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Abstract
Lignin is an abundant aromatic biopolymer within plant cell walls formed through radical cou-

pling chemistry, whose composition and topology can vary greatly depending on the biomass
source. Computational modeling provides a complementary approach to traditional experimental
techniques to probe lignin interactions, lignin structure, and lignin material properties. However,
current modeling approaches are limited based on the subset of lignin chemistries covered by
existing lignin force fields. To fill the gap, we developed a comprehensive lignin force field that ac-
counts for more lignin-lignin and lignin-carbohydrate interlinkages than existing lignin force fields,
and also greatly expands the lignin monomer chemistries that can be modeled beyond simple alco-
hols and into the rich mixture of natural lignin varieties. The development of this force field utilizes
recent developments in parameterization methodology, and synthesizes them into a workflow that
combines target data from multiple molecules simultaneously into a single consistent and compre-
hensive parameter set. The parameter set represents a significant improvement to alternatives for
atomic modeling of diverse lignin topologies, more accurately reproducing experimental observ-
ables while also significantly reducing the error relative to quantum calculations. The improved
energetics, as well as the rigid adherence to CHARMM parameterization philosophy, enables sim-
ulation of lignin within its biological context with greater accuracy than was previously possible. The
lignin force field presented here is therefore a crucial first step towards modeling lignin structure
across a broad range of environments, including within plant cell walls where lignin is complexed
with carbohydrates and deconstructed by bacterial or fungal enzymes, or as it exists within indus-
trial solvent mixtures. Future simulations enabled by this updated lignin force field will thus lead to
better chemical and structural understanding of lignin, providing new insight into its role in biomass
recalcitrance or probing the potential for lignin to be used within industrial processes.

1 Introduction
Terrestrial biomass is an abundant source of raw materials, with
over 100 petagrams of carbon fixed from the atmosphere and
converted into biomass each year.1,2 This biomass is primarily
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composed of the plant cell walls,3 which in turn prominently
feature three different polymers; cellulose, hemicelluloses, and
lignin. Cellulose and hemicellulose are polysaccharides that, if
appropriately separated from lignin, provide sugars are effective
feedstocks for conversion into fuels and chemicals. Lignin makes
up between 15 and 40% of the cell wall dry-weight4,5 and is es-
sential to maintaining the structural integrity of plants.6,7 If lignin
is not removed through pretreatment prior to enzymatic conver-
sion of the biomass, it interferes with cellulase action, lowering
the product yield from the sugar fractions of the cell wall.8–11 At
present, lignin is typically separated from the polysaccharides and
burned to produce power.4

The potential exists for lignin to be used more extensively in
creating industrially useful fuels and chemicals.4,12,13 Further-
more, as lignin is an aromatic heteropolymer formed through
radical chemistry,14–16 some industrial products, such as mu-
conate or commercial adhesives, have more direct biosynthetic
routes with lignin rather than carbohydrates as a precursor, in-
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Fig. 1 Chemical structures of all lignin monomers and linkages consid-
ered in this study, which expands on the three monomers and common
linkages explicitly parameterized in the previous force field. 38 We em-
phasize that some of the chemistries displayed here are not observed
in native lignin, but are used to populate appropriate stereochemistries
in combined structures, such as in dibenzodioxocin structures demon-
strated in Fig. S1, or are common degradation products. Compounds
were included based on a broader suite of known lignin linkages. To
aid in subsequent discussion, the ring carbons of the guaiacyl monomer
have additionally been numbered as they are used consistently through-
out the forcefield. Greek-letter based nomenclature for lignin linkages is
used throughout.

creasing their yield.17,18 However, the radical synthesis of lignin
has significant structural implications; unlike DNA or proteins,
whose structure is uniquely determined by sequence, lignin com-
position and topology is the result of stochastic synthetic pro-
cesses that differ between plant species,19,20 environmental con-
ditions,21,22 and tissue type.23,24 This means that natural lignin
sample sources are highly heterogeneous,25,26 making exper-
imental characterization of specific structure-function relation-
ships difficult. Indeed, much of what we know about native lignin
structure comes from destructive methods that cannot easily de-
tect or quantify non-covalent interactions in intact polymers.27,28

Molecular simulation is a natural tool to address these ques-
tions, as it has both the spatial and temporal resolution to
identify the molecular origins of specific interactions within
biomolecules,29,30 including lignin.31,32 Molecular models of
lignin have aided our understanding of lignin interaction within
industrial lignocellulosic systems,31 its solvation in pretreatment
solvents,33–35 and its behavior under pyrolysis.36 These models
have been useful to frame the discussion around lignin’s role in
binding hemicellulose and cellulose together within biomass.31

Detailed modeling can thus drive mechanistic insight into how
lignin affects the observed recalcitrance of biomass.37

Creating models at that level of detail depends on an accu-
rate description of atomic-scale interactions. This can be achieved
by employing a classical approximation of the underlying quan-

tum mechanical potential energy surface, otherwise known as
a force field.39 Previously, such an approximation was created
for the three common lignin monomers and the most com-
mon lignin units (described by their characteristic interunit link-
ages).38 Since that time, the force field was expanded by using a
general force field (CGenFF)40 to incorporate new linkages as the
models demanded. However, these parameters taken by analogy
from other similar biomolecules are known to be suboptimal, and
reparameterization was warranted based on the internal quality
metrics CGenFF produces.41,42 Here, we systematically reparam-
eterize the force field to put all lignin linkages and lignin modifi-
cations within a self-consistent framework, including linkages to
carbohydrates, using parameters derived from CGenFF as a start-
ing point (Fig. 1). Through combination of these constituent el-
ements, true native-like lignin structures and lignin degradation
products can be modeled, as demonstrated in Fig. S1.

The reparameterization follows the standard CHARMM param-
eterization methodology, with water interactions used to deter-
mine charges and bonded terms optimized against relaxed poten-
tial energy scans of internal molecular degrees of freedom.40–44

Since this optimization incorporates target data from all target
molecules simultaneously, the charge optimization uses a group-
ing scheme to create transferable charge groups that are consis-
tent across all lignins. In addition, a new GPU-accelerated evalu-
ation of the bonded objective function was implemented to make
the bonded optimization tractable.

The result of this effort is a force field that reproduces the
geometries and energies from quantum mechanical calculations
more accurately than the generalized CGenFF parameter set. This
includes an average 0.2 kcal mol−1 reduction in the mean squared
error of the water interaction energies, improved vaporization en-
thalpies, as well as significant reductions in the energy residuals
along a potential energy surface. These improvements in energy
do not increase geometrical deviation from quantum mechani-
cal minima, and in fact improve specific features within aqueous
and crystalline lignin simulation that were not well reproduced
in previous general force fields. These improvements represent a
significant advance overall in lignin simulations, enabling direct
simulation of most lignin topologies under a unified framework.

2 Parameterization Theory

The typical point-charge additive classical molecular mechanics
force field for small molecules in a condensed phase, such as
GROMOS,45,46 OPLS,47,48 AMBER49,50 or CHARMM,40,43,51 de-
composes energy terms for a particular molecular pose into two
parts; non-bonded and a bonded components, as described in
Eq. 1 for the CHARMM force field.43,51
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This energy function includes well known physical constants,
geometrical measurements, and harmonic or sinusoidal approxi-
mations built-in to classical molecular mechanics models. How-
ever, the terms within Eq. 1 highlighted by circles or squares are
free parameters that must be determined to describe the ener-
getics of molecular poses. The creation of a classical molecular
mechanics force field requires a collection of target data, and ad-
justment of the free parameters such that the parameters cho-
sen reproduce the target data. As the different force fields have
different philosophies on what target data to optimize against,
and specific adjustments were made to account for the branched
structure of lignin, the Supporting Information provides addi-
tional details about the overall parameterization procedure in
CHARMM,40,44 and how it compares with force fields for other
biopolymers.52–56 The extended Supporting Information discus-
sion also details the features required for our lignin parameteriza-
tion workflow that are missing in existing parameterization tools
such as the force field toolkit (ffTK),44 ForceBalance,57 the Vi-
sual Force Field Derivation Toolkit (VFFDT),58 ForceFit,59 or the
general automated atomic model parameterization (GAAMP).60

3 Methods
A series of python scripts were written to implement the overall
workflow detailed in the Supporting Information to optimize the
initial parameters determined from CGenFF40 for the test com-
pounds shown in Fig. 1. Largely, these python scripts reimple-
ment the methodologies within ffTK44 in a way that the objec-
tive functions within the charge and bonded optimizations can
incorporate target data from several molecules simultaneously,
which was not required for the small molecules ffTK was origi-
nally designed for. The greatest protocol deviations from stan-
dard approaches come in the bonded term optimization, where

additional experimentation determined that unrestrained opti-
mization leads to poor behavior during simulation. This find-
ing lead to experimentation in charge assignment and in the
limitations placed upon the optimizer during bonded term opti-
mization, which is detailed primarily in the Supporting Informa-
tion. Note that we refit only the circled terms from Eq. 1, taking
the non-bonded Lennard-Jones terms directly by analogy from
CGenFF as has been recommended previously,44 and eliminating
the few improper terms originally found in the CGenFF descrip-
tion of lignin, which are unnecessary to recapitulate the structure
and energetics of lignin.

3.1 Test Compounds and Initial Parameter Generation

The lignin test compounds (Fig. 1), were chosen by consider-
ing a combination of literature sources highlighting specific lignin
chemistries with practical considerations regarding the construc-
tion of target data. Monomeric units are the simplest, with
three chemistries predominating in natural lignins,5,21 although
we also include caffeyl-lignin16,61,62 due to its discovery in seed
coats61 (Fig. 1, Monomers). Tricin, while strictly speaking a
flavonoid rather than a typical lignin monomer, is also parameter-
ized, due to its role in monocot lignin biosynthesis.63,64 The small
size of the monomers makes quantum mechanical calculations
inexpensive, which allows us to also construct target data for
the observed variations of these monomers at the C1 position65

(Fig. 1, End Caps), effectively covering the full space of observed
monomeric lignins. As the quantum methods CHARMM param-
eterization demands scale polynomially (N5) with the number of
atoms,66 only lignin dimers20,65,67–69 were explicitly parameter-
ized (Fig. 1, Lignin Linkages) in addition to the aforementioned
monomers. Trimer-scale linkages, e.g., spirodienone,68 are not
included, as the increased size of the test compounds make the
creation of target data impractical. For studies of these larger,
rarer linkages, our parameterization experience suggests that a
general force field would be a reasonable starting point for these
systems.

Dimers in which lignin is linked to a carbohydrate are also
new with this force field (Fig. 1, Carbohydrate Linkages). Al-
though these sugar linkages are only explicitly parameterized for
five membered rings such as those found in arabinose, the mod-
ular nature of the carbohydrate force field70,71 makes creating
the appropriate patches for a six membered ring a straightfor-
ward exercise in renaming the appropriate atom types, and are
included in the topology files provided in the Supporting Infor-
mation. Strong experimental evidence shows that lignin links to
hemicellulose via ferulate esters, which may themselves be linked
together in ways not seen in general lignin linkages.68,69,72 These
8,8-diferulate linkages are highly charged at neutral pH, which
can cause problems during parameterization in the convergence
of compound-water interaction calculations, so these are treated
as being protonated. Other evidence shows alternative linkage
topologies may also be possible, although the nomenclature is
less well established.68

Natural lignin is a racemic mixture,73,74 rather than demon-
strating uniform chirality as in other biological polymers such
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Fig. 2 Example of how compounds, in this case coniferyl alcohol
and caffeyl alcohol (left), are translated into the graphs used for both
neighborhood-based and group-based charge equivalence determina-
tions. In these graphs, the nodes are labeled according to atomic in-
dex, and the edges show the bonding topology. The atom typing graphs
(middle) are colored according to atom type, where atoms with equiv-
alent atom types are represented by circles of the same color. Thus
for coniferyl alcohol, atoms 16 and 18, the carbons of the -ene group,
are colored the same, and also share a color with the equivalent car-
bons in caffeyl alcohol, as well as with any other similar functional groups
throughout the test compound set. This also demonstrates the split of the
CG2R61 type (orange), which was assigned by CGenFF to be the atom
type within most aromatic rings. We create new atom types, colored here
in darker and lighter purple, to split from CG2R61 when it is bonded to
oxygen-containing compounds. The group assignment (right) coloration
is different, in that unique colors only denote individual “groups” (atoms
whose charge should sum to an integer) within each molecule. If the
subgraphs formed by each group are identical (e.g. atoms 4, 5, and 6
and atoms 7, 8, and 9 within caffeyl alcohol), the group-based charge
optimization assigns the same charges on equivalent atoms. More ex-
amples of conversion between chemical structure and near-integer sum
groups are presented in Fig. S2.

as proteins or DNA.75 To account for this, molecular geometries
were optimized at a MP2/6-31G* level of theory using Gaussian
0976,77 for every possible stereochemical combination of lignin
within every compound shown in Fig. 1. This resulted in 199 to-
tal optimized geometries at quantum mechanical minima, which
are used as the starting points for subsequent calculations within
the charge optimization and bonded optimization steps.

For each compound, initial atom typing and parameter deter-
mination was carried out through the ParamChem web interface
to CGenFF.40 Attempts to split atom types based on the local ge-
ometry around each atom were not found to significantly improve
the overall quality of the parameters, and so the CGenFF atom
types are largely retained. However, aromatic ring carbon atoms
with the original CGenFF type CG2R61 were split based on the
ring substituents, where aromatic carbons bonded to methoxy
groups or alcohols are given their own type (Fig. 2). To distin-
guish the new atom types from those found in CGenFF, new pa-
rameters found in the Supporting Information insert an “L” into
the second position of the atom type. Thus CG2R61 becomes the
CLG2R61 type, which was split further into CLG2R6A if bonded
to a hydroxyl group, or CLG2R6B if bonded to another oxygen,
such as in a methoxy group or ether. These new atom types in-

herit the Lennard-Jones parameters from the progenitor CGenFF
atom type.

3.2 Charge & Bond Optimization

As stated previously, the optimization process inherits its ap-
proach from standard tools to determine CHARMM parameters,
as laid out in prior literature.40,44,78 However, the result of
the optimization does depend on the implementation, and thus
we experimented with different ways of assigning equivalent
charges, dihedral torsion limits, and the incorporation of force
information into the force field. Extended discussion of the meth-
ods and their implementation can be found in the Supporting In-
formation, but the noteworthy features are listed here for com-
pleteness.

1. Two alternative charge group definitions, neighbor-based
and group-based (Figs. 2 & S2). Both use subgraph isomor-
phism79 to determine equivalent atoms.

2. Water interