	-3.3		-1.7	-6.5	
1	AT3G49160		pyruvate kinase family protein		Yes							-2.4			-7.1	
	AT1G23020	FRO3	ferric reduction oxidase 3	-					1.1			1.1		-	3.6	
- '			Ferritin/ribonucleotide reductase-like family									15			2.2	
ť	ATOCOTOCT				1	1						1.5			2.3	
	AT3G27060	1502	Thymidine kinase									17			11	
	AT3G27060 AT3G07800 AT3G45730	1502	Thymidine kinase unknown protein									1.7 1.8			1.1	

2
3
4
5
6
7
/
ð
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
36
27
20
38 20
39
40
41
42
43

44	
45	

т.	,
16	5

				Pootc	Poote	Pootc	Pootc	Pootc	Pootc	Shoots	Shoote	Shoots	Shoots	Shoote	6
Pathway ID	TAIR ID	Gene nam	e Description	WT-Fe	WT-Cu	WT-Fe-Cu	spl7-Fe	spl7-Cu	spl7-Fe-Cu	WT-Fe	WT-Cu	WT-Fe-Cu	spl7-Fe	spl7-Cu	i.
Ethylene Biosynthesis	AT1G01480	ACS2	1-amino-cyclopropane-1-carboxylate synthase 2	1.4			1.4								1
Ethylene Biosynthesis	AT4G11280	ACS6	1-aminocyclopropane-1-carboxylic acid synthase 6	-1.1						-1.7	-1.2	-1.9			1
Ethylene Biosynthesis	AT4G26200	ACS7	1-amino-cyclopropane-1-carboxylate synthase 7				25				1				
Ethylene signaling nathway	AT1G33760	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Integrase-type DNA-binding superfamily protein				2.5			-49	-23	-6.9			1
Ethylene signaling pathway	AT4G34410	RRTF1	redox responsive transcription factor 1	-33		-39	3.4			-3.9	-2.7	-8.3			
Ethylene signaling pathway	AT1G77640		Integrase-type DNA-binding superfamily protein							-3.5	-19	-4.4			
Ethylene signaling pathway	AT1G28370	FRF11	ERE domain protein 11	-1.1			1.5		-1.4	-3.3	-1.9	-4.5			
Ethylene signaling pathway	AT4G25490	CBF1	C-repeat/DRE binding factor 1	-4.3						-3.0	-1.4	-2.2			
Ethylene signaling pathway	AT5G51990	CBF4	C-repeat-binding factor 4							-2.9	1	-47			
Ethylene signaling pathway	AT5G61600	ERF104	ethylene response factor 104	-16						-2.3		-3.2			
Ethylene signaling pathway	AT5G51190	210 20 1	Integrase-type DNA-binding superfamily protein	-23						-2.2	-12	-3.4			
Ethylene signaling pathway	AT2G44840	FRF13	ethylene-responsive element hinding factor 13	-1.8		-17	17		-13	-2.1	-13	-33			
Ethylene signaling pathway	AT1G12610	DDF1	Integrase-type DNA-binding superfamily protein	-3.7		-6.2	5.2		1.5	-2.1	-3.0	-74			-
Ethylene signaling nathway	AT1G74930	OR447	Integrase-type DNA-binding superfamily protein	-17		0.2	5.2			-1.8	5.0	-17			
Ethylene signaling nathway	AT4G25470	CBE2	C-repeat/DRE binding factor 2	-4.7						-1.7	-12	-1.3			
Ethylene signaling pathway	AT1G68840	RAV2	related to ABI3/VP1 2	4.7						-1.6	-1.2	1.5		-14	
Ethylene signaling pathway	AT4G17490	FRE6	ethylene responsive element hinding factor 6							-1.5	-1.4	-3.4	17	1.4	
Ethylene signalling	AT2G38470	WRKY33	WRKY DNA-hinding protein 33							-1.5	-13	-2.3	1.7		
Ethylene signaling nathway	AT1621910	DREB26	Integrase-type DNA-binding superfamily protein				23			-1.0	-1 3	-1.8	18		
Ethylene signaling pathway	AT1021010	ERE5	ethylene responsive element hinding factor 5	-15			2.5			-1.4	-1.5	-1.0	1.0		
Ethylene signaling pathway	AT1G44830	Entro	Integrase-type DNA-binding superfamily protein	1.5						-13		1.5			
Ethylene signaling pathway	AT3G15210	FRE4	ethylene responsive element hinding factor 4							-1.5					
Ethylono signaling pathway	AT3G13210	DPEP10	Integrase type DNA binding superfamily protein	16			22			2 5			27		
Ethylono signaling pathway	AT1C12360		AP2/P2 domain transcription factor	1.0			2.5			2.5			2.7		
Ethylene signaling pathway	AT1G13200	EPE2	athylana responsive element hinding factor 2	-1.5			1.4								-
Ethylene signaling pathway	AT1C25560	TEN41	AD2/D2 transcription factor family protoin	-1.4			1.4								
Ethylene signaling pathway	ATEC05410		DRE binding protoin 24	-1.5								17			
Ethylene signaling pathway	AT5G05410	DREBZA	DRE-Diffuling protein ZA	-1.5								-1.7			
Ethylene signaling pathway	AT1064390		Integrase-type DNA-binding superfamily protein	-1.2											
Ethylene signaling pathway	ATEC67100		DREP and EAR motif protoin 2	-1.2											
Ethylene signaling pathway	AT3G67190	DEAR2	othulana mananaina alamant hinding fastar 1	-1.2									1.1		-
Ethylene signaling pathway	AT4G17500	ERF-1	And D linease linease Q	-1.2									1.1		
Ethylene signaling pathway	AT1G73500	IVIKK9	MAP KINASE KINASE 9	-1.1											
Ethylene signaling pathway	A14G36900	RAP2.10	related to AP2 10	-1.1											
Ethylene signaling pathway	AT1G77200	DA D2 11	Integrase-type DNA-binding superramily protein	1.2											
Ethylene signaling pathway	A15G19790	RAP2.11	related to AP2 11	1.5											
Ethylene signaling pathway	A15G13330	Rap2.6L	related to AP2 6	1.9			1.4		-1.4						
Ethylene signaling pathway	A15G64750	ABR1	Integrase-type DNA-binding superfamily protein				1.4								
Ethylene signaling pathway	A15G61890		Integrase-type DNA-binding superfamily protein				2.5								
Ethylene signaling pathway	A15G44030	CESA4	cellulose synthase A4										1.5		
Ethylene signaling pathway	A13G16/70	EBP	etnyiene-responsive element binding protein				1.8								
Ethylene signaling pathway	A13G23240	ERF1	ethylene response factor 1					1.4	-1.1						
Ethylene signaling pathway	AT1G03800	ERF10	ERF domain protein 10				2.5								
Ethylene signaling pathway	AT2G47520	ERF71	Integrase-type DNA-binding superfamily protein			3.4	7.1	4.8					5.5	L	
Ethylene signaling pathway	AT5G40990	GLIP1	GDSL lipase 1				2.5				L				
		101/4	Leath-Jaco annthease family, antein												

Figure 2. a, Rosette Fe:Cu ratio in WT (Col) and *spl7* mutants grown as in Fig. 1 plotted against rosette dry mass. Numbers near data points represent nutrient solution Cu and Fe concentrations (Cu/Fe) in μ M. b, Rosette Cu concentration in WT (Col-0), *fro2* mutants, and *irt1* mutants grown with 25 μ M Fe (+Fe) or without Fe (-Fe) for three days after a pre-treatment period with 25 μ M Fe.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		Image: construction of the construc	
25 26	753	HSPL/6A LAKLLE	
27 28	754	Figure 5. Gene co-expression networks in roots as determined by STRING analysis and visualized in	
29 30	755	Cytoscape. The largest module on the left was designated as the Fe-Cu crosstalk module of interest.	
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	756		
57 58 59		3	7
60			

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\23\\14\\15\\16\\17\\18\\19\\20\\21\\22\\324\\25\\26\\27\\28\\29\\30\\31\\32\\33\\45\\36\\37\\38\\9\\40\\1\\42\\43\\44\\56\\47\\48\\49\\51\\52\end{array}$	757 758 759 760 761	i + i + i + i + i + i + i + i + i + i +
52 53 54 55 56 57 58 59 60		38

Figure 7. Model of roles of FIT and SPL7 in Fe-Cu crosstalk based on RNA-seq gene expression results. Transcription factors (FIT, bHLH lb, SPL7, WRKY40, RRTF1) are represented as ovals; the peptides IMA/FEP are represented by a diamond, and downstream targets are represented by a green box. In this model, subgroup Ib bHLH proteins act upstream of and interact with FIT to activate Fe uptake target genes under Fe deficiency conditions. IMA/FEP peptides are upstream of subgroup lb bHLH proteins. SPL7 protein represses (directly or indirectly) IMA/FEP and subgroup Ib bHLH expression under Cu deficiency and simultaneous Fe and Cu deficiency. SPL7 also represses WRKY40, which is upstream of RRTF1. RRTF1 is also a potential FIT target ⁵¹ and is repressed under Fe deficiency. WRKY40 and RRTF1 are upstream of the redox homeostasis network (see Table 2) which includes certain ERF proteins among others.

Figure 1. Rescue of spl7 mutants by low iron supply. a, Photograph of rosettes of WT (Col-0) and spl7 mutants grown on Cu supply of 0, 0.5, 1.0, 2.5, or 5 μ M with Fe supplied at 5 or 25 μ M. b, Photograph of rosettes of WT (Col-0) and spl7 mutants grown on Cu supply of 0.1 μ M with Fe supplied at 1, 5, or 25 μ M. c, Dry mass of rosettes of WT (Col) and spl7 mutants grown as in A and B. d, rosette Cu concentration, e, rosette Cu content, f, rosette Fe concentration, and g, rosette Fe content of WT (Col) and spl7 mutants grown as in A and B.

WΤ

Ο spl7

0.1/25

35

40

0.1/5

Figure 3. Venn diagrams of gene expression in WT and spl7 plants under single mineral deficiencies (-Fe or -Cu) and simultaneous Fe and Cu deficiency (-Fe-Cu) in roots and rosettes. a, Fe deficiency DEGs in roots; b, Fe deficiency DEGs in rosettes; c, Cu deficiency DEGs in roots; d, Cu deficiency DEGs in rosettes; e, simultaneous Fe and Cu deficiency DEGs in roots; f, simultaneous Fe and Cu deficiency DEGs in rosettes. Genes of interest known to be involved in Fe or Cu homeostasis are labeled in red, and indicated to the appropriate set in each diagram. Abbreviations: dn, downregulated; up, upregulated; s7, spl7 mutant.

Page 43 of 46

Figure 4. Venn diagram series used to isolate potential Fe-Cu crosstalk genes. Outer Venn diagrams on the upper half are genes from WT (left) and spl7 (right) that were upregulated or downregulated in -Fe, -Cu, or -Fe-Cu treatments. Outer Venn diagrams on the lower half are genes from WT (left) and spl7 (right) that were upregulated or downregulated in -Fe, -Cu, or -Fe-Cu treatments. The center upper (roots) and lower (rosettes) Venn diagrams contain all genes that were upregulated or downregulated in any of the -Fe, -Cu, or -Fe-Cu treatments in WT or spl7 mutants. The red circle shows genes that were advanced to the central Venn diagram that contains likely Fe-Cu crosstalk genes in roots and/or rosettes.

Figure 5. Gene co-expression networks in roots as determined by STRING analysis and visualized in Cytoscape. The largest module on the left was designated as the Fe-Cu crosstalk module of interest.

Figure 6. Gene co-expression networks in rosettes as determined by STRING analysis and visualized in Cytoscape. The second-largest module on the upper right was designated as the Fe-Cu crosstalk module of interest.

Figure 7. Model of roles of FIT and SPL7 in Fe-Cu crosstalk based on RNA-seq gene expression results. Transcription factors (FIT, bHLH Ib, SPL7, WRKY40, RRTF1) are represented as ovals; the peptides IMA/FEP are represented by a diamond, and downstream targets are represented by a green box. In this model, subgroup Ib bHLH proteins act upstream of and interact with FIT to activate Fe uptake target genes under Fe deficiency conditions. IMA/FEP peptides are upstream of subgroup Ib bHLH proteins. SPL7 protein represses (directly or indirectly) IMA/FEP and subgroup Ib bHLH expression under Cu deficiency and simultaneous Fe and Cu deficiency. SPL7 also represses WRKY40, which is upstream of RRTF1. RRTF1 is also a potential FIT target 51 and is repressed under Fe deficiency. WRKY40 and RRTF1 are upstream of the redox homeostasis network (see Table 2) which includes certain ERF proteins among others.