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This work deals with morphology quantification for organic electronic devices. 
The main finding is the identification of salient morphological features
governing the hole mobility for a set of samples.
Our findings provide a quantitative basis for morphology characterization,
that is useful for the design of new candidate polymers and fabrication of
highly efficient devices.
The key element of our methodology is a highly computationally efficient
graph-based representation of morphology that facilitates feature extraction. 
More importantly this representation can be directly used in high throughput
screening of well/poorly performing morphologies. 
Our results constitute an important step towards establishing quantitative
structure-property relationship, morphology optimization and materials design
for high performing organic electronic devices.
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Ellen Van,b Matthew Jones,c Eric Jankowski,c and Olga Wodoa

In semicrystalline conjugated polymer thin films, the mobility of charges depends on the arrange-
ment of the individual polymer chains. In particular, the ordering of the polymer backbones affects
the charge transport within the film, as electron transfer generally occurs along the backbones with
alternating single and double bonds. In this paper, we demonstrate that polymer ordering should
be discussed not only in terms of structural but also energetic ordering of polymer chains. We
couple data from molecular dynamics simulations and quantum chemical calculations to quantify
both structural and energetic ordering of polymer chains. We leverage a graph-based represen-
tation of the polymer chains to quantify the transport pathways in a computationally efficient way.
Next, we formulate the morphological descriptors that correlate well with hole mobility determined
using kinetic Monte Carlo simulations. We show that the shortest and fastest path calculations
are predictive of mobility in equilibrated morphologies. In this sense, we leverage graph-based
descriptors to provide a basis for the quantitative structure property relationships.

Design, System, Application
This work deals with morphology quantification for organic electronic devices. The main finding is the identification of salient mor-
phological features governing the hole mobility for a set of samples. Our findings provide a quantitative basis for morphology charac-
terization, that is useful for the design of new candidate polymers and fabrication of highly efficient devices. The key element of our
methodology is a highly computationally efficient graph-based representation of morphology that facilitates feature extraction. More
importantly this representation can be directly used in high throughput screening of well/poorly performing morphologies. Our results
constitute an important step towards establishing quantitative structure-property relationship, morphology optimization and materials
design for high performing organic electronic devices.

1 Introduction
The nanomorphology of polymer thin films critically affects per-
formance in organic optoelectronic devices such as organic so-
lar cells1, light emitting diodes2, and transistors3. However,
many aspects of the underlying physics of charge transport are
still poorly understood. In general, the process of charge mi-
gration through the device heavily depends on nanomorphology:
the spatial arrangement of individual polymer chains and their
mutual ordering4. Charges migrate via discrete tunneling events
- hops - between monomers of polymer chains. Hopping rates
are highly sensitive to the relative position of adjacent polymer
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chains and the overlap of the neighboring molecular orbitals. In
the semicrystalline polymer systems used to make organic elec-
tronics, charge transport is expected to be higher in the ordered
regions and lower in the disordered regions, where high en-
ergy barriers inhibit charge migration. However, if energy bar-
riers between ordered regions are too high, then charges may
be trapped within the ordered phase and not contribute to bulk
charge transport5. There are two potential solutions to the prob-
lem of trapped charges: (i) lower energy barriers (e.g. by increas-
ing local polymer chain ordering or by selecting alternative poly-
mer chemistries) or (ii) increase connectivity (e.g. by including
long entangled polymer chains that connect disparate ordered do-
mains).

Implementing either solution would benefit from quantitative
insights into the structural features that contribute to connectivity
and energetic barriers to charge transport. Such structural detail
is critical to informing the design of materials and morphology
in organic electronic devices but is yet to be fully quantified. In
particular, studies of the electronic coupling and charge transport
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of organic molecules are typically carried out ex situ, or given
an assumed conformation6–11. In this work, we present a new
multi-scale method for capturing both the energetic and struc-
tural aspects of the morphology governing charge transport prop-
erties. Specifically, we present a graph-based morphology rep-
resentation that converts results from molecular dynamics sim-
ulations into data structures amenable to well-established algo-
rithms12 for quantifying the possible charge transport pathways
in the graphs. We perform coarse-grained molecular dynamics
simulations (CGMD) containing 250 oligomers of the frequently-
studied donor polymer poly(3-hexylthiophene) (P3HT), each 15
monomers long. We then convert each morphology into a la-
beled, weighted, undirected graph, with nodes in the graph corre-
sponding to polythiophene backbones and alkyl sidechains. Rep-
resenting the morphology as such enables extraction of hierar-
chical features, here with particular focus towards the structures
we hypothesize relate to charge transport. For example, we first
query the graph/morphology to identify the shortest paths from
any charge-carrying element to the bounding electrodes. Sub-
sequently, we characterize these paths based on their physical
lengths and carrier travel times, as well as features including the
tortuosity of each route and the fraction of hops between (inter-)
or along (intra-) chains en route to an electrode.

The unique feature of our approach is the flexibility to label
edges between individual simulation elements (here, “beads”) by
Euclidean distance, energy difference, hopping rate, or any com-
bination of these characteristics. This ability facilitates the testing
of hypotheses about which features matter most to the bulk elec-
tronic properties of the material. The distances between individ-
ual beads used in our graph analysis are determined from equilib-
rium coarse-grained molecular dynamics simulations, from which
sub-nanometer resolution of the morphological aspects of the thin
films can be obtained. The electronic features such as hopping
rates and energy level differences between beads are calculated
from first principles after atomistic detail is projected onto the
coarse-grained representations. This is the first attempt to com-
bine data on the electronic-structure with the atomistic-level data
on morphology to provide computational framework to establish
quantitative structure-property relationships in organic thin films.
Although morphology has been previously represented as graphs,
the quantification has been focused on either meso scale13,14 or
atomistic level15. The work reported in this paper in an inter-
esting step towards convergence of representation in multiscale
modeling, as graphs have been mostly used to represent molecu-
lar structure16–18.

To showcase our new method we present insights into the
charge mobility of a collection of oligothiophene samples that
are enabled by our graph-based approach. A kinetic Monte Carlo
(KMC) model of charge transport is used to compute the hole
mobilities for ordered and disordered oligothiophene morpholo-
gies19. The KMC simulations reveal that charge mobilities de-
pend on morphology, varying over two orders of magnitude and
in agreement with experimental measurements. Using our graph-
based computational framework, we demonstrate that metrics
based on the shortest paths along the network of polymer chains
are sufficient for explaining how charge mobility depends on

structure. We identify purely structural features, e.g. the tortu-
osity of the shortest path, that permits the charge transport prop-
erties of a morphology to be predicted. We find, for the mor-
phologies studied here, the bulk mobility calculated by KMC is
strongly correlated to the fastest charge pathways calculated from
the graphs. The agreement of graph-based predictions with the
more computationally demanding KMC calculations over two or-
ders of magnitude of charge mobility indicates the potential for
using such structural techniques to efficiently evaluate structures
obtained from both simulations and experiments. Our results
indicate that optimizing the morphology with respect to fastest
pathways should lead to improved performance.

