

Morphological and chemical evidence for cyclic bone growth in a fossil hyaena

1	Journal of Analytical Atomic Creature mature
Journal:	Journal of Analytical Atomic Spectrometry
Manuscript ID	JA-ART-09-2018-000314
Article Type:	Paper
Date Submitted by the Author:	26-Sep-2018
Complete List of Authors:	Anné, Jennifer; University of Manchester, School of Earth and Environmental Sciences; The Children's Museum of Indianapolis, Collections Wogelius, Roy; University of Manchester, School of Earth and Environmental Sciences Edwards, Nicholas; SLAC National Accelerator Laboratory; University of Manchester, School of Earth and Environmental Sciences van Veelen, Arjen; University of Southampton Faculty of Engineering and the Environment Buckley, Michael; University of Manchester, School of Earth and Environmental Sciences Sellers, William; University of Manchester, School of Earth and Environmental Sciences Bergmann, Uwe; SLAC National Accelerator Laboratory Sokaras, Dimosthenis; SLAC National Accelorator Laboratory, Stanford Synchrotron Radiation Lightsource Mori, Roberto; Stanford Synchrotron Radiation Lightsource, SLAC National Accelorator Laboratory, Harvey, Virginia; University of Manchester, School of Earth and Environmental Sciences Egerton, Victoria; University of Manchester, School of Earth and Environmental Sciences

×

1		
2 3	1	Morphological and chemical evidence for cyclic bone growth in a fossil hyaena
4 5	2	
6	3	Jennifer Anné* ^{1,2} , Roy A. Wogelius ^{1,3} , Nicholas P. Edwards ^{1,4} , Arjen van Veelen ^{2,5} , Michael
8	4	Buckley ¹ , William I. Sellers ¹ , Uwe Bergmann ⁴ , Dimosthenis Sokaras ⁴ , Roberto Alonso-Mori ⁴ , Virginia L.
9 10	5	Harvey ¹ , Victoria M. Egerton ^{1,2} , Phillip L. Manning ¹
11	6	
12 13	7	¹ University of Manchester, School of Earth and Environmental Sciences, Interdisciplinary Centre for
14	8	Ancient Life, Manchester M13 9PL, UK
15 16	9	² The Children's Museum of Indianapolis, Indianapolis, IN, 46206, USA
17 19	10	³ University of Manchester, School of Earth and Environmental Sciences, Williamson Research Centre for
19	11	Molecular Environmental Science, Manchester M13 9PL, UK
20 21	12	⁴ SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
22	13	⁵ University of Southampton, Faculty of Engineering and the Environment, Southampton, SO17 1BJ, UK
23 24	14	
25 26	15	* janne@childrensmuseum.org
26 27	16	
28 29	17	ABSTRACT
30	18	Trace element inventories are known to correlate with specific histological structures in bone, reflecting
31 32	19	organismal physiology and life histories. By studying trace elements in fossilised bone, particularly in
33	20	individuals with cyclic bone growth (alternating fast/slow bone deposition), we can improve our
34 35	21	understanding of the physiology of extinct organisms. In this study we present the first direct comparison
36 37	22	between optical histology (bone tissue identification) and synchrotron-based chemical mapping,
38	23	quantification, and characterisation of trace elements (biochemistry) within cyclic growth tissues, in this
39 40	24	case within bones of a cave hyaena (Crocuta crocuta spelaea). Results show distributions of zinc, an
41	25	element strongly associated with active ossification and bone growth, correlating with 1) fast-growing
42 43	26	tissue of zonal bone (cyclic growth) in an extinct hyaena and 2) secondary osteons (remodelling) in both
44 45	27	extant and extinct hyaena. Concentrations and coordination chemistry of zinc within the fossil sample are
46	28	comparable to those seen in extant bone suggesting that zinc is endogenous to the sample and that the
47 48	29	chemistry of bone growth has been preserved for 40 ka. These results demonstrate that the study of trace
49	30	elements as part of the histochemistry have wide utility for reconstructing growth, diet and other lifestyle
50 51	31	factors in archaeological and fossil bone.
52	32	
55 54	33	
55 56		
57		

34 INTRODUCTION

 The physiology and life history of vertebrates are reflected in the microstructure of their skeletons (histology). As most vertebrate remains are preserved solely as bones, these tissues can provide key information on the physiology of extinct organisms such as metabolism and biological cycles. It is through such studies that we are able to identify key changes in vertebrate physiology though time, highlighting the adaptability of vertebrates to new and/or changing environments.

One of the physiological processes recorded in bone is the growth rate throughout an individual's life, which can be characterised by cyclic growth. These are fluctuations in bone depositional rates recognised in histological sections as alternating bands, known as zonal tissues, which are indicative of slow and fast growth¹⁻⁷. It has previously been presumed that zonal bone is a characteristic of poikilothermic (slow metabolism) physiology due to the association of homeotherms (fast metabolism) with uninterrupted high rates of growth until maturity²⁻⁴. This paradigm has recently been challenged with the identification of zonal bone in a wide range of fossil and extant mammalian and avian groups^{1-3,5-7}. However, it is still unclear how widespread zonal bone is within vertebrates, and thus what controls are placed on the plasticity of bone growth. Zonal bone formation has been attributed to changes in food/water sources, changes in temperature/thermoregulation, migration, sexual maturity and reproduction^{2,4,6}. As stress affects the biochemical signalling that controls the rate of bone deposition, it is likely that mediating factors behind such signalling, such as compositional differences, may also be preserved within zonal tissues.

