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Esterase/lipases are enzymes involved in biosynthesis of the surface coatings 
used by plants to form a robust barrier between their tissues and the environment, 
a critical function for pathogen resistance and drought tolerance. Carnivorous 
plants in particular must protect the leaf surface from their own digestive 
enzymes as well as the bacteria and fungi that may grow in this nutrient-rich 
environment. These enzymes are potentially useful for producing biodegradable 
hydrophobic coatings. Here we present a method for using molecular modeling 
and protein structure network analysis to predict which esterase/lipases catalyze 
a specific reaction vs. acting as more general-purpose catalysts. We find that 
most of the esterase/lipases from Drosera capensis have relatively constrained 
active sites, consistent with specific functionalities.  
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Protein structure networks provide insight into active

site flexibility in esterase/lipases from the carnivorous

plant Drosera capensis

Vy T. Duong,1,2 Megha H. Unhelkar,1 John E. Kelly,1 Suhn H. Kim,1 Carter T. Butts,3∗

Rachel W. Martin1,2∗

In plants, esterase/lipases perform transesterification reactions, playing an important role in the

synthesis of useful molecules, such those comprising the waxy coatings of leaf surfaces. Plant

genomes and transcriptomes have provided a wealth of data about expression patterns and the

circumstances under which these enzymes are upregulated, e.g. pathogen defense and response

to drought; however, predicting their functional characteristics from genomic or transcriptome data

is challenging due to weak sequence conservation among the diverse members of this group.

Although functional sequence blocks mediating enzyme activity have been identified, progress

to date has been hampered by the paucity of information on the structural relationships among

these regions and how they affect substrate specificity. Here we present methodology for predict-

ing overall protein flexibility and active site flexibility based on molecular modeling and analysis

of protein structure networks (PSNs). We define two new types of specialized PSNs: sequence

region networks (SRNs) and active site networks (ASNs), which provide parsimonious represen-

tations of molecular structure in reference to known features of interest. Our approach, intended

as an aid to target selection for poorly characterized enzyme classes, is demonstrated for 26

previously uncharacterized esterase/lipases from the genome of the carnivorous plant Drosera

capensis and validated using a case/control design. Analysis of the network relationships among

functional blocks and among the chemical moieties making up the catalytic triad reveals potentially

functionally significant differences that are not apparent from sequence analysis alone.

1 Introduction

In land plants, tissues that are exposed to air are protected by
the cuticle, a composite biomaterial comprising a cross-linked
polyester scaffold interpenetrated by wax components1. The cu-
ticle provides a barrier that minimizes water loss and protects
the plant from pathogen infection. The relative quantities of
hydrophilic and hydrophobic components must be appropriately
balanced and spatially located to adhere to the underlying cell
walls while presenting a hydrophobic surface to the air interface2.
Numerous enzymes are involved in producing the polymer com-
ponents of this material, including esterases, lipases, and GDSL
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esterase/lipases. Herein we focus on the GDSL esterase/lipases,
characterized by the proximity of the active serine residue to the
N-terminus, as well as by its surrounding residues (canonically
GDSL)3. Esterase/lipases belong to the large α/β hydrolase en-
zyme superfamily, in which the catalytic triad consists of a nucle-
ophile, an acid, and a stabilizing histidine (in this case Ser-Asp-
His). In plants, these enzymes are often localized to the cuticle
matrix, where they catalyze the reverse reaction (biosynthesis of
polyesters) rather than acting as hydrolases4. This biosynthetic
activity in the waxy cuticle is consistent with in vitro results in-
dicating that esterase/lipases are highly tolerant of hydrophobic
environments, where they catalyze the formation of polyesters
rather than performing hydrolysis reactions5.

Esterase/lipases present attractive targets for biotechnology ap-
plications because of their potential for producing robust yet ulti-
mately biodegradable polyester materials and hydrophobic sur-
face coatings6–8. Several microbial GDSL proteins have been
characterized as relatively promiscuous enzymes that serve a va-
riety of purposes (e.g. protease, lysophospholipase, thioesterase,
arylesterase)9,10, and accomodating a wide range of sub-

1–12 | 1

Page 2 of 13Integrative Biology



strates11. Microbial cutinases, a subclass of serine esterases found
in fungi and bacteria, catalyze esterification and transesterfica-
tion and can hydrolyze both hydrophobic and lipid substrates in
solution or emulsion12. In a chemical biology or biotechnology
setting, enzymes with different degrees of specificity may be pre-
ferred for different applications; for example, promiscuous en-
zymes are useful for generalized hydrolysis, while those catalyz-
ing a specific reaction are more useful for biosynthetic reactions.
Harnessing the potential of these enzymes, given the enormous
number of uncharacterized sequences available, requires method-
ology for predicting their functional characteristics.