2 Morphology representation and quantifi-
cation

Recent studies providing insights into the morphology of or-
ganic thin films have used both experimental measurements
(e.g. tomography TEM20) and computational techniques (in-
cluding molecular dynamics15, phase field21,22, kinetic Monte
Carlo23–26, and quantum chemical calculations6,10,27,28). These
techniques provide structural information ranging from elec-
tronic structure on the molecular scale6,10,27,28, up to the de-
vice scale21,29–31. For example, the tomography-related recon-
struction typically operates on the intensity fields averaged over
some nanoscale volume, the molecular dynamics simulations pro-
vide data on the position and trajectory of individual atoms, and
quantum chemical calculations (QCC) like density functional the-
ory simulations (DFT) gain insight on the energetic level. Con-
sequently, structural descriptors vary significantly in scale and in-
formation, and translate into a diverse set of structural features
that can be extracted from morphological samples. In our prior
work we demonstrated that structural metrics including domain
sizes, path lengths, and domain connectivity can be computed
in a straightforward way from voxel-based morphology represen-
tations, providing a way to evaluate structures from either sim-
ulations or experiments14,32. However, it remains challenging
to draw a coherent picture of which metrics at one scale impact
behaviors at another scale due to the disparate length and time
scales over which charges move (Figure 1).

In this paper, we work towards closing this gap by extracting
structural features over several orders of magnitude, i.e. Å to 100
nm (Figure 1). In particular, we analyze the data made avail-
able by multiscale coarse-, atomistic-, and electronic structure-
level studies. The morphologies we analyze were generated with
CGMD33,34, in which the locations of electronically-active chro-
mophores in pristine polymer films are determined over tens of
nanometers as a function of temperature. Chromophore positions
are determined from the equilibrated ensembles of microstates
using molecular dynamics simulations and electronic structure
calculations, as described in section 3, using the MorphCT soft-
ware package35, following the recipe outlined in Ref. 19.

Equivalence between graph and morphology

The key idea for our morphological quantification is to represent
morphologies as undirected, labeled, weighted graphs (Figure 2).
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Fig. 1 This work combines hopping rates on sub-nanometer length
scales with network connectivities over 100+ nanometers to infer the con-
ditions needed for fast charge transport in organic electronic films. The
bulk charge transport properties of an organic thin film depends on how
the electronic orbitals of chromophores are locally oriented with respect
to each other, the packing of polymer chains, and the connections be-
tween disparate nanostructured elements.

The beads from each CGMD simulation can be naturally repre-
sented as vertices with labels denoting whether the beads repre-
sent backbone or side chain simulation elements. Beads are con-
nected via edges expressing their relation in terms of connectivity
or local distances. Each edge is associated with a weight and a
label that expresses the type of edge and distance between beads.

We distinguish two types of vertices: backbone and side chain
vertices. We also add meta-vertices that correspond to the sample
boundary associated with the electrodes (green and orange ver-
tices in Figure 2). In the most general case, we can distinguish
four types of edges: (i) Intra-molecular edges (backbone edges)
connecting beads belonging to the same polymer chain. (ii) Inter-
molecular edges connecting backbone beads belonging to adja-
cent polymer chains. (iii) Side-chain edges connecting side chain
beads with each other and with the backbone. (iv) Secondary
edges connecting all other types of beads. In this paper, how-
ever, we focus on two types: intra-molecular and inter-molecular
edges, as these are directly related to hole hopping events of cen-
tral importance to bulk charge transport.

Formally, we represent the morphology as a labeled, weighted,
undirected graph G = (V ,E ,W ,L ), see Figure 2. In such a
graph, each bead in the CGMD morphology becomes a graph ver-
tex, with V being the set of all vertices in the morphology. An
associated labeling function, L , assigns a label to each vertex in
V . Function L associates a color (red) to represent active bead
along the backbone of the polymer, and another color (blue) to
represent beads belonging to the side chains. Thus, L acts on
each vertex in V . Each vertex is connected to its neighboring
vertices through edges. The set of all edges in the graph is de-
noted as E . Finally, the weight function, W : E → R+, assigns a
non-negative real weight to each edge in E . In the very basic case,
the weight function simply encodes the physical distance between
beads. However, the function can encode any other physics-based

features, such as the hopping rate of charge transfer between ac-
tive beads in the morphology, which intrinsically takes into ac-
count the electronic coupling between chromophores.

Given the above definitions, the graph is constructed by the
following steps:

1. Given a set of beads from CGMD simulation with (x,y,z, id),
the set of vertices V is created. For each bead in CGMD
morphology, one vertex is initiated in the graph G . Next,
each vertex has a label assigned using a mapping function
defined for a given problem. Here, we define a set of three
labels: backbone bead (marked red) and side chain bead
(marked blue), electrode meta vertex (marked green and
orange to distinguish between top and bottom electrode).

2. Next, the set E of edges connecting vertices in V is con-
structed. The set is determined collectively for all beads in
the morphology by computing the Voronoi tessellation36. In
particular, once the Voronoi tessellation is determined for
each vertex v, the list of nearest neighbors is retrieved.
Given a vertex v and the list of each vertex u in its near-
est neighborhood, the set of edges e(v,u) ∈ E is added to
the graph G.

3. Each edge created in the previous step is annotated with a
label l ∈ L . In this paper, we focus on two edge labels:
intra-molecular and inter-molecular edges. Similar to set
V , intra-molecular edges (belonging to the same chain) are
easily identified based on bead indices. Inter-chain edges
(connecting adjacent beads that belongs to different chains)
are determined from Voronoi tessellation.

4. Each edge in E is also annotated with a weight w ∈W that
encodes the distance between two beads. Weights are used
to calculate the shortest path. We take two approaches to
define W . In the first approach, we define a function that
calculates the physical Euclidean distance between beads di-
rectly from (x,y,z) coordinates. In the second approach, we
define a function encoding the hopping rates of the charges
between pairs of beads, which are calculated using quantum
chemical calculations (see section 3).

In summary, graph construction depends on several mapping
functions that facilitate the conversion of the MD morphology to
the graph. We encode local transport information in the applica-
tion of the mapping functions. More importantly, this represen-
tation provides flexibility while simultaneously encoding multi-
scale data (CGMD and QCC) in a single graph.

Structural quantification
Once CGMD morphologies are converted into graphs, we per-
form calculations based on these graphs to characterize the mor-
phology. With the graph-based morphology representation, the
morphology characterization problem becomes a graph query-
ing problem. In particular, the goal is to extract or query the
graph such that various features of the underlying graph are de-
termined. Specifically, in the context of transport properties, two
types of features are of interest: the connectivity of vertices and
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Fig. 2 The chemical topologies of the P3HT chains studied here inform the intra-molecular connections between beads (left), and we generate
intermolecular edges with a Voronoi tesselation. “Boundary” vertices (denoted in green and orange) are connected to backbone beads within a cutoff
distance of a periodic boundary to represent the electrodes of a hypothetical device.

the charge pathways through the morphology. To extract these
features we use two general, well-studied, and efficient algo-
rithms: the connected component algorithm, and Dijkstra’s al-
gorithm12. The set of features to be extracted from the graph
depends on the properties of interest and the level of details en-
coded in a graph via labeling and weighting functions.

In the next subsections, we detail two levels of structural quan-
tification. We first discuss a list of purely math-based descriptors.
Next, we detail physics-based descriptors. We make this distinc-
tion to show the hierarchy of structural quantification but also
to separate generic descriptors from problem-specific descriptors.
Before providing details on descriptors, we start by introducing
the graph filtering operation. This is a basic step of graph query-
ing used in all our procedures to calculate the descriptors.

Graph filtering

Graph filtering is an important operation as it facilitates tailoring
queries. Filtering is an operation during which some elements
(e.g. edges) in the input graph are virtually masked while re-
taining only those elements satisfying specific criteria. For ex-
ample, one may be interested in constructing a filtered graph,
G = (V ,E ), where E is a set of edges connecting vertices of
the same color, e.g. red vertices corresponding to the backbone
beads. This is of importance in conjugated polymeric systems, as
holes hop along the backbone bead of polymers. Therefore, it is
of interest to focus on the subset of vertices connected only via
specific types of edges. Graph filtering is performed by defining a
predicate (boolean-value function) that can operate on edges or
vertices. Depending on the specific queries, the same input graph
can be masked in several different ways to reflect the physics-
centered aspects of the characterization. More importantly, filter-
ing allows us to define several filter variants while operating on
the same graph. In practice, it means that morphology quantifica-
tion can be performed efficiently without the need to reinitialize
the graph for a specific query.

Math-based descriptors

We start by introducing the connected component in graphs. For-
mally, a connected component is a subgraph where a path be-
tween any pair of vertices in this subgraph exists. We use the con-
nected component algorithm12 to identify the set of connected

components in the graph representing morphology. We first con-
struct a filtered graph consisting of vertices of a given type that
are connected by specific types of edges. Next, we determine the
total number of connected components in the filtered graph. Fi-
nally, we extract basic statistics such as the number of vertices
constituting a given component.

Quantifying the number of connected components is of impor-
tance as it allows us to assess if the morphology is interconnected
throughout the entire sample, or if it is fragmented into smaller
subdomains. More importantly, we use it to identify connected
components with a direct connection to the sample boundary.
This is done by inspecting the neighborhood of the green meta-
vertices representing the top electrode. We further compute the
fraction of vertices with direct connections to the electrode. If the
fraction of the vertices is high, then one could expect that carriers
will be able to be extracted from the active layer. In this sense,
this simple math-based descriptor can be directly used as perfor-
mance indicator to differentiate good from bad morphologies.

Another math-based descriptor is based on the shortest path-
way calculations. The shortest path between a source vertex
∫ ∈ V and a target vertex t ∈ V is the path with the smallest
sum of weights of all paths between ∫ and t in G . This is a
single-source shortest path problem and so we use the Dijkstra
algorithm12,37 to determine the shortest path that a hole would
need to take to reach the electrode. In particular, we are inter-
ested in determining the shortest pathways consisting of back-
bone vertices only with direct connection to the boundary. We
translate this question into execution of this algorithm in the fol-
lowing way. First, we filter the graph by masking all vertices other
than backbone. Next, we set the green meta vertex as source ver-
tex. In this way, the goal is to find the shortest pathway from the
meta vertex to all backbone vertices in the graph. It is achieved by
executing the Dijkstra algorithm once on the entire filtered graph,
which computes the shortest path for all vertices.

Once the pathways are identified, we extract their features.
For example, for each path, we count the number of intra and
inter-molecular edges. This information is of importance in the
context of conjugated polymers, because of the nature of the
hopping events. Hopping along backbone edges is considered
as a fast event, while hopping events between polymer chains
are expected to occur more slowly38. Simply by counting hop-
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ping events along individual pathways, we can assess the per-
formance of a device made with this particular morphology. To
facilitate comparison between morphologies, we ensemble in-
formation for all pathways by plotting features in the form of
histograms and subsequently computing basic statistics such as
mean path lengths.

2.1 Physics-based descriptor

Math-based descriptors are further post-processed to construct
application-specific descriptors. In this paper, we seek to explain
the large mobility difference between several samples by lever-
aging connected components and shortest pathway calculations.
We define three levels of physics-based quantification. We first
calculate the tortuosity of paths from each active bead. Next, we
compare the frequency of intra- and inter-molecular hops along
the pathways. Finally, we look into the fastest rather than the
shortest pathways.

The tortuosity is defined as the the ratio of the path length
through the media (taking into account various structural obsta-
cles) to the length of corresponding straight path. The straight
path is considered as the ideal reference path. By this definition,
a tortuosity of τ = 1 describes a path through the morphology
that is identical to the straight path. The larger the tortuosity, the
more tortuous the pathway is.

Each shortest pathway is also inspected to find the number of
hops along and between polymer chains. Each pathway is re-
trieved along with the corresponding edge labels. Next, simple
counting is applied to determine the number of intra-molecular
(backbone) edges and inter-molecular hops constituting individ-
ual pathways. The ratio of inter-molecular hops to the total num-
ber of hops in the given pathway is determined. In general, this
descriptor allows us to assess the structural order. If the polymer
chains are nicely aligned then the shortest paths should be built
from intra-molecular edges. For highly disordered morphologies,
no clear pattern should be observed.

All descriptors defined so far rely on the Euclidean distance as
a edge weight. The next descriptor weights the edges based on
the electronic structure of polymer backbone. In particular, we
find the fastest rather than shortest path from each vertex to the
electrode. Dijkstra’s algorithm is executed on the same graph with
one difference: edges in the graph are weighted by hopping time
calculated from the local hopping rate – ki j (see subsection 3 for
details), instead of the Euclidean distance between beads i and
j. The corresponding total travel time is computed for each i
pathway, by summing the travel time between adjacent bead ( j)
and ( j+1) belonging to the pathway:

ti =
n−1

∑
j

d( j)( j+1)/k( j)( j+1) (1)

where d( j)( j+1) is the Euclidean distance and k( j)( j+1) is the hop-
ping rate between between bead ( j) and ( j+1), respectively. Sim-
ilar to previous descriptors, we calculate this descriptor for each
red vertex (active bead) in the graph and determine the histogram
for the ensemble of paths.

Finally, we also quantify structural ordering using the orienta-

Fig. 3 The P3HT model used in this investigation, depicted using both
the coarse-grained and atomistic representations of three repeat units.
The blue coarse-grained beads represent three alkyl carbons and their
associated hydrogens and the red coarse-grained beads represent thio-
phene rings.

tional order parameter39:

S2 =

〈
3
2

cos2
θ − 1

2

〉
(2)

where θ is the angle between the unit end-to-end vector of a back-
bone with respect to the average end-to-end backbone vector and
the angle brackets denotes the average over all backbones in a
snapshot. S2 is often used to distinguish isotropic (S2 ≈ 0) and
nematic phases (S2 ≈ 1) in liquid crystals, and is thus a useful
descriptor for the alignment of P3HT oligomers studied here.

The set of graph-based descriptors can be expanded depending
on type of questions to be asked and data available. More details
on other descriptors can be found in our other papers14,20,40.

3 Multi-scale data generation
MD simulations
The morphologies explored in this investigation were generated
previously using coarse-grained molecular dynamics simulations
performed by Marsh et al.33,34. Only the most important com-
ponents of the model will be discussed here. For more details,
including a discussion of coarse-grained forcefield, selected state-
points, equilibration criteria, and the simulation volume parame-
ters, the interested reader is directed to Marsh et al. and the ac-
companying citations therein34. Systems contained 250 chains of
100% regioregular P3HT, each consisting of 15 monomers. Sim-
ulating oligomers as opposed to longer polymers is advantageous
as the systems equilibrate in significantly less computation time,
while still providing excellent structural agreement with exper-
imental morphologies consisting of long chains33. Additionally,
these chains ensure that we can study periodic, experimentally
relevant simulation volumes (∼ (10 nm)3) and densities (∼ 1.1
g/cm3) without including unphysical self-interactions across the
periodic boundary condition. Such interactions can lead to chain
entanglements, which prevent chains from crystallizing out of the
amorphous state41. Each monomer was modeled using 3 coarse-
grained beads - one corresponding to the thiophene ring, and
two corresponding to the flexible hexyl sidechain, as can be seen
from the coarse-grained depiction of the model in Figure 3. All
beads in the system had unit diameter σ , the fundamental dis-
tance unit, where σ = 3×10−10 m. Bead masses were calculated
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in terms of the fundamental mass unit M = 1.4× 10−25 kg. The
interactions between beads were mediated by a simplified ver-
sion of the atomistically-derived forcefield proposed by Huang et
al.42–44, which has obtained good agreement with both structural
and electronic data in the past33,34,41. Pairs, triplets, and quadru-
plets of bonded beads were constrained by harmonic bonds, an-
gles and dihedrals respectively, while non-bonded pair interac-
tions were governed by a Lennard-Jones interaction. Energies are
given in terms of the energy unit ε = 2.7×10−21 J. The complete
set of forcefield parameters can be found in the SI Section S1.

The primary simulations were performed using the GPU-
accelerated molecular dynamics simulation suite HOOMD-
Blue45. Initially, the chains were randomly arranged in a large,
cubic, periodically-bound simulation volume, which was then
equilibrated isobarically and isothermally using the NPT ensem-
ble at a pressure of P = 0.1ε/σ (98.7 atm) and a temperature
T = 2.5ε/kB (216 ◦C). This had the effect of shrinking down the
simulation volume to obtain a system with experimentally rele-
vant density ρ = 1.1 gcm−3 at T = 25◦C. The morphology was
then cooled by several successive phases of simulations at con-
stant pressure, P∗ = 0.1, to T ∗ = 1.5. At each phase, T ∗ was decre-
mented by 0.25 dimensionless units, and then permitted to equi-
librate, in order that 52 ± 12 statistically independent trajectory
frames could be obtained. Equilibration times were determined
by measuring the time taken for the potential energy (a proxy for
molecular structure) to statistically decorrelate, the full details of
which can be found in the SI Section S2. Although the equili-
bration times were strongly temperature dependent, on average
2.9× 108 ± 1.6× 108 time steps were required for the structure
to reach equilibrium. Each time step corresponded to 0.0004τ,
where τ is the fundamental time unit τ =

√
Mσ2/ε = 2.16×10−12

s, resulting in an average equilibration time of ∼250 ns. The ex-
ample morphologies are shown in Figure 4.

Fine-graining

In order to obtain the electronic properties of the chains in
the equilibrated morphologies, quantum chemical calculations
must be run. These calculations require atomic resolution, ne-
cessitating a “fine-graining” process that can return the coarse-
grained simulations to a realistic atomistic morphology, where
the centers-of-mass of the coarse-grained beads are the same as
the centers-of-mass of the atomistic moieties/functional groups
that they represent. By fine-graining in this way, we can lever-
age the computational efficiencies, large simulation volumes, and
long equilibration times afforded by coarse-grained molecular dy-
namics simulation, while still obtaining useful electronic structure
information. There are several viable fine-graining methodolo-
gies available that have obtained good structural agreement with
experiment - particularly in the fields of organic and biomolec-
ular simulation46–48. In this investigation, we use the com-
plete coarse-grained to charge-transport methodology outlined
by Jones and Jankowski19. Firstly, the atoms corresponding to
each atomistic moiety (e.g. a thiophene ring for coarse-grained
beads of type A; see Figure 3) are projected around the center-
of-mass of the corresponding coarse-grained bead, with arbitrary

rotation. The resultant molecular morphologies are not physical,
but a series of canonical NVT molecular dynamics simulations can
be performed to relax the system, with the centers-of-mass con-
strained to ensure that the equilibrated structure obtained from
the coarse-grained simulations is not modified. Generally, this se-
ries begins with a simulation where non-bonded pair interactions
are disabled and the chains are permitted to relax according to
the intra-molecular forcefield. This allows molecular moieties to
obtain a physical rotation within the molecule, but results in sig-
nificant atomic overlap between molecules. As such, the simula-
tions is followed by a relaxation using a “soft” dissipative particle
dynamics pair potentials where atoms are permitted to intersect
each other but overlap is gradually reduced throughout the mor-
phology. Finally, several short molecular dynamics simulations
are performed sequentially in which the atomistic forcefield is
gradually introduced to eliminate any atomic overlaps and obtain
a final relaxed conformation. For this investigation, a sequence of
8 molecular dynamics simulations was found to produce realistic
chain conformations, the specifications of which are listed in SI
Section S3.

Quantum Chemical Calculations

In order to perform kinetic Monte Carlo simulations that predict
charge mobilities using the fine-grained atomistic representations
we require carrier hopping rates between “chromophores.” A
chromophore is defined as an electronically-active moiety over
which a charge carrier can be assumed to be delocalized. DFT
simulations have shown that, in P3HT, carriers are delocalized
over a region consisting of around 7 monomers49,50. Such long
delocalization lengths are difficult to reconcile in an oligomeric
system consisting of 15-mers. Instead, we make the assump-
tion that each chromophore consists of a single P3HT monomer,
providing parity with the graph-based model described above,
where each monomer is represented by a single graph vertex.
We find that the hopping rate distribution for monomeric chro-
mophores is strongly bimodal, with hops within the same chain
occurring several orders of magnitude faster than hops between
chains. Intra-molecular hops are therefore comparatively instan-
taneous, suggesting that carrier delocalization lengths across sev-
eral monomers drop out as a natural feature of our model. In ad-
dition, utilizing monomeric chromophores removes the require-
ment to recalibrate the chromophore length in the model when
considering the charge transport of other systems. Our model is
therefore more generally applicable and useful, as it can be used
to simulate different polymers without prior knowledge of the
molecule’s delocalization length.

In this work, the energy splitting in dimer method is used to
calculate the electronic transfer integral from one chromophore
(denoted as subscript i) to another (subscript j)51. The method
estimates electronic orbital overlap between the chromophore
pair by determining the frontier molecular orbitals of the chro-
mophore when it is isolation, and calculating the splitting as the
second chromophore is placed with the correct relative position
and orientation as determined by the molecular morphology. In
donor materials, the important molecular orbital is the highest
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Fig. 4 Representative snapshots of backbone structure from CGMD simulations as a function of equilibration temperature (top panel: T = 1.5 to
T = 2.5) and simulation time (bottom panel: t = 1 to 1500 million time steps).

occupied molecular orbital (HOMO) in the isolated case, which
splits to form a new HOMO and HOMO-1 when the chromophore
pair is considered, whereas for acceptors, the lowest unoccupied
molecular orbital (LUMO) splits to form a LUMO and LUMO+1.
The magnitude of the splitting between the donor P3HT chro-
mophores identified in this investigation is related to the elec-
tronic transfer integral, Ti j:∣∣Ti j

∣∣= 1
2

√
(EHOMO−EHOMO-1)

2−
(
∆Ei j

)2
, (3)

where ∆Ei j describes the difference in HOMO energies between
the two chromophores i and j in isolation, and (EHOMO −
EHOMO-1) represents the splitting of the HOMO level observed
when the pair is considered. Transfer integrals Ti j are calculated
between all chromophore pairs that share a Voronoi cell edge
within the morphology, again providing parity with the graph-
based model. Note that, using this method, the energy levels
of the chromophore pair are calculated with the pair ex situ, so
only interactions between the molecular orbitals of the two chro-
mophores in question are considered, disregarding any higher-
order interactions with other nearby chromophores. This there-
fore represents a “best-case scenario” for the transfer integral -
the interactions with other nearby chromophores would likely re-
duce the overlap and splitting of the considered pair, decreasing
the electronic coupling between them.

The orbital energies for single- and pairs-of-chromophores are
determined from semi-empirical ZINDO/S calculations using the
ORCA quantum chemical simulation suite52. While calculations
at the ZINDO level tend not to be as rigorous as more com-
putationally expensive levels of DFT, they can quickly obtain
molecular orbital energy spectra and are often used to determine
excitonic53 and electronic transfer integrals54 for a variety of
systems, including siloles55, copolymers56, and polythiophenes
such as P3HT19,41,53. Furthermore, such calculations are ex-
pected to provide good agreement with ab initio quantum chemi-
cal methodologies for systems similar to those studied here57,58.
Generally the energy calculations required to obtain the molec-

ular orbital energy spectrum for a single P3HT monomer takes
around a second on a desktop computer. This is beneficial, as our
simulations of 250 chains contained 3750 chromophores consist-
ing of 27 atoms, and more than 40,000 chromophore pairs - an
untenably large dataset to analyze using conventional DFT meth-
ods. ZINDO/S is therefore an excellent candidate for our uses,
with comparable computational cost, accuracy, and failure rates
when calculating single-point energies to cutting-edge quantum
chemical methodologies such as the recently proposed IPEA tight-
binding method59.

Kinetic Monte Carlo Simulations

The network of transfer integrals calculated through Quantum
Chemical methods is then submitted to the kinetic Monte Carlo
(KMC) algorithm to predict the motion of charges throughout the
system - quantified by the carrier mobility. In these simulations,
charge carriers are considered as semi-classical particles that are
completely delocalized over a single chromophore, i, and can hop
a distance ri j to a destination chromophore, j, at a rate based on
Marcus theory60:

ki j =

∣∣Ti j
∣∣2

h̄

√
π

λi jkBTKMC
exp
( ri j

α

)
exp

[
−
(∆Ei j +λi j)

2

4λi jkBTKMC

]
, (4)

where kB is Boltzmann’s constant, TKMC is the KMC simulation
temperature, and λi j is the reorganization energy, which is the
energy required to completely polarize and depolarize a chro-
mophore in response to a charge carrier hopping from one site
to another. For P3HT with a chromophore length of a single
monomer, λi j = 306 meV, which matches that predicted by DFT
and the Su-Schrieffer-Heeger model61. In all KMC simulations,
TKMC = 290K to simulate a device at approximately room temper-
ature. This temperature is not to be confused with the MD simula-
tion temperature, which was used to generate the different state
points in this work. During the MD simulations, T corresponds
to the final temperature that the system of chains was cooled to
(from the polymer melt phase) and equilibrated at in order to

Journal Name, [year], [vol.],1–15 | 7

Page 8 of 16Molecular Systems Design & Engineering



stimulate crystallization34. This process corresponds to the de-
vice manufacturing stage, where thermal and solvent annealing
is used to ‘lock in’ a particular conformation and structure. Dur-
ing the KMC simulations, the solvent in the thin film is assumed
to have completely evaporated, leaving behind a morphological
structure that is no longer evolving. We are therefore justified in
‘freezing’ the motion of molecules in the system, effectively con-
sidering the charge transport of a fully encapsulated device and
ignoring any degradation effects.

Note that eq. 4 includes an additional exponential term exp
( ri j

α

)
not present in conventional Marcus theory. This term is based on
Mott’s variable-range hopping theory62 (VRH) and is sometimes
used in polymer hopping theory and computation63,64. Here, we
include a VRH term with a single tunable parameter, α = 2 Å (de-
termined from preliminary work), to control the degree to which
long-range hops are penalized in our simulation. This is im-
portant for systems with variable or large chromophore sizes,
where long center-of-mass chromophore separations are not sig-
nificantly offset by reduced transfer integrals, resulting in larger
carrier distances traveled in the same amount of time, higher mo-
bilities, and a preference for disordered morphological structures.
In this work, the P3HT monomer sizes and deviation in ri j are
sufficiently small that the VRH term results in a reduced abso-
lute value of mobility across all the considered systems, with no
appreciable change in the qualitative trends considered in this in-
vestigation.

The simulations proceed by injecting a single charge carrier
onto a random chromophore in the system and calculating the
rates to all permitted neighbours (i.e. those with non-zero trans-
fer integrals that are within 1 nm of the initial site). Simulation
wait times for each permitted hop to occur, ti j, are calculated us-
ing the KMC algorithm:

ti j =−
ln(x)
ki j

, (5)

where 0≤ x < 1 is a uniformly distributed random number, which
adds variance to the hopping rate ki j. The hopping event with
the shortest wait time is selected as the most probable behav-
ior for the carrier. The carrier is moved to the destination site,
the total simulation time is incremented by ti j, and the algorithm
repeats for the permitted neighbours of the new chromophore.
In these simulations, only a single carrier is run at any given
time, so no Coulombic interactions need to be considered. The
charge density in the morphology is therefore low, and the sim-
ulation more closely approximates time-of-flight mobility experi-
ments than field-effect transistor measurements. Additionally, pe-
riodic boundaries are used, allowing charges to wrap back into
the simulation volume instead of leaving the morphology. The
entire system available for carriers to move in is therefore a pe-
riodic supercell, in which the (10 nm)3 structure is repeated for
several hundred nanometers in each direction. Finally, no exter-
nal electric field is applied across the simulated volume, resulting
in zero-field charge transport measurements. Using this periodic
supercell, MorphCT therefore calculates the device-scale carrier
mobilities over hundreds of nm, while maintaining strict molec-

ular resolution and explicitly calculating in-cell molecular con-
formations and energetic disorder19,35. This differs significantly
from previous kinetic Monte Carlo codebases that operate on the
mesoscale, where transport properties tend to be averaged and
molecular orientations are abstracted out in favor of exploring
device domain composition for systems generated using Cahn-
Hilliard29–31 or Ising-model23,65 techniques. Each carrier is per-
mitted to hop in this way until a specific simulation time, t, is
reached, at which point its displacement from its origin is calcu-
lated. The mean squared displacements, < x2 >, of 10,000 carri-
ers are obtained for 15 different values of t logarithmically spaced
between 1 ps and 1 ns. For purely diffusive transport there is a
linear dependence of < x2 > on t, the gradient of which is the
three-dimensional diffusion coefficient, D. The zero-field carrier
mobility can therefore be determined as:

µ0 =
qD

6kBT
, (6)

where q is the elementary charge.

4 Algorithmic and performance details
We first provide technical details of the analysis. The key element
required to translate the CGMD results into a graph is the con-
struction of the neighborhood. We leverage Voronoi diagrams to
determine the neighborhood of each bead. In particular, we use
the voro++36 package, due to its computational efficiency and
flexibility. Once the graph is constructed, the graph quantifica-
tion is implemented in C++ using Boost library66.

The mobility calculation pipeline developed here leverages sev-
eral freely available software packages, with runtimes varying
over a few orders of magnitude. The initial MD simulations re-
quire ∼100 wall-clock hours on a single GPU to generate CGMD
morphologies at one thermodynamic state point and relax the
fine-grained atomistic representations from these morphologies
using HOOMD-Blue45. Note that these simulations are a prereq-
uisite for obtaining the inputs to both MorphCT and the graph-
based calculations. In the MorphCT pipeline19,35, the ZINDO/S
calculations for every chromophore and neighbor pair within each
morphology are parallelized over 14 CPU cores, and require ∼10
wall-clock hours using ORCA52. The KMC simulations require
∼12 hours to obtain sufficiently small statistical errors for carrier
trajectories and calculate mobilities for one morphology, when
parallelized over 14 CPU cores. Conversely, the graph-based mor-
phology quantifications developed here take around 3 minutes on
a desktop for morphologies with 500,000 atoms. The disparity
in computation time between the graph-based morphology quan-
tifications and QCC/KMC demonstrates the performance benefits
such methods represent if they can provide similar insight into
structure-property relationships.

5 Results
In this section we describe graph-based measurements of ordered
and disordered P3HT morphologies with a focus on structural and
energetic disorder. We seek to identify structural features that can
explain the two order of magnitude difference in mobility cal-
culated from by KMC, which depends only on how the polymer
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Fig. 5 The predicted zero-field hole mobility for each investigated P3HT morphology as functions of a) temperature, and b) structural evolution time for
the T = 1.5 system. The corresponding coarse-grained morphologies are shown for select state points (a: T = 1.5, 1.75, 2.0, 2.25, 2.5, b: τ = 0, 200,
1000). Error bars on the mobility are calculated based on 5 structurally decorrelated replicate simulations performed at each temperature.

Fig. 6 The corresponding distributions of Marcus hopping rates between chromophores as a function of temperature. The histogram bars are stacked
(blue frequencies are not “hiding” behind red), with red bar corresponding to the rates of intra-molecular carrier hops and blue bars describing inter-
molecular hops.
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chains are arranged (Figure 5). Towards this aim we answer three
questions related to the charge transport: Is the structure inter-
connected? What are the characteristic features of the comprising
paths? Which descriptor traces the mobility quantitatively?

5.1 Is the structure interconnected?

An interconnected network, one in which there is a finite path
connecting each vertex to every other vertex, is associated with
favorable charge transport. Interconnectedness is not equivalent
to structural order, however. For example, it is possible for highly
ordered lamellae of P3HT to be disconnected due to the insu-
lating effect of alkyl side chains separating the backbones along
which charges prefer to migrate. On the other hand, a disordered
melt of P3HT chains may be highly connected, though unfavor-
able orientations between neighboring chromophores may hinder
transport between otherwise “connected” vertices. Consequently,
measuring the connectivity of the semiconductor network should
provide better, or at least additional, insight into its charge trans-
port properties than the a structural order parameter alone.

Quantifying connectivity is straightforward with graph-based
representations of morphology. In particular, we query the graph
to determine the set of connected component both in terms of its
cardinality as well as the size of individual components. As de-
tailed in section 2, a connected component is a subgraph where
a path between any pair of vertices in this subgraph exists. This
formal definition maps well to the practical question we pose in
the context of the charge transport. The goal is to check how
many regions within the morphology exist. In the ideal case,
one connected component exists that is well connected to bound-
ary associated with the target electrode (here green meta ver-
tex). If one connected component exists, it effectively means
that any charge has means to reach any other bead/vertex in the
morphology, given enough time. On the other hand, if multi-
ple connected components within morphology exist, particularly
those disconnected from the boundaries, then the probability of
trapping charges (and therefore recombination with an opposing
charge) increases.

We calculate three descriptors related to interconnectedness.
First, we look into the total number of connected components,
NCC. Each connected component consists of one type of vertex,
i.e. backbone beads (BB) or side chain beads (SCh). Next, we
look at the connected components that have any connection to
the boundary. This means that we exclude the islands that are
isolated from the boundaries. We call these components useful as
they can contribute to the charge transport, as opposite to islands.
Specifically, we consider a domain as useful if it is connected to
the top boundary of the morphology, N use f ul

CC . The selection of
the top or bottom boundary for this measure is equivalent and
arbitrary, and we justify the selection of a single boundary to rep-
resent the electrode of relevance for one carrier type (here, holes)
for systems where the size of the morphology is representative of
devices, which is the case here. Finally, we calculate the fraction
of useful domain, f use f ul

CC , as the fraction of beads (equivalently,
vertices) that are connected to the top boundary of the sample.

In Table 1, we present three descriptors detailed above for five

morphologies, each equilibrated at a different temperature. Inter-
estingly, all analyzed morphologies show a high degree of connec-
tivity. Regardless of the annealing temperature, the connectivity
is almost ideal. Although the number of connected components
varies (from 1 to 5), the overall fraction of connected domains is
almost 100%. This observation means that connectivity metrics
cannot be used in isolation to explain the differences in charge
mobility for these morphologies.

Similar observation were made for time series sequence of
T = 1.5 morphologies. Similarly, the fraction of connected do-
mains is nearly 100% irrespective of structural order. Even in
the early stages of the annealing, when carrier mobility is low,
the connectivity is already high. We measured connectivity for
all three possible choices of boundaries (along each axis) and
verified that the connectivity results were independent of which
boundaries were chosen. In summary, all of the morphologies
we analyze here are nearly identical in terms of their complete
connectivity.

5.2 What are the characteristic features of paths?

In the next level of morphology quantification, we focus on vari-
ous features of the shortest pathways. As explained in section 2,
for each red vertex in the graph we compute the shortest path-
way towards green meta vertex using the Dijkstra algorithm (Eu-
clidean distance as edge weight). As an outcome, for each back-
bone bead, the shortest pathway is identified. Given all shortest
pathways (3750 for each morphology), we perform a three-level
pathway quantification for a series of morphologies. The results
for 10 morphologies (five equilibration temperatures, and five in-
creasingly ordered snapshots from T = 1.5) are included in Fig-
ures 7, 8 and 9. In particular, the histogram of the pathway length
is plotted in Figure 7. The pathway tortuosity is depicted in Fig-
ure 8. Finally, the ratio of intermolecular hops to all hopes along
each pathway is shown in Figure 9.

As shown in Figure 7, histograms of pathway lengths are quite
similar across the ten morphologies studied here, with some vari-
ation in the fraction of paths in the 9−14nm range. The more dis-
ordered a morphology is, the longer the path charges must take
to make it to a boundary. On average, it takes 6.97nm for sample
T = 2.5 to reach the boundary of the domain, while it take 4.35nm
for sample T = 1.5. In the increasingly ordered morphologies on
the second row of Figure 7, we observe also a diminishing frac-
tion of paths in the 9− 14nm range as ordering increases. Here,
the average path length decreases from 5.85 to 4.35nm, from first
to last snapshot, respectively. These observations suggest that rel-
atively long pathways are correlated with lower charge mobility,
but in isolation are insufficient to explain the large differences in
mobility calculated with KMC.

To help broaden our understanding of path characteristics, we
next turn to path tortuosity. With the definition introduced in
section 2, straight pathways have tortuosity close to unity. The
higher the tortuosity is, the more curvy the pathway. Histograms
of tortuosity for all 10 samples are depicted in Figure 8. Clearly,
the highly ordered T = 1.5 sample has a distribution of tortuosi-
ties that differs significantly from the disordered cases. All other
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Table 1 First order descriptors capturing the connectivity of the network for five morphologies: f use f ul
CC is the bead fraction connected to top boundary of

the sample, N use f ul
CC is the number of connected components directly connected to top surface of the samples, NCC is the total number of connected

components, Einter is the total number of inter-chain edges connecting backbone beads from directly adjacent polymer chains, Eintra is the total number
of intra-chain edges connecting backbone beads, BB denotes backbone beads, and SCh denotes side chains. Physics-based descriptors tortuosity
and S2 are included for reference, as well as the the hole mobility calculated from KMC simulations, µ0 (given in cm2/Vs). Standard deviations of the
last digits are given in parentheses, except for NCC. E.g., 1.28(1) means 1.28±0.01 and 6793(111) means 6793±111.

T=1.5 1.75 2.0 2.25 2.5

f use f ul
CC 1.00(0) 1.00(0) 1.00(0) 1.00(0) 1.00(0)

NCC [BB+SCh] 5 [4+1] 5 [4+1] 3 [2+1] 2 [1+1] 2 [1+1]
Einter 10,946(37) 6,793(111) 5,968(98) 5,436(66) 5,059(50)
Eintra 3,342(8) 3,401(10) 3,408(8) 3,417(6) 3,428(10)
Tortuosity 1.10(0) 1.28(1) 1.29(1) 1.30 (1) 1.33(2)
µ0 0.8(2) 0.032(8) 0.030(8) 0.0306(9) 0.017(5)
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Fig. 7 Shortest pathway length distributions for the 10 morphologies analyzed. The top row corresponds to annealing temperature (T = 2.5 to 1.5), the
bottom row corresponds to the increasingly ordered morphologies during the time evolution of the T = 1.5 simulation. Highly ordered morphologies and
those with the highest charge mobilities have few paths over 8nm in length.
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Fig. 8 Tortuosity distributions for the 10 morphologies analyzed: The top row corresponds to annealing temperature (T = 2.5 to 1.5), the bottom
row corresponds to the temporal evolution for T = 1.5. The most ordered, highest-mobility morphologies have a significant fraction of low-tortuosity
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samples have similarly tortuous pathways, with mean tortuosity
of 1.30. The bottom row of Figure 8 depicts the temporal evo-
lution of tortuosity for sample T = 1.5 from the first time step
until the morphology is considered to be equilibrated. Initially
the tortuosity is relatively high with many curvy pathways. Over
time, the pathways become more straight and the distribution
shifts left towards the lower tortuosities. We note that low mobil-
ity morphologies are characterized by higher tortuosity (see Ta-
ble 1). High mobility morphologies are characterized with tortu-
osity closer to one (straight paths), and smaller variance. That
the morphologies with more straight pathways have the highest
charge mobilities suggest that these pathways have a significant
impact on charge transport. Comparing to the histograms of path
length (Figure 7), here we notice our first clear distinction in our
descriptors between low and high mobility samples. These two
features provide a qualitative means to explain and potentially
classify well and poorly performing devices.

Due to the correlation between short, straight pathways and
high mobility, we further analyze the fraction of inter-molecular
hops along these pathways, which are straightforward to query
from the graph representation. That is, “Are these fast charge
transport pathways mostly along single chains, or made from
multiple chains?” Figure 9 shows the fraction of inter-molecular
hops along each path. When inspecting the histogram for all 5
temperatures, we notice much clearer distinction between high
mobility and lower mobility morphologies through the lens of
inter-molecular hops. In particular, a full 58% of the pathways
in the high mobility (T = 1.5) sample have no hops along a single
chain! This finding is surprising because of the expectation that
charge transport is facilitated along the conjugated backbone of
a polymer chain relative to hopping between chains. We observe
that the more disordered (higher temperature) morphologies are
comprised of pathways ranging from purely intra-molecular hops
to purely inter-molecular hops with a mean around 25% of inter-
molecular hops. In summary, these results suggest that the path-
ways that contribute the most to high charge mobilities are short
(low-tortuosity) pathways, and that these short pathways have a
high proportion of hops between chains.

To further probe the link between path tortuosity and mobility,
we investigate and compare our graph metrics with the distribu-
tions of Marcus hopping rates calculated with quantum chemi-
cal methods (Figure 6). The number of both inter- and intra-
molecular hops with a non-zero hopping rate is much higher for
T = 1.5 than any other sample presented in Figure 6. This insight
from QCC in terms of individual hopping rates is also mirrored
in the total number of inter-molecular edges in the graph. In Ta-
ble 1, we list the total number of edges for the five samples with
varying temperature, counting only pairs of neighbors between
backbone beads. The total number of intra-molecular edges Eintra

does not vary much between samples because it depends on the
(constant) total number of bonds between backbone beads, and
how many of these bonds are severed due to the selection of the
boundary vertices. The total number of inter-molecular edges
Einter differs significantly between samples. In particular, sample
T = 1.5 shows approximately double the quantity of intermolec-
ular edges, despite having the same number of chromophores.

Consequently, this descriptor can also be used to quickly screen
high and low mobility devices.

In summary, we identified three purely graph-based descriptors
that can be used for quick screening of the morphologies. These
key descriptors include: tortuosity, intermolecular hop ratio, and
the total number of intermolecular edges in the graph. All these
descriptors can be quickly calculated using a graph-based mor-
phology representation and as evidenced by the present work
on P3HT, offer unique screening capabilities. Using these three
purely structural descriptors, our quantification method revealed
that the T = 1.5 sample is the least torturous with pathways con-
sisting mostly of inter-molecular hops. All together these struc-
tural features distinguish this high mobility morphology from
the disordered, low-mobility samples. However, these qualitative
links between structure and mobility do not yet explain the two
order of magnitude difference in mobility measured with KMC. In
the next subsection we detail the results for graph-based analysis
that accounts for both structural and energy disorder.

5.3 Which descriptor traces the mobility quantitatively?

Two notable takeaways from Table 1 are: (1) that S2 is inversely
correlated with mobility for the disordered (T > 1.5) morpholo-
gies, and (2) that tortuosity tracks mobility. Upon closer inspec-
tion we find that a linear fit of log(tortuosity) vs. mobility has an
R-squared value of 0.987, which is consistent with the hypothesis
that activated processes on the shortest networks determine mo-
bility. The observation that S2 is a poor predictor of mobility is
somewhat surprising from the qualitative intuition that more or-
dered structures should have lower hopping barriers and higher
mobilities. The poor correlation of S2 underscores the utility of
physics-based descriptors like tortuosity that include detailed net-
work structure.

Figure 10 depicts overlaid histograms of the total travel time
along the fastest pathway. The total travel time defined in Equa-
tion 1 was used as the morphology descriptor (hopping rate as
edge weight). This is in contrast to the results presented in the
previous subsection, where we used Euclidean distance as edge
weight to find the shortest pathways. Since the total travel time
relies on the local hopping rate calculations and the overall struc-
tural arrangement of the polymer chain, we consider this descrip-
tor as one coupling energetic and structural features of the mor-
phologies.

The histogram of fastest pathways reveal that indeed high mo-
bility samples (T = 1.5) consists of significantly faster pathways.
As shown in Figure 10, the average travel time for this sam-
ple is two orders of magnitude shorter than the average time
for the T = 2.5 sample. We see similar trends when we look at
the temporal evolution of sample T = 1.5 (Figure 10). In com-
paring both the temperature-series data and time-series data we
find strong correlation between the mean travel time measured
through the shortest paths and the mobility calculated from first-
principles methods (SI Section S4). This is an interesting result,
given that the calculation through Dijkstra’s algorithm considers
the entirety of the path to obtain the shortest route, whereas the
KMC only identifies a preferential route for the carrier on a hop-
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Fig. 9 Fraction of inter-molecular hop distributions along the shortest pathways for the 10 morphologies analyzed: The top row corresponds to
annealing temperature (T = 2.5 to 1.5), the bottom row corresponds to temporal evolution for T = 1.5. The most ordered, highest-mobility morphologies
have a high fraction of paths that are only between, never along, the polymer backbones.

by-hop basis by considering only the immediate neighbors to the
charged chromophore. Given that in the KMC we average the
carrier motion over 10,000 carriers that have started at randomly
selected chromophores in the system, this correlation indicates
that all routes eventually guide the carriers onto the fastest routes
through the crystal. We therefore suggest that, within an ordered
crystal like our T = 1.5 morphology, the hopping landscape is rel-
atively ‘flat’, in that long, circuitous transport routes contribute
negligibly to the overall carrier mobility. This contrasts with trans-
port behavior over larger scales than explored here, where long,
low-resistance pathways in the form of “tie chains” between mul-
tiple ordered domains are widely believed to be critical to effi-
cient charge transport through the amorphous phase4,5,41,67. It
is important to understand the intra- and inter-chain composi-
tion of pathways for all significant phases within the morphology,
however, charge transport within crystals is often ignored in both
experimental and theoretical investigations due to the compara-
tively high resultant mobility. In this work, we therefore present
a computational tool that can quantitatively investigate the im-
portant transport features. Due to computational constraints we
showcase it for short polymer chains. We hope to extend our
methodology to systems consisting of longer chains with larger
molecular weights and provide further insight into these mecha-
nisms.

In summary, the total travel time as a descriptor traces the mo-
bility prediction most closely among all descriptors we defined
so far. It is able to capture the differences between morpholo-
gies both qualitatively and quantitatively. The exact matching be-
tween graph-based descriptors and KMC prediction of morphol-
ogy is still to be found. However, at this stage, the approach can
be used for quick screening of morphologies. It should be kept
in mind that the total travel time relies on the local hopping rate
from QCC that can be computationally expensive. The next step
would be to establish the relationship between the structural fea-
tures of the local arrangement of chromophores and hopping rate
such that this step can be avoided.

Fig. 10 Histogram of shortest path travel times for five equilibration tem-
peratures (top), and six snapshots from the T=1.5 equilibration. Note the
two orders of magnitude difference in average travel time between T=1.5
and T=2.5. The travel times of charges along the shortest paths from
a vertex to the nearest boundary vertex correlate well with the mobility
calculation from kinetic Monte Carlo calculations (Table 1).
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6 Conclusion
In this work, we present a multi-scale framework to extract
salient features of morphologies governing hole mobility. The
key idea behind the framework is to represent morphology as a
weighted, labeled, undirected graph. This representation allows
us to include information from electronic structure calculations
in measurements of hierarchical structural features from CGMD
morphologies by leveraging well-studied algorithms to query the
graph. We have calculated the hole mobility for a series of mor-
phologies containing the donor polymer P3HT, simulated at dif-
ferent state points, and discovered that, out of the descriptors
studied, the "fastest pathways" descriptor traces the hole mobil-
ity the best, with good quantitative agreement. However, these
calculations depend on computationally expensive QCC. A vi-
able alternative that circumvents this computational cost is the
log(tortuosity), which also correlates well with mobility. There-
fore, tortuosity calculations performed directly on data from sim-
ulations, computed tomography, or other structural data can be
used for screening purposes at significantly reduced computa-
tional cost.

While the present work does not definitively answer which
molecular design rules will optimize OPV performance, we de-
rive the following insights from the present analysis. First, the
observed significance of shortest paths informs the design choice
of selecting chemistries that are thermodynamically favored to
pi-stack with the bounding interfaces of the device: This would
facilitate the assembly of active layer clusters oriented with short
pathways optimized for transport. Second, to maximize the self-
assembly in a chemistry like P3HT, the film should be processed
at the highest temperature possible below the order-disorder tem-
perature. Third, we learn that is not necessarily the case that
chemistries that robustly self-assembly ordered structures are op-
timal for OPVs, but rather we should identify chemistries that
robustly self-assemble interconnected, short pathways. This sug-
gests that smaller planar molecules that are thermodynamically
favored to assemble pi-stacks, but have shorter relaxation times
than polymers, may offer some experimental avenues to high mo-
bility if processed properly. Fourth, by being able to indepen-
dently assess network connectivity and structure, we may be-
gin thinking about correlating chemical features directly with
connectivity without the proxy of morphological order, which
would provide more specific experimental guidance than “Choose
chemistries that assemble well”. Finally, this work helps to design
more efficient computational studies of OPV materials: The ob-
servation of diminishing mobility returns as a function of time
in Fig. 5 informs more efficient screening strategies that relax
the requirement that each MD trajectory be run to equilibration.
That is, if a high-throughput screening study is searching a set of
chemistries for those that assemble high mobility morphologies,
the present work can be used to justify running simulations until
the mobilities plateau, which may save significant time compared
to running until the morphologies equilibrate.
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