In addition to changes in bone microstructure, changes in bone physiology can also be characterised through trace element inventories. Previous studies have shown that the key trace elements for bone physiology (most notably Cu, Zn and Sr) can be mapped within discrete histological features, which correlate to specific physiological processes such as active ossification and remodelling⁸⁻¹⁵. The distinct association with trace metals is a function of low concentrations (ppm) of organometallic compounds necessary for bone development, health and function, and the catalysis of enzymatic processes. Thus trace element inventories in bone can indicate the activity of physiological processes such as changes in bone growth. As zonal bone represents alternating fast (zones) and slow (annuli) depositional tissues, the trace element inventories associated with bone growth should reflect these changes in depositional rates. Therefore, by comparing differences in chemical inventories between the two tissue types, we can gain a better understanding of the physiological processes that control the switch between the two depositional rates.

Page 3 of 20

Until recently, investigations into such chemical/histological correlations have not been attempted as commonly available techniques are unable to resolve the discrete variations (ppm levels) in chemistry at the necessary resolution (micron) and scale (decimetre). However, recent work using synchrotron-based X-Ray Fluorescence (XRF) has demonstrated the ability to resolve the chemical variations associated within fine scale histological features in extant and fossil bone⁸⁻¹³. Here we present the first histological and trace element analyses of bones from extinct cave hyaena (Crocuta crocuta spelaea) and extant spotted hyaena (Crocuta crocuta) to determine 1) whether cyclic growth can be correlated with differential distributions of trace elements crucial for bone growth and 2) if these elements can be preserved in fossilised tissues. Hyaenas were chosen based on the identification of zonal bone in other Pleistocene mammals and in extant arctic carnivores, both of which experience extremely high seasonal stress^{1-2,5}. Cave hyaena are also very closely related to extant hyaena species (subspecies of spotted hyaena), thus limiting the amount of change in physiology due to taxonomic separation distance. **METHODS Specimens** Specimens consisted of four extant spotted hyaena (C. crocuta; ribs; fig. S1) consisting of both male (AMNH 87769, 83593) and female (AMNH 114226, 114227) specimens, and three extinct cave hyaena (C. c. spelaea; radius LL.20879, metacarpal LL.2200 and limb bone fragment P.3062; fig. S2). All extant specimens are from the American Museum of Natural History, New York, NY, The fossil specimen (P.3062) is from the Manchester Museum, Manchester, UK. Unfortunately, the same set of skeletal elements could not be sampled for both extant and fossil specimens due to the fragmentary nature of the fossil samples and the restrictions on destructive sampling of limb bones from extant material. Samples of bone from extant hyaena represent individuals that had been wild caught as captive animals are less likely to develop zonal tissue due to conditions provided in captivity (ex. zoo). Fossil material was obtained from the Pin Hole (radius LL.20879 and metacarpal LL.2200; 37.8 ka) and Church Hole Caves (indent. fragment P.3062; 26.84 to 24 ka), Creswell Crags, UK (fig.S3)¹⁶. Due to the fragmented nature of the limb bone, faunal identification was confirmed using collagen fingerprinting (fig. S4)¹⁷. **Optical Histology** Thin sections were cut to a final thickness of \sim 25-50 µm. Sections were viewed using a Nikon ECLIPSE E600 POL microscope and ACT-1 software and a Leica DM2700P microscope and Leica Application Suite software under plain polarized and cross polarized light at 2x, 4x, and 10x magnifications. The billet or 'thick section' left from the thin section was used for chemical analyses, with no further sample preparation performed.

1 2		
3	102	
4 5	103	Synchrotron Analyses
6	104	Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) was conducted at beamline 6-2 at the
8	105	Stanford Synchrotron Radiation Lightsource (SSRL; CA, USA). Detailed descriptions of SRS-XRF
9 10	106	mapping applied to fossils are provided in recent publications ^{9,18-23} and are summarised here. Maps were
11	107	collected with an incident beam energy of either 13.5 keV (high-Z; Ca and higher) or 3.15 keV (low-Z; Ca
12 13	108	and lower). Specimens were mounted on an x-y-z stage and rastered relative to the fixed incident beam,
14 15	109	with a 50 µm (fossil specimen) or 25 µm (extant specimens) beam diameter ('large-scale'). Areas of
15 16	110	interest in the fossil hyaena identified by SRS-XRF mapping were then mapped at higher spatial
17 18	111	resolution at the Diamond Light Source (DLS; Oxfordshire, UK), beamline I-18, using the experimental
19	112	setup of ^{8-9,19} . Maps were made using 5.5 µm beam diameter produced via Kirkpatrick-Baez focusing
20 21	113	mirrors, with incident beam energy of 17 keV (chosen to allow excitation of the Sr Ka emission). X-ray
22	114	flux was 10^{10} - 10^{11} photons s ⁻¹ ('microfocus').
22 23 24	115	
25 26	116	Single location energy dispersive spectra (EDS) were taken at both synchrotrons to quantify elements in
27	117	discrete features (identified on elemental maps) by collecting a full EDS for 50 sec (SSRL) or 30 sec
28 29	118	(DLS). Multiple spectra were taken per area of interest to account for heterogeneity within the sample.
30 31	119	Spectra were fitted using PyMCA software (ex. fig. S5) ²⁴ . A Durango apatite mineral standard of known
32	120	element concentrations was used for calibration.
33 34	121	
35	122	Zinc Extended X-ray Absorption Fine Structure spectroscopy (EXAFS) was performed at DLS beamline
36 37	123	I-18 to k space =12. The Zn K-edge was calibrated using a Zn-foil. Background subtraction, data
38 30	124	normalization and fitting were performed using (d) Athena and (d) Artemis ²⁵ . Spectra were compared to
40	125	extant mammal bone and Zn-Hydroxyapatite (HAP) references ²⁶ .
41 42	126	
43	127	RESULTS
44 45	128	Optical Histology
46 47	129	Optical histology of the extant <i>C. crocuta</i> ribs shows a combination of densely packed secondary osteons
48	130	('2°'; fig. 1) and areas of woven tissue running through the specimen into the cancellous struts ('W'; fig.
49 50	131	1). No apparent differences between male (AMNH 187769 and 83593) and female (AMNH 114226 and
51	132	114227) specimens were observed.
52 53	133	
54 55	134	Optical histology of the extinct C. c. spelaea radius and metacarpal (LL.20879 and LL.2200) revealed
56 57 58	135	similar histological patterns as the extant material, with a mixture of woven bone ('W'; fig. 2A, F) and 4

secondary osteons ('2°'; fig. 2A-B). Additional histological features include primary ('1°'; fig. 2D) and drifting ('D'; fig. 2E) osteons (osteon running both longitudinally and transversely through cortex). The radius also shows fabric that is oriented obliquely to the more remodelled internal bone tissue situated

around the outer cortex (fig.2 C). The fossil limb bone fragment (P.3062) shows zonal bone growth, seen as alternating bands of fast-growth (zones) and slow-growth (annuli) fibrolamellar tissues (brackets; fig. 2G-H). Zones are identified by elongated osteons with large canal openings aligned in a 'ring' following the circumference of the bone section ('Z'; fig. 2H). Annuli are identified by tightly packed lamellar bone

locations, with the osteons overprinting the original cortex through the entire cortical thickness ('2°'; fig.

XRF large-scale mapping (decimetre scale) shows Zn to be concentrated within secondary osteons (arrow and inset; fig. 3). Differences in the elemental inventories between male and female are seen in Ca, Mn

Large-scale (centimetre) and microfocus elemental maps of the extinct *C. c. spelaea* limb bone fragment (P.3062) are presented in figure 4. Elemental maps of Zn revealed a pattern of relative high and low Zn banding (arrow; fig. 4C). These bands were shown to correlate with the cyclic bands of zones and annuli,

associated with secondary osteons (circle; fig. 4D). Arsenic is elevated within the medullary cavity and a section of the cortical bone not associated with the zones (fig. 4E), and is present within the primary bone tissue, but not within secondary osteons (fig. 4F; circle). Fe is elevated within the medullary cavity (fig.

4G) and areas of mineral infill (fig. 4H; arrows). Sr is slightly elevated within the cement rings of the

Trace element concentrations from the fossil limb bone fragment (P.3062) are within the range known for extant material^{8-10, 27}, with slight depletion in Ca and enrichment in Fe and Sr (Table 1). Elevated areas of

areas are comparable to cortical bone concentrations from extant material scanned in this study (Table 1).

Zn are approximately double the concentration of "low" Zn areas. Concentrations from non-elevated

and As, with higher concentrations seen in female specimens (fig. 3; Table 1; Table S1). No other

with higher concentrations in zones ('Z'; fig. 4D). As in extant hyaena, Zn was also found to be

elements could be correlated with specific histological features or tissue types.

forming another 'ring' ('A'; fig. 2H). Thus, zones are identified as areas of bone tissue that are significantly more vascularised than annuli. A series of secondary osteons is seen in two isolated

1 2	
2 3	136
4	137
6	138
7 8	139
9	1/0
10 11	1/1
12	1/12
13 14	1/2
15 16	143
16	144
18 10	145
20	140
21	148
23 24	149
25	150
26 27	151
28	152
29 30	153
31 32	154
33	155
34 35	156
36	157
37 38	158
39 40	159
40	160
42 43	161
44	162
45 46	163
47 48	164
40 49	165
50 51	166
52	167
53 54	168
55 56	
57	
58 59	
60	

2I).

SR-XRF

osteon (fig. 4I; circle).

2		
3 4	169	Spectroscopy
5	170	X-ray absorption spectroscopy was performed to determine the coordination chemistry Zn within the
6 7	171	bones in order to investigate whether the Zn could be derived from the original biochemistry of the
8	172	organisms or if it had been replaced through taphonomic processes. Zn EXAFS of P.3062 revealed a
9 10	173	tetrahedral coordination with four-O atoms at a distance of 1.95 Å (Table 2). This coordination and
11	174	spacing is comparable to modern tissues (fig. 5; Table 2), and Zn-HAP with concentrations of Zn
12	175	comparable to modern bone (200-400 ppm), suggesting Zn was precipitated into the tissue during growth
14 15	176	and is not surface contamination.
16	177	
17 18	178	DISCUSSION
19	179	The combination of optical and chemical histological analyses revealed Zn to be correlated within the fast
20 21	180	growth tissues (zones) of zonal bone within an extinct cave hyaena (C. c. spelaea) limb fragment (P.3062;
22	181	fig. 4C-D) and within areas of active remodelling in extant hyaena (C. crocuta; fig. 2) and cave hyaena
23 24	182	(fig. 4C-D). This observation fits with previous studies showing that enhanced Zn concentrations can be
25 26	183	found within areas of active ossification and bone growth ^{8-11, 13-15} , and that Zn is stable within the apatite
20	184	structure of bone for extended periods of geologic time ^{8-9, 12, 27} .
28 29	185	
30	186	This study reports the first case of zonal tissue within the Hyaenidae, both extant and fossil. The series of
31 32	187	alternating high and low vascularity is interpreted as zonal tissue based on the regular deposition over a
33	188	large area of the external cortex, which suggests deposition over time. It is not possible to state that each
34 35	189	pair of zones/annuli correlates to one year of growth as there are numerous potential physiological and
36 37	190	environmental factors that could also result in this alternating deposition (as discussed in the
38	191	introduction). Intraskeletal variation could be one of the reasons for the lack of zonal tissue seen in the
39 40	192	other two fossil hyaena (radius and metatarsal). It is interesting to note that the fossil hyaena displaying
41	193	cyclic growth is from a stadial (colder phase; ~25 ka) of the last ice age, whereas the specimens without
42 43	194	annualar zones are from an interstadial (warmer phase; ~38 ka) ²⁸ . Future work is needed to test the
44 45	195	hypothesis of whether extreme seasonal differences may have caused the differences observed between
45 46	196	individuals.
47 48	197	
49	198	Concentrations of Zn follow the pattern of zones and annuli, with higher concentrations correlating to
50 51	199	zones (high rates of bone deposition). The correlation between high Zn and increased bone deposition fits
52	200	within previous observations that Zn is important in areas of active growth such as around growth plates
53 54	201	and within osteons ^{8,10,13-15} . Zn levels within the zones of the fossil limb fragment (P.3062) are higher than
55 56 57	202	the average concentrations measured in extant hyaena in this study, but are within the range seen in other

58

59 60

terrestrial carnivores and humans^{10, 27}. The elevated regions within the zones are thin, and therefore the average Zn concentration in the fossil bone will be closer to reported bulk Zn concentrations in unzoned bone. EXAFS spectroscopy shows that the Zn is positively associated with fossil bone tissue, most notably the fast-growth zonal tissues, strengthening the hypothesis that Zn is endogenous to the specimen (fig. 5C-D). Elemental mapping also revealed interesting distributions of As, Fe and Sr within the fossil limb bone fragment (P.3062). Arsenic is associated with zonal tissue, though it is completely absent within osteons (fig. 4E-F). In extant specimens, it is difficult to discern the origins of As given concentrations of As in the extant bone samples are variable probably due to its occasional use as a preserving agent in museum collections. Therefore we should not attempt to compare concentrations of As between the extant and fossil specimens. Concentrations of Fe suggest some diagenetic input as Fe levels are slightly elevated compared to extant bone (Fe 10-50 ppm; Goodwin et al., 2007; Table 1), but not as heavily elevated as those seen in archaeological/fossil specimens (Fe 500-60,000 ppm)²⁹⁻³⁰. Sr distributions show lower concentrations of Sr within secondary osteons compared to the surrounding tissue, with the exception of the cement lines that form as the osteon is filled in by separate layers of lamellar bone (fig. 4I). Concentrations of Sr are between expected levels for extant terrestrial carnivores²⁷ and recent archaeological samples (less than 1,000 years old)^{11,29} suggesting little to no diagenetic input. CONCLUSION Correlation between histological features and chemical inventories strengthen the link between morphology and physiological processes, generating a *de novo* approach to the study of extinct organismal physiology. In this study, cyclic growth was correlated with differential distribution of Zn between fast (zones) and slow (annuli) growing bone tissue in the limb fragment of an extinct cave hyaena, C. c. spelaea (P.3062). The ability to resolve the subtle difference in biological chemistry between bone tissue types was only possible using the multi-scale mapping capabilities of synchrotron analyses. These results highlight the implications of using trace-element markers as a means for improving the analysis of archaeological and fossil bone. **ACKNOWLEDGEMENTS** We thank the Stanford Synchrotron Radiation Lightsource (3959) and Diamond Light Source (SP9488), the Manchester Museum (U.K), Academy of Natural Sciences of Drexel University (USA), American invaluable advice

Museum of Natural History (USA), all support staff at SSRL and Professor Andrew Chamberlain for his

1 2			
3	237		
4 5	238	FUNDING	
6	239	All authors acknowledge financial support from NERC (NE/J023426/1), the Royal Society (UF120473).	
/ 8	240	the Jurassic Foundation (awarded JA), and the University of Manchester Dean's Award Fund (awarded	
9 10	241	JA). PLM thanks the Science and Technology Facilities Council for their support (ST/M001814/1).	
11	242		
12 13	243	AUTHOR CONTRIBUTIONS	
14	244	All authors contributed in the synchrotron analysis and commented on the manuscript. JA, RAW and	
15 16	245	PLM designed the experiment. JA performed the optical histological analysis, processed the synchrotror	1
17	246	data, wrote the manuscript and composed the figures. AvV processed and fit the EXAFS data, and	
18 19	247	composed figure 5 and table 2. MB conducted the proteomics analyses (Supp. Material).	
20			
21			
23 24			
25			
26 27			
28			
29 30			
31			
32 33			
34 25			
35 36			
37 38			
39			
40 41			
42			
43 44			
45			
46 47			
48 40			
49 50			
51 52			
53			
54 55			
56			
57 58			8
59			0
60			

1 2		
3	248	REFERENCES
4 5	249	1. Köhler, M., Marin-Moratalla, N., Jordana, X. and Aanes, R. Seasonal bone growth and
6 7	250	physiology in endotherms shed light on dinosaur physiology. Nature. 2012; 487: 358-361.
8	251	doi:10.1038/nature11264.
9 10	252	2. Chinsamy-Turan, A. Forerunners of Mammals: Radiation Histology Biology (Life of the Past).
11	253	Bloomington: Indiana University Press. 2011.
12 13	254	3. Köhler, M. and Moyà-Solà, S. Physiological and life history strategies of a fossil large mammal
14 15	255	in a resource-limited environment. P Natl. Acad. Sci. USA. 2009; 106(48): 20354-58.
16	256	4. Castanet, J. Time recording in bone microstructures of endothermic animals; functional
17 18	257	relationships. C. R. Palevol. 2006; 5: 629-636.
19	258	5. Chinsamy-Turan, A. The Microstructure of Dinosaur Bone: Deciphering Biology with Fine-scale
20 21	259	Techniques. Baltimore: The Johns Hopkins University Press. 2005.
22	260	6. Chinsamy, A. and Dodson, P. Inside a dinosaur bone. Am. Sci. 1995; 83: 174-180.
23 24	261	7. Kolb, C., Scheyer, T.M., Veitschegger, K., Forasiepi, A.M., Amson, E., Van der Geer, A.A.E., et
25 26	262	al. Mammalian bone palaeohistology: a survey and new data with emphasis on island forms.
27	263	<i>PeerJ</i> . 2015; 3: e1358.
28 29	264	8. Anné, J, Wogelius, R.A., Edwards, N.P., van Veelen, A., Ignatyev, K. and Manning, P.L.
30	265	Chemistry of bone remodelling preserved in extant and fossil Sirenia. Metallomics. 2016; 8(5):
31 32	266	508-513. doi: 10.1039/C5MT00311C.
33 34	267	9. Anné, J., Edwards, N.P., Wogelius, R.A., Tumarkin-Deratzian, A.R., Seller, W.I., van Veelen, A.,
35	268	et al. Synchrotron imaging reveals bone healing and remodelling strategies in extinct and extant
36 37	269	vertebrates. J. R. Soc. Interface. 2014; 11(96): 20140277-20140277.
38	270	10. Pemmer, B., Roschger, A., Wastl, A., Hofstaetter, J.G., Wobrauschek, P., Simon, R., et al. Spatial
39 40	271	distribution of the trace elements zinc, strontium, and lead in human bone tissue. Bone; 2013; 57:
41 42	272	184-193.
42 43	273	11. Swanston, T., Varney, T., Coulthard, I., Feng, R., Bewer, B., Murphy, R., et al. Element
44 45	274	localization in archaeological bone using synchrotron radiation x-ray fluorescence: Identification
46	275	of biogenic uptake. J. Archaeol. Sci. 2012; 39(7): 2409-13. doi:10.1016/j.jas.2012.01.041
47 48	276	12. Kuczumow, A., Cukrowska, E., Stachniuk, A., Gawęda, R., Mroczka, R. Paszkowicz, W., et al.
49	277	Investigation of chemical changes in bone material from South African fossil hominid deposits. J.
50 51	278	Archaeol. Sci. 2010; 37: 107–115
52	279	13. Molokwu, C.O. and Li, Y.V. Zinc homeostasis and bone mineral density. Ohio Res. Clin. Rev.
55 54	280	2006; 15: 7–15.
55 56		
57		
58 59		9

1 2			
3	281	14.	Hammond, G.L., Avvakumov, G.V. and Muller, Y.A. Structure/function analyses of human sex
4 5	282		hormone-binding globulin: Effects of zinc on steroid-binding specificity. J.Steroid Biochem.
6 7	283		2003; 85(2-5): 195–200. doi:10.1016/S0960-0760(03)00195-X.
8	284	15.	Gomez, S., Rizzo, R., Pozzi-Mucelli, M., Bonucci, E. and Vittur, F. Zinc mapping in bone tissues
9 10	285		by histochemistry and synchrotron radiation-induced x-ray emission: Correlation with the
11	286		distribution of alkaline phosphates. Bone. 1999; 25(1): 33-38.
12 13	287	16.	Hedges, R.E.M, Pettitt, P.B., Ramsey, C.B. and van Klinken, G.J. Radiocarbon dates from the
14	288		Oxford AMS system: Archaeometry datelist 22. Archaeometry. 1996; 38(2): 391-415.
15 16	289	17.	van der Sluis, L.G., Hollund, H.I., Buckley, M., De Louwd, P.G.B., Rijsdijke, K.F., Kars, H.
17 19	290		Combining histology, stable isotope analysis and ZooMS collagen fingerprinting to investigate
19	291		the taphonomic history and dietary behaviour of extinct giant tortoises from the Mare aux Songes
20 21	292		deposit on Mauritius. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014; 416: 80-91.
22	293	18.	Egerton V., Wogelius, R.A., Norell, M.A., Edwards, N.P., Sellers, W.I., Bergmann, U., et al. The
23 24	294		mapping and differentiation of biological and environmental elemental signatures in the fossil
25 26	295		remains of a 50 million year old bird. J. Anal. At. Spectrom. 2015; 30: 627-634.
20 27	296		doi: 10.1039/C4JA00395K
28 29 30 31 32 33 34 35 36 37 38 39 40	297	19.	Edwards, N.P., Manning, P.L., Bergmann, U., Larson, P.L., van Dongen, B.E, Sellers, W.I, et al.
	298		Leaf metallome preserved over 50 million years. Metallomics. 2014; 6(4): 774-782.
	299	20.	Manning, P.L., Edwards, N.P., Wogelius, R.A., Bergmann, U., Barden, H.E., Larson, P., et al.
	300		Synchrotron-based chemical imaging reveals plumage patterns in a 150 million year old early
	301		bird. J. Anal. At. Spectrom. 2013; 28(7): 1024-1030. doi:10.1039/c3ja50077b.
	302	21.	Edwards, N.P., Wogelius, R.A., Bergmann, U., Larson, P., Sellers, W.I. and Manning, P.L.
	303		Mapping prehistoric ghosts in the synchrotron. Appl. Phys. A Mater. Sci. Process. 2013; 111(1):
	304		147-155. doi:10.1007/s00339-012-7484-3.
41	305	22.	Wogelius, R.A., Manning, P.L., Barden, H.E., Edwards, N.P., Webb, S.M., Sellers, W.I., et al.
42 43	306		Trace metals as biomarkers for eumelanin pigment in the fossil record. <i>Science</i> . 2011; 333(6049):
44 45	307		1622–1626. doi:10.1126/science.1205748.
45 46	308	23.	Bergmann, U., Morton, R.W., Manning, P.L., Sellers, W.I., Farrar, S., Huntley, K.G., et al.
47 48	309		Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging. Proc Natl
49	310		Acad Sci. 2010; 107(20): 9060-9065.
50 51	311	24.	Solé, V.A., Papillon, E., Cotte, M., Walter, Ph. and Susini, J. A multiplatform code for the
52	312		analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta B. 2007; 62(1): 63-
55 54	313		68. doi:10.1016/j.sab.2006.12.002.
55 56			
57			
58 59			10

1		
2 3	314	25. Ravel, B. and Newville, M. Athena, Artemis, Hephaestus: Data Analysis for X-ray Absorption
4 5	315	Spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005; 12: 537-541. doi:
6	316	10.1107/S0909049505012719.
7 8	317	26. Tang, Y., Chappell, H.F., Dove, M.T., Reeder, R.J. and Lee, Y.J. Zinc incorporation into
9 10	318	hydroxylapatite. Biomaterials. 2009; 30(15): 2864-2872.
11	319	27. Sealy, J.C. and Sillen, A. Sr and Sr/Ca in marine and terrestrial foodwebs in the southwestern
12 13	320	cape, South Africa. J. Archaeol. Sci. 1988; 15: 425-438.
14	321	28. Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausenet, H.B. et al. A
15 16	322	stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three
17 18	323	synchronized Greenland ice-core records: refining and extending the INTIMATE even
19	324	stratigraphy. Quat. Sci. Rev. 2014; 106: 14-28.
20 21	325	29. Carvalho M.L., Marques, A.F., Lima M.T. and Reus, U. Trace elements distribution and post-
22	326	mortem intake in human bones from middle age by total reflection X-Ray fluorescence.
23 24	327	Spectrochim. Acta B. 2004; 59(8): 1251-1257.
25 26	328	30. Goodwin, M.B., Grant, P.G., Bench, G. and Holroyd, P.A. Elemental composition and diagenetic
20	329	alteration of dinosaur bone: Distinguishing micron-scale spatial and composition heterogeneity
28 29	330	using PIXE. Palaeogeogr. Palaeoclimatol. Palaceoecol. 2007; 253: 358-476.
30		
31 32		
33		
34 35		
36 37		
38		
39 40		
41		
42 43		
44 45		
46		
47 48		
49		
50 51		
52		
55		

331 TABLE and TABLE CAPTIONS

	Mineral	C. crocı	ıta (avg)	C. c. spelaea Fragment		
	Standard	Male	Female	Annuli	Zone	
Ca	38.38%	32.19%	36.42%	23.47%	25.13%	
	(2.27%)	(2.06%)	(2.26%)	(0.81%)	(0.78%)	
Mn	-	2 (0.4)	133 (26)	56 (8)	145 (16)	
Fe	902 (30)	37 (4)	51 (8)	136 (17)	175 (20)	
Cu	-	5 (1)	3 (1)	1 (0.2)	3 (0.5)	
Zn	77 (3)	130 (9)	134 (10)	165 (16)	384 (31)	
As	2185 (68)	11 (1)	389 (21)	9 (1)	3 (0.4)	
Sr	1885 (47)	-	-	421 (23)	405 (20)	

Table 1: Synchrotron XRF quantification of trace elements taken at SSRL (extant *C. crocuta*) and DLS
(extinct *C. c. spelaea*; P.3062) given in ppm or weight percent (%). Extant *C. crocuta* measurements
represent an average over the cortical bone as no zonal tissues were present. Fit errors are given in
parentheses and represent ± two standard deviations.

	Specimen	Path	CN	R(Å)	$\sigma^2(\text{\AA}^2)$	$\Delta E_0(eV)$	S0 ²	χ^2	R
	Extant	Zn-O	4.4	1.95(07)	0.007(1)	1.95 ±0.77	0.99(3)	92	0.01
-	Fossil	Zn-O	4.2	1.95(05)	0.007(0.09)	2.14 ±0.56	1.00(2)	17.26	0.007
	Zn HAP (412 ppm) ²⁶	Zn-O	4.4	1.96	0.005	-0.53	-	-	0.073

Table 2: Fit statistics for Zn EXAFS in extant bone and P.3062 using (d) Artemis (5) and HAP with 412 ppm Zn taken from ²⁶. Errors are given as (\pm) the last significant figure unless specified. Error for CN is 25%. CN—coordination number; R(Å)—atomic distance (Å); $\sigma^2(Å^2)$ —Debye-Waller factor; $\Delta E_0(eV)$ shift in energy from calculated Fermi level; S0²—amplitude factor; R—goodness of fit.

49 342 FIGURE CAPTIONS

Figure 1: Optical histology of extant hyeana. Optical histology under cross-polarized light of *C*.
 344 *crocuta* ribs in adult male (AMNH 187769, 83593) and female (AMNH 114226, 114227) specimens. All
 345 specimens can be divided into two tissue types: highly remodelled with secondary osteons ('2°') or woven
 346 tissues ('W'). Scale bar is 200 μm.

1 2		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	347	
	348	Figure 2: Optical histology for cave hyeana. Optical histology of the extinct cave hyaena, C. c. spelaea,
	349	radius (LL.20879; A-C), metacarpal (LL.2200; D-F) and limb fragment (P.3062; G-I) under cross
	350	polarized light. The radius consists of areas of secondary osteons ('2°'; A-B) and woven bone ('W'; A).
	351	In some regions, the periosteal surface has a fabric that is oriented obliquely to the more remodelled
	352	internal bone tissue (C). The metatarsus consists of dense primary osteons ('1°'; D) and drifting osteons
	353	('D': E) interspersed with woven bone ('W'; F). Zonal bone is recognized in the limb fragment (G-H)
	354	with zones characterised by high porosity, with elongated osteons ('Z'; H) and annuali characterised by
	355	densely compact lamellar bone between annuali ('A'; H). A mass of secondary osteons is present,
	356	crossing perpendicular to the zones ('2°'; I).
	357	
	358	Figure 3: Elemental maps of extant hyaena. Optical large-scale (centimetre) elemental maps of Zn and
	359	As in C. crocuta ribs (extant: male AMNH 87769, 83593; female AMNH 114226, 114227; fossil:
	360	P.3062). Bright areas represent relatively higher concentrations (photon counts). The counts in each
	361	elemental map are converted to 8 bit tiff images (scaled from 0 to 255) and thus is independently scaled
	362	and does not represent relative intensities compared to another elemental map. In Zn, higher
	363	concentrations (white) are associated with remodelling in secondary osteons (arrow and inset).
	364	Concentrations of As are elevated in the two female samples (AMNH 114226, 114227), but is uniformly
	365	distributed throughout the bone cross section. Scale bar is 1 cm.
33 34	366	
35 36 37	367	Figure 4: Elemental maps of cave hyena specimen P.3062. Optical large-scale (centimetre) and
	368	histological images (A,B) of C. c. spelaea limb fragment (P.3062) compared to large and fine scale
38	369	elemental maps of Zn (C,D), As (E,F), Fe (G,H) and Sr (I). Boxes on the large-scale images represent
39 40	370	areas of interest highlighted in microfocus. Large-scale elemental maps of Sr are unavailable due to not
41 42	371	being able to achieve the excitation energy for Sr on beamline 6-2 at SSRL. Bright areas represent
42 43 44 45 46 47 48 49 50 51	372	relatively higher concentrations (photon counts). The counts in each elemental map are converted to 8 bit
	373	tiff images (scaled from 0 to 255) and thus is independently scaled and does not represent relative
	374	intensities compared to another elemental map. Large-scale elemental mapping shows regular banding of
	375	high/low Zn (arrow; C). Microfocus mapping shows these bands are correlated to the differences in zonal
	376	tissue, with higher Zn concentration correlated to zones ('Z'; D). Higher concentrations of Zn are also
	377	seen in association with secondary osteons (circle; D). In the large image, As is seen to be concentrated
52 53	378	within the medullary cavity and a section of the cortical bone not associated with the Zn banding (E).
53 54 55 56	379	However, in microfocus imaging bands of As do correlate to the differences in zonal tissue, with higher
	380	concentration correlated to zones ('Z'; F). Arsenic is also anti-correlated with secondary osteons (circle;
57 58		13
59		

 F). Fe is mainly concentrated within the medullary cavity (G) and the mineral infill within osteon canals (arrow; H). Sr is slightly depleted within secondary osteons, with the exception of elevated 'rings' seen in the osteon highlighted (circle; I). Scale bar is 1em for large-scale images and 1 mm for microfocus. Figure 5: Zine EXAFS. Comparison of the Zn EXAFS spectra from the fossil and extant bone in k (A) and R-space (B) show Zn coordination is identical in the fossil and extant bone tissues. 	1		
 (arrow; H). Sr is slightly depleted within secondary osteons, with the exception of elevated "rings" seen in the osteon highlighted (circle; I). Scale bar is 1em for large-scale images and 1 mm for microfocus. Figure 5: Zinc EXAFS. Comparison of the Zn EXAFS spectra from the fossil and extant bone in k (A) and R-space (B) show Zn coordination is identical in the fossil and extant bone tissues. 	2 3	381	F) Fe is mainly concentrated within the medullary cavity (G) and the mineral infill within osteon canals
 (arcord) is observed approximate of the formal of the state of highlighted (circle; 1). Scale bar is 1 cm for large-scale images and 1 nm for microfocus. Figure 5: Zine EXAFS. Comparison of the Zn EXAFS spectra from the fossil and extant bone in k (A) and R-space (B) show Zn coordination is identical in the fossil and extant bone tissues. 	4 5	382	(arrow: H) Sr is slightly depleted within secondary osteons with the exception of elevated 'rings' seen in
 Figure 5: Zinc EXAFS. Comparison of the Zn EXAFS spectra from the fossil and extant bone in k (A) and R-space (B) show Zn coordination is identical in the fossil and extant bone tissues. 	6	383	the osteon highlighted (circle: I) Scale bar is 1cm for large-scale images and 1 mm for microfocus
Figure 5: Zine EXAFS. Comparison of the Zn EXAFS spectra from the fossil and extant bone in k (A) and R-space (B) show Zn coordination is identical in the fossil and extant bone tissues.	7 0	207	the oscoli inginighted (energ, 1). Scale bar is tern for large-scale images and 1 min for interorocus.
385 Figure 5: Zine EAAFs. Comparison of the Zh EAAFs spectra from the fossil and extant bone in k (A) 386 and R-space (B) show Zn coordination is identical in the fossil and extant bone tissues. 111 111	8 9	204	
38 and R-space (B) show Zn coordination is identical in the fossil and extant bone tissues. 38 and R-space (B) show Zn coordination is identical in the fossil and extant bone tissues.	10	385	Figure 5: Zinc EXAFS. Comparison of the Zn EXAFS spectra from the fossil and extant bone in k (A)
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 51 52 53 54 55 56 57 58	11 12	386	and R-space (B) show Zn coordination is identical in the fossil and extant bone tissues.
14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18	13		
16 17 18 19 10 11 12 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19	14 15		
17 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59 50 51 52 53	16		
1 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55	17 19		
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55	19		
1 1 1 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 <td< td=""><td>20</td><td></td><td></td></td<>	20		
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	21 22		
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 51 52 53 54 55 56 57 58 59 51 52 53 54 55 56 57 58 59 50	23		
22 23 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59	24 25		
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 50 51 52 53 54 55 56 57 58 50 51 52 53 54 55 56 57 58 59	26		
22 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 14	27		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 56 57 58 54 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55	28 29		
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 54 56 57 58 54 56 57 58 54 56 57 58 59 50 51 52 53 54 55 56 57 58 59 50 51 52 53 54	30		
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 14	31 32		
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 14	33		
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 14	34 25		
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 14	35 36		
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 14	37		
30 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	38 39		
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	40		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 58 58 51 52 53 54 55 56 57 58 51 52 53 54 55 56 57 58 59	41 42		
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 58 58 51 52 53 54 55 56 57 58 58 54 59 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55 56 57	42 43		
45 46 47 48 49 50 51 52 53 54 55 56 57 58 58 58 50 51 51 53 54 55 56 57 58 58 58 51 58 51 58 51 51 52 53 54 55 56 57 57 57 57 57 57 57 57 57 57	44		
47 48 49 50 51 52 53 54 55 56 57 58 58 58 51 54 57 58 51 57 58 51 57 58 51 51 52 53 54 55 56 57 57 58 51 51 52 53 54 51 52 53 54 54 55 55 56 57 57 57 57 57 57 57 57 57 57 57 57 57	45 46		
48 49 50 51 52 53 54 55 56 57 58 58 59 50 50 57 58 50 57 58 50 57 58 50 57 58 50 57 58 50 57 58 50 50 57 57 57 57 57 57 57 57 57 57 57 57 57	47		
49 50 51 52 53 54 55 56 57 58 59 60	48 40		
51 52 53 54 55 56 57 58 58 59	49 50		
52 53 54 55 56 57 58 58 59	51		
54 55 56 57 58 59	52 53		
55 56 57 58 14 59	54		
50 57 58 59	55		
58 59 60	56 57		
59	58		14
	59 60		
	57 58 59		14

Our study is the first to correlate differential distributions of trace elements within the different tissue types of zonal bone.

83593

Figure 1: Extant hyena histology

83x72mm (300 x 300 DPI)

Figure 2: Fossil hyena histology 176x149mm (300 x 300 DPI)

- 58
- 59
- 60

Fossil

Extant