Plant GDSL esterase/lipases may provide a rich source of par-
ticular chemical functionalities. Many such enzymes have been
discovered from genome and transcriptome data13,14; however
their specific functions and substrate preferences remain rela-
tively unexplored despite their potential commercial and tech-
nological importance. 114 esterase/lipases have been identi-
fied from the genome of rice (Oryza sativa) alone15, and a sur-
vey of 12 plant proteomes found that each plant has many es-
terase/lipase isoforms, including multiple unique genes as well
as splice variants16. In genomic terms, the large number of GDSL
esterase lipases found in plants results from several gene dupli-
cation events, followed by selection for novel functions and/or
neutral drift17. Although in many cases their precise catalytic
activities are yet unknown, esterase/lipases are associated with
developmental processes18, pollen exine formation19, salt toler-
ance20, and stress responses21,22. Many of these functions ap-
pear to be related to the biosynthesis and metabolism of cutin and
waxes23,24. A recent investigation by Zhang et al. demonstrated
the first plant GDSL (BS1) to exhibit polysaccharide esterase ac-
tivity, which is vital for maintaining secondary cell wall acetyla-
tion levels and homeostasis25. In the oil palm (Elaeis guineen-

sis), oil yield correlates with expression of genes for GDSL es-
terase/lipases and expression of these genes in transgenic Ara-

bidopsis plants increases their fatty acid production as well26.
Much of what is known to date about the specific enzymatic

activities of proteins in this family comes from studies of either
model systems such as Arapidopsis thaliana or crop plants that
produce large fruits27. For example, in the tomato (Solanum ly-

copersicum), the GDSL1 enzyme is required for cuticle formation;
knockdown of expression of the GDSL1 enzyme (also called CD1)
using RNAi results in porous fruit cuticles. On the molecular level,
both a decrease in the density of cutin monomers and a reduc-
tion in ester bond cross-links between the polymer chains were
observed4, consistent with the phenotype of the cd1 mutant, in
which this gene is interrupted by a stop codon. Cutin deficiency
caused by the cd1 mutation reduces the thickness of the cuticle,
decreases its mechanical flexibility, and increases its susceptibil-
ity to water loss, unlike some other cutin-deficient mutants28.
GDSL1 (CD1) acts as an acyltransferase, building up the polyester
oligomers of the cuticle29. This finding highlights the impor-
tance of characterizing esterase/lipases in plants; studies in A.

thaliana have shown that multiple enzymes are required to form
a functional cuticle30, and technological applications will likely
also require a series of enzymatic reactions. The esterase/lipases
from carnivorous plants have the potential to be particularly use-

ful from a biotechnology standpoint because of the unique chal-
lenges faced by their leaf surfaces, which must withstand the
harsh chemical environment associated with their digestive flu-
ids for extended time periods.

Here, we present molecular modeling and functional analyses
of 26 esterase/lipases recently discovered from the genome of the
Cape sundew (Drosera capensis)31. The conservation of active site
residues, key functional sequence blocks, and overall protein folds
suggests that many of the D. capensis esterase/lipase sequences
form functional enzymes; however the diversity of sequence and
structural features indicates a range of potential molecular tar-
gets and enzymatic activities. We use sequence analysis, com-
parative modeling with all-atom refinement followed by in silico

maturation, and comparison of protein structure networks (PSNs)
to identify distinct subgroups of proteins as a first step toward tar-
get selection for subsequent expression and biochemical charac-
terization. To enable analysis of structural features with potential
functional relevance, we define two novel types of functionally-

targeted protein structure networks (FT-PSNs) generated using
functional information specific to this protein class. In particu-
lar, sequence region networks (SRNs) are based on connectivity
among previously identified functional sequence blocks, while ac-
tive site networks (ASNs) are based on interactions among chem-
ical moieties comprising the active site residues. Clustering of
SRNs reveals several classes with distinct structural character-
istics, providing a parsimonious descriptor of protein structure
and a predictor of global flexibility. ASNs are used to construct
a measure we hypothesize to correlate with active site flexibil-
ity and hence enzyme promiscuity. A case-control comparison
with a pair of experimentally characterized esterase-lipases (one
promiscuous and one specific) suggests that most of the D. capen-

sis esterase/lipases have relatively rigid active sites, consistent
with their having specific functionalities. This approach is read-
ily adaptable to other incompletely characterized enzyme classes,
providing a potentially useful way of selecting experimental tar-
gets based on predicted catalytic specificity.

2 Methods

2.1 Clustering, Sequence Alignment and Prediction of Puta-

tive Protein Structures

D. capensis proteins were annotated using the MAKER-P (v2.31.8)
pipeline32,33, a BLAST search against SwissProt, and Inter-
ProScan34, as previously described in31. The protein set for this
study was chosen starting from all sequences identified as having
esterase/lipase functionality, followed by elimination of truncated
proteins for which one or more of the active site residues were
in the missing regions. Clustering of sequences was performed
by first aligning sequences using ClustalOmega35, with settings
for gap open penalty = 10.0 and gap extension penalty = 0.05,
hydrophilic residues = GPSNDQERK, and BLOSUM weight ma-
trix, and then computing a complete link hierarchical clustering
of the resulting dissimilarity scores (one minus the ClustalOmega
sequence similarity divided by 100, yielding in values on the
[0,1] interval). Clustering and other data analyses were per-
formed using the R statistical computing platform36. For pur-
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poses of subsequent alignment and comparison, subclusters were
then made by defining a cutoff point at a sequence dissimilar-
ity value of 0.7. The presence and position of potential signal
sequences flagging the protein for extracellular transport were
assessed using the program SignalP 4.137, using the following
settings: organism group = eukaryotes, D-value cutoff = de-
fault (optimized for correlation), and method = input sequences
may include transmembrane regions. Structures were predicted
from sequences using a three-stage process, following the in sil-

ico maturation protocol of38. First, an initial model was cre-
ated for each complete sequence using the Robetta implemen-
tation of the Rosetta39,40 package. These structures were modi-
fied in the second stage of the process by removing any residues
not present in the mature proteins and by correcting protonation
states to reflect their predicted cellular or extracellular environ-
ments (with protonation states predicted using PROPKA 3.141).
In the third phase, each corrected model structure was equi-
librated in explicit solvent; simulations were carried out using
NAMD42 with the CHARMM36 forcefield43 and the TIP3P water
model44 at 293K under periodic boundary conditions. Solvated
models were energy-minimized for 10,000 iterations before being
simulated for 500ps, with the final configuration being employed
in subsequent analyses. This process was performed for the 26
esterase/lipase sequences from D. capensis and several reference
sequences from other plants. At least one reference sequence was
included per subcluster. These proteins were chosen for purposes
of sequence annotation: their active sites and functional regions
are relatively well annotated in the UniProt database45, enabling
comparisons to the newly characterized sequences. To the best
of our knowledge, no structures have yet been solved for a plant
esterase/lipase, therefore we also predicted structures for the an-
notation reference sequences. The PDB files corresponding to the
initial and equilibrated structures for all the proteins discussed in
this manuscript are available in the Supplementary Information
(Supplementary Tables 1 and 2).

2.2 Network Modeling and Analysis

A protein structure network (PSN) was calculated for each pro-
tein from its predicted three-dimensional structure using software
tools from38 (which also make use of VMD46 and the statnet
library47,48 for R36). Nodes and edges were defined per49 (see
Figure 1A), in which each node represents a chemical group
and two nodes are adjacent if they potentially interact (as de-
termined by a distance criterion). Specifically, two nodes i and
j are considered adjacent if i contains at least one atom of any
type that is within 4.6Å of at least one atom in j, or if i con-
tains at least one carbon that is within 5.4Å of at least one car-
bon in j. These structures were then secondarily processed to
construct functionally targeted PSNs (FT-PSNs) using the sna li-
brary50 within statnet. A sequence region network (SRN) was
constructed from each PSN by identifying all vertices associated
with each conserved sequence block or inter-block region (IBR,
region between conserved sequence blocks) and defining two re-
gions to be adjacent in the SRN if and only if there were more
than five edges between their respective vertex sets in the corre-

sponding PSN (Figure 1B). Each SRN thus encodes the non-trivial
interactions among chemical groups within each functionally sig-
nificant sequence region. Active site networks (ASNs) were also
constructed from each PSN as follows. First, all vertices associ-
ated with active site residues were identified, as were all vertices
adjacent to these vertices within the PSN. The ASN was then de-
fined as the subgraph of the corresponding PSN induced by this
combined vertex set. Thus, each ASN represents the local inter-
actions among chemical groups in the active site and the other
groups with which they are in contact, irrespective of where these
groups reside within the primary sequence.
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Fig. 1 A. Node definitions for protein structure networks (PSNs). A

polypeptide (here illustrated by the tripeptide QVW) is divided into chem-

ical groups using the Benson-Daggett typology (colored ovals), each

group becoming a small-moiety node in the PSN. Nodes are adjacent

if at least one atom pair is within a critical radius. B. SRNs are formed

from PSNs by first grouping all nodes associated with residues in each

sequence region, and then defining region pairs to be adjacent if a

threshold number of their respective PSN nodes are adjacent (here, > 5).

Schematic shows correspondence between local structure involving the

Block IV region and its SRN neighbors (IBR1, IBR3, and the C-terminal

region). Shaded bar (bottom) shows relative lengths of each sequence

region; although longer regions (e.g., IBR3) are often well-connected,

short regions (e.g. IBR1) can also be extremely central.

Clustering of SRNs was performed by calculating the Hamming
distance between SRNs (i.e., the number of edge changes needed
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to convert one SRN into another) and computing a complete link
hierarchical clustering solution for the resulting distance matrix
(all analyses performed using statnet and R). Inspection of the
dendrogram (Figure 5A) indicated a four-cluster solution, and
central graphs were calculated from the networks in each respec-
tive cluster. Block image matrices showing the fraction of SRNs
having each respective inter-region edge are shown in Figure 6.

Constraint of active site residues within ASNs was assessed as
follows. For each vertex associated with a moiety in the active
site, three measures were computed: the degree, or number of
ties to other vertices; the triangle degree, or number of trian-
gles (3-cliques) to which the vertex belongs; and core number,

or number of the highest degree k-core51 to which the vertex be-
longs. Physically, these respectively indicate the total number of
contacts associated with the chemical group (potentially imped-
ing its motion), the number of truss-like, triangular structures in
which the group is embedded (again, restricting mobility), and
the extent of local cohesion around the chemical group (found to
distinguish “tighter” and “looser” packing regimes52). To summa-
rize the impact of each measure over the active site as a whole,
values were averaged across active-site vertices. To obtain an ad-
ditional constraint measure, the number of paths between each
pair of active-site vertices through neighboring (i.e., non-active
site) vertices was computed, and the log of the minimum of this
value over the set of active site vertex pairs was employed as a
measure of site cohesion. Intuitively, high values of site cohesion
indicate that all active site chemical groups are connected by a
large number of indirect contacts, while low values suggest that
at least one pair of active site moieties has few local pathways
holding them together. These four indices (mean active site de-
gree, mean active site triangle degree, mean active site core num-
ber, and site cohesion) were used to produce an omnibus index
of site constraint via principal component analysis (PCA) of the
standardized network measures. The PCA solution revealed one
primary dimension, with the first principal component account-
ing for 75% of the total variance among the four measures (ratio
of first eigenvalue to second greater than 5), and the scores on
this first component scores were hence employed for subsequent
analysis as the constraint index.

3 Results and Discussion

3.1 D. capensis Esterase/Lipases Cluster Into Distinct Sub-

families Based on Sequence Features

All enzymes from the D. capensis genome previously annotated
as functional esterase/lipases were clustered by sequence simi-
larity (Figure 2). Several annotation reference sequences from
other plants were also included to facilitate identification of the
active site residues and functional sequence blocks. The refer-
ence sequences (referred to by their UniProt IDs) are from the
plants Carica papaya (GDL1_CARPA) and Arabidopsis thaliana

(GLIP6_ARATH, GDL7_ARATH, EXL3_ARATH, APG2_ARATH).
Although the active site residues and functional sequence blocks
are readily found, plant esterase/lipases are relatively poorly
characterized; these reference sequences lack high-resolution
structures and in most cases detailed functional information, e.g.

experimental data about their substrate preferences. One of the
objectives of this work is to provide a starting point for approach-
ing such studies in undercharacterized enzyme classes such as this
one.

Sequence Dissimilarity

DCAP_5138

DCAP_1365

DCAP_5587

DCAP_2187

DCAP_4076

DCAP_6218

DCAP_6260
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DCAP_1761

DCAP_5461

DCAP_0158

DCAP_2088

DCAP_2089

DCAP_1460

DCAP_1380

DCAP_4465

DCAP_0405

GDL77_ARATH

DCAP_1840

DCAP_3343

DCAP_6947

DCAP_0448

DCAP_8086

DCAP_0434

DCAP_4098

DCAP_5529

DCAP_5165

0.20.40.60.8

GDL1_CARPA

GLIP6_ARATH

APG2_ARATH

Cluster Centers

1

2

3

4a

4b

Fig. 2 Protein sequence clustering of esterase/lipase sequences from

the D. capensis genome, denoted by DCAP, and annotation reference se-

quences from other plants, which are identified by their UniProt IDs: Car-

ica papaya (GDL1_CARPA) and Arabidopsis thaliana (GLIP6_ARATH,

GDL7_ARATH, EXL3_ARATH, APG2_ARATH). Information about these

annotation reference sequences found in UniProt enabled identification

of functional sequence features in the novel D. capensis proteins via se-

quence alignment and comparison. Annotation details are shown in Sup-

plementary Figures S1-S5.

In all the sequences examined here, the active site residues
are consistent with the catalytic triad of a serine hydrolase,
and the functional sequence blocks characterizing the GDSL es-
terase/lipase family are readily identified by comparison to the
work of Akoh et al.3 and Vujaklija et al.16. In most cases, SignalP
4.1 predicts the presence of a signal peptide sequence tagging
these esterase/lipases for extracellular secretion. Annotated pro-
tein sequence alignments showing functional sequence features
can be found in Supplementary Figures S1-S5. The sequence
alignments are color-coded to indicate both individual amino acid
properties and important sequence regions. Sequence-based clus-
tering yields four major groups with greater than 30% sequence
identity among all members. As previously observed for this pro-
tein class, each group has significant diversity among its com-
ponent sequences; only one pair in this set (DCAP_0405 and
DCAP_4465) has more than 80% sequence identity. For each clus-
ter, the central sequence (the protein having the minimum aver-
age distance in sequence space from all the others) is highlighted.
Comparative models for these central sequences are shown to the
right of the cluster figure, revealing variations on a common struc-
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tural theme.

Cluster 1 contains sequences that have the canonical GDSL mo-
tif, as found in the reference sequence GDL1_CARPA, which was
isolated from papaya latex53 and has been proposed as a “nat-
urally immobilized” biocatalyst for performing regioselective es-
terification and transesterification reactions54. The enzymes in
cluster 2 instead have GDSN in the first functional block. Clusters
3 and 4 contain the motif GDSX, where X is usually a hydropho-
bic residue, but is Ser or Thr in some cases. Overall, the presence
of the three active site residues in 24 of the 25 D. capensis es-
terase/lipases suggests they are functionally active enzymes.

3.2 Conserved Active Site Residues Suggest Functional En-

zymes

In general, esterase/lipases are characterized by four moder-
ately conserved sequence blocks of length 8-13 residues that con-
tain the cataytic triad, the oxyanion hole proton donors, and
other functionally relevant residues55. These blocks are always
found in the same order in sequence space, though the lengths
of the intervening sequences can vary substantially19. Func-
tional sequence blocks I-IV are highlighted in the sequence align-
ments (Supplementary Figures S1-S5.) In Figure 3A, these func-
tional blocks are represented as sequence logos, where the size
of each residue label correlates with the number of instances
at that sequence position within each cluster. The Ser-Asp-
His catalytic triad is located within two block regions: block I
(Ser) and block IV (Asp-His). The remaining two blocks con-
tain conserved oxyanion hole residues, Gly in block II and Asn
in block III3. Most of the proteins in this set contain the expected
functional residues, as exemplified by the reference sequences
GDL1_CARPA, GLIP6_ARATH, and GDL7_ARATH, as well as the
functionally characterized GDSL esterase/lipase G1DEX3_SOLLC
from the tomato.

Some variation is observed in the oxyanion hole residues:
the stabilizing Asn residue in block III is replaced by Ile in
DCAP_0434, Ser in APG2_ARATH and DCAP_ 5138, and Asp in
EXL3_ARATH. These substitutions are consistent with almost all
of the D. capensis enzymes following the canonical GDSL mecha-
nism56. The two exceptions in this set are DCAP_2088, which is
missing the entirety of block III, and DCAP_6260, which has sub-
stitutions to the two active site residues located in block IV (Asp to
Leu and His to Ser, see Figure S4). DCAP_6260 is the only protein
in this set that does not contain all three active site residues, al-
though it retains the canonical GDSX motif in block I and the sta-
bilizing oxyanion residues in block II and III. The potentially cat-
alytically inactive sequences (DCAP_6260 and DCAP_2088) were
included because they do contain most of the relevant sequence
and structural features; we hypothesize that these proteins may
play a binding rather than catalytic role. Alternatively, they may
represent pseudogenes. DCAP_4076 has a C-terminal extension
not found in the other esterase/lipases, the role of which is cur-
rently not known, although it has moderate sequence similarity
to transcriptional regulation proteins in Arabidopsis thaliana and
soybean (Supplementary Figure S8A.).

3.3 Molecular Modeling

The structure of a typical GDSL esterase/lipase has a 4-stranded
parallel β -sheet with six α-helices arranged around it (shown for
a representative example in Figure 3B). Due to the lack of solved
structures for plant esterase/lipases, comparative modeling was
used rather than traditional homology modeling. To make a stan-
dard homology model, the sequence of interest is threaded onto
the known structure of a closely related protein, followed by en-
ergy minimization. In comparative modeling, the procedure is
similar except that the protein is modeled piecewise using mul-
tiple template structures selected by the software (in this case
Rosetta39) from the Protein Data Bank, followed by global mini-
mization using a simplified force field. This methodology is reg-
ularly validated via CAMEO57, and is the basis of well-known
structure prediction systems such as Rosetta (used here) and I-
TASSER58. All template structures used for a representative ex-
ample (DCAP_0434) are tabulated in Supplementary Table 3 and
the parent structures for each model can be found in the headers
for their respective .pdb files (available for download in the SI.)

We used the initial models generated by the Robetta server40

as a starting point; however as these structures are not calculated
in an aqueous environment and do not account for protonation
states, we modifed them to produce models that are more rep-
resentative of the mature enzyme (available for download in the
SI.) Signal sequences were removed and protonation states were
corrected consistent with their expected functional environments.
These structures were then subjected to molecular dynamics sim-
ulation in explicit solvent to generate the equilibrated structures
(illustrated in Supplementary Figure S6). The equilibrated molec-
ular models of these proteins show that although they all have
the expected overall fold, substantial diversity exists in the place-
ment of secondary structure elements, as well as the lengths of the
linker regions (Supplementary Figures S7 and S8B). All three ac-
tive site residues are accessible, in contrast to lipases, where only
the serine is exposed due to the hydrophobic “lid" that is charac-
teristic of that enzyme class. The positioning of the catalytic triad
residues, which is consistent with catalytic competence, is shown
in Figure 3C. The active site residues are located in loop regions,
with the occasional exception of the Ser, which is part of an α-
helix in some esterase/lipases (e.g. in Cluster 1). The conserved
oxyanion hole residues in Block II reside in a loop region, while
half of the Block III residues lie in a β -sheet and the other half in
an α-helix. This mixture of structural motifs presents a challenge
for coarse-grained network analysis, where a common approach
is to break up the protein into discrete regions based on secondary
structure. In the case of the plant esterase/lipases of this set, that
classification does not align with the functional regions identified
in previous studies of esterase/lipases; we have therefore used
the functional sequence blocks, termini, and inter-block regions
rather than secondary structure elements as the basis for con-
structing the FT-PSN representation of the overall enzyme folds.

3.4 Protein Structure Networks

Contacts between structural regions of the esterase/lipases were
analyzed using a network formalism; for each protein, full PSNs
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and two novel types of FT-PSNs were generated. First, full PSNs
were calculated for the esterase/lipase molecular models based
on the formalism of Benson and Daggett49, where each amino
acid is composed of nodes defined by chemical functionality. Two
illustrative visualizations of PSNs from different sequence clusters
are shown in Figure 4. Although we refer to the functional blocks
themselves by Roman numerals I-IV as defined in the earlier lit-
erature for the sake of comparison to prior work, for purposes of
generating FT-PSNs we define nine sequence regions comprising
the four functional blocks as well as the regions between them
(inter-block regions, or IBRs), and the N- and C-termini. These
sequence regions are numbered 1-9 in order from the N-terminus
to the C-terminus for each protein. In these PSN examples, nodes
(chemical moieties) belonging to the termini, functional blocks,
and inter-block regions are color coded as indicated in the leg-
end. This representation allows rapid examination of the degree
of connectivity between different sequence regions, e.g. it can
easily be seen that the nodes of Block II (orange) are more con-

nected to each other in DCAP_0158 (4A) than in DCAP_1380
(4B), while many Block III nodes are connected to those from
other sequence regions in both proteins. Although this represen-
tation provides a visualization of connectivity between different
parts of the protein separate from the three-dimensional struc-
ture, the number of nodes and the complexity of the plots makes
comparison difficult. Therefore, we define two types of special-
ized FT-PSNs based on functionally relevant sequence features of
these proteins.

In order to further simplify the graph representations, a block
model51 was constructed for each protein by condensing all
nodes within each of these sequence regions to form a coarse-
grained FT-PSN whose edges represent contacts between moi-
eties in each pair of sequence regions (each region constituting
a node within the block model). These sequence region networks

(SRNs), provide a direct representation for the structure of con-
tacts among functionally significant components of the protein,
which we hypothesize to be related to overall function. To iden-
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Fig. 4 Protein structure networks of DCAP_0158 (Cluster 4a) and DCAP_1380 (Cluster 3). Each node (closed circles) represents a chemical moiety

and is color coded based on its respective sequence position in a functional block, terminus or IBR. Ties (gray lines) indicate physical interactions

between a set of nodes. The positioning of the nodes in this representation is optimized to show topology and does not directly correspond to three-

dimensional space; proximity within the cutoff distance is solely indicated by the ties.

tify distinct classes of functionally relevant structure within the
D. capensis esterase/lipase set, we then performed a hierarchical
clustering of SRNs by Hamming distance (i.e. the number of ad-
jacency differences among sequence regions between two respec-
tive SRNs). Figure 5A shows the dendrogram for the clustered
SRNs, along with structural models for the protein structure cor-
responding to the central graph for each SRN cluster. The central
graphs themselves are shown in Figure 5B. Following clustering of
SRNs by Hamming distance, clusters were summarized by form-
ing block image matrices51. Within each matrix, the i, j cell value
corresponds to the fraction of cluster members whose SRN con-
tains an edge between sequence region i and sequence region j.
Schematic representations for each cluster, illustrating how the
adjacency matrices for these models are constructed, are shown
in Figure 6. In addition to showing distinct structural patterns
across clusters, Figure 6 shows a fairly high level of consensus
within clusters (with most cells having densities close to either 0
or 1). For this reason, we summarize the SRNs within each cluster
by their central graph, which is equivalent to dichotomizing the
image matrices at 0.5; these networks are shown in Figure 5B.

Clustering of the SRNs reveals important differences among
esterase/lipases that are not apparent from the sequence clus-
ters, as well as some common features of potential structural and
functional significance. For example, the IBR between Blocks II
and III (node 5) is highly central across all structures, being in
direct contact with a large number of other sequence regions
and frequently bridging regions not otherwise in contact. This
suggests a key structural role for this highly variable (i.e. non-
conserved) sequence region that may have been overlooked by
purely sequence-based analyses. Likewise, Block III has identi-
cal neighbors in all clusters, being tied only to its sequence-space
neighbors and to Block I (node 2). This highly conserved pattern

of both interaction and non-interaction is suggestive of functional
significance. By contrast, the other interaction partners of Block
I vary considerably across clusters, as do e.g. the partners of IBR
1 (node 3). Such variation in interaction among conserved se-
quence blocks may be indicative of corresponding differences in
functional characteristics.

Interestingly, clustering by structural similarity of SRNs yields
a pattern that is distinct from clustering by sequence (Figure 2).
Although sequence homology is often a good indicator of broad
functional similarity at the level of protein classes, structural
comparison provides a much more precise tool for functional
differentiation among related proteins. As with previous ap-
plications of structure networks to study allostery, binding, in-
ter/intramolecular interactions, and other phenomena otherwise
difficult to ascertain using only sequence analysis49,52,59, SRNs
such as those introduced here have the potential to complement
sequence analytic methods for purposes such as functional pre-
diction and target selection.

The coarse-grained network representations described above
provide a useful basis for comparison of overall structural proper-
ties among esterase/lipases, but they do not directly address the
flexibility and accessibility of the active site itself, which is a po-
tential indicator of enzyme specificity60. Most of what is known
about the esterase/lipase family to date comes from the micro-
bial esterase/lipases, which are generally regarded as promiscu-
ous enzymes. It has been suggested that this property may gener-
alize to plant esterase/lipases, which have so far not been exten-
sively characterized. However, as discussed above, many plants
have numerous esterase/lipase paralogs, possibly indicating that
the same diversity of activity is accomplished using multiple en-
zymes, each with its own functionality, rather than fewer multi-
functional enzymes.
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Because enzyme promiscuity is strongly correlated with active
site flexibility60, we used a similar analysis of network structure
to investigate the ties among nodes in the active site regions of the
D. capensis esterase/lipases. As before, we began by constructing
moiety-level PSNs using the Benson-Daggett representation. We
then formed active site networks (ASNs) by taking the subgraph of
each PSN induced by the nodes corresponding to active site moi-
eties together with the union of their respective network neigh-
borhoods. Each ASN thus represents the pattern of connectivity
among moieties topologically local to the active site. Structural
constraints on the active site were measured using several com-
mon network properties: mean degree (the average number of
ties each node has to other nodes), mean triangle degree (the
number of memberships in 3-cliques or triangles), mean k-core
number (where the kth core of a graph is the maximum set of
nodes such that every member of the set is adjacent to at least
k other nodes), and inter-node connectivity (counts of paths con-
necting active-site nodes via other nodes in the ASN). These prop-
erties were computed for all nodes corresponding to active site
moieties, and are plotted in Supplementary Figure S9. They were
then composited by taking their first principal component, yield-
ing a single measure of active site constraint for each network.

Figure 7 shows the active site constraint measure for each en-
zyme in our set, as well as two enyzmes for which more detailed

activity data is available. The latter two, well-characterized en-
zymes were selected as a “case/control” validation for the func-
tional significance of the constraint measure: the tomato cutinase
(G1DEX3_SOLLC), which is known to catalyze a specific reaction
(high-specificity “case”); and E. coli TesA, (TESA_ECOLI), which
is known to accept a variety of substrates (low-specificity “con-
trol”). Consistent with the hypothesis that the large number of es-
terase/lipases in typical plant genomes corresponds with a higher
level of substrate specificity, we observe only two plant enzymes
with a level of constraint lower than the promiscuous TesA (red-
shaded area); of the remainder, roughly half showed constraint
levels between TesA and tomato cutinase (yellow-shaded area)
and half showed higher constraint levels (blue-shaded area). Our
analysis suggests that the majority of esterase/lipases in D. capen-

sis are likely to be highly specific, with the prominent exception
of DCAP_3343. This enzyme, and GDL77_ARATH from Arabidop-

sis, show extremely low levels of active site constraint implying
a very high level of local flexibility. We hypothesize that these
enzymes will accept a wider range of substrates than the others
examined here, and that they occupy a distinct functional role
(perhaps more similar to the role of microbial esterase/lipases).

Figure 8 shows structural models of the D. capensis es-
terase/lipases with the least (red) and most (blue) constrained
active sites, as determined by the ASN flexibility metric plotted in
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Fig. 7 Main panel: constraint level of active site moieties within protein structure networks. Red-shaded region indicates lower constraint levels than

the bacterial enzyme TesA; yellow and blue shaded regions respectively indicate levels of constraint between TesA and tomato cutinase and levels

of constraint greater than tomato cutinase. Nearly all plant enzymes studied here show more active site constraint than TesA, with tomato cutinase

falling near the median of these. Side panels: ASN visualizations for DCAP_3343 (left) and DCAP_0405 (right) show respective examples of low and

high levels of active site constraint. Nodes correspond to moieties, with backbone (BB) and side chain (SC) moieties for the three active site residues

indicated by color. Highly cohesive ASNs imply numerous constraints on the motion of active site residues, potentially leading to higher levels of

substrate specificity.

Figure 7. Somewhat counterintuitively, the protein with the less
flexible active site (DCAP_3343) has a better-defined secondary
structure. Based on the DSSP secondary structure definitions61,
DCAP_0405 has 29.3 % α-helix, 2.9 % β -strand, and 67.8%
turn/coil, while (DCAP_3343) has 43.6% α-helix, 5.3% β -strand,
and 51.1% turn/coil. Although DCAP_3343 has more α-helical
and β -strand secondary structure elements, the structure around
the active site itself is looser and less densely connected than that
of DCAP_0405, where loops and random coil regions interact to
hold the active site residues more rigidly in place. Although un-
structured regions are often regarded as highly flexible regions,
this depends on their context in the overall structure; recent NMR
dynamics measurements and MD simulations reveal that loops
undergo dynamics over a wide range of timescales62 and their
motions are frequently involved in allosteric regulation63. Longer
loops, which are more able to become mutually entangled with
other structural elements are more likely to be rigid64, which is
consistent with the predicted structure of DCAP_0405.

4 Conclusion

In summary, molecular modeling and protein structure network
analysis of 26 esterase/lipases identified from the genomic DNA
of Drosera capensis suggest that—with the exception of one pro-
tein, DCAP_3343—the active site regions of these enzymes are
less flexible than those of related microbial proteins. We hypothe-
size that these enzymes act (like tomato cutinase) to catalyze spe-
cific reactions, with the outlying protein behaving more like mi-

crobial esterase/lipases. Two new types of protein structure net-
works, seqence region networks (SRNs) and active site networks
(ASNs) were defined in order to characterize overall protein flexi-
bility and that of the active sites. Principal component analysis of
active site constraint measures generated from PSNs enabled us to
sort the esterase/lipases from decreasing to increasing active site
rigidity; case/control validation using a pair of well-characterized
enzymes suggests that our index is related to substrate specificity.
Clustering by SRN shows structural differences between enzymes
with respect to functionally significant sequence blocks, as well
as an apparently conserved structural role for a highly sequence-
variable and previously unnoted inter-block region. These results
may serve to guide target selection for subsequent structural or
functional studies, and the analytical strategy employed may be
fruitfully adapted to other protein classes.
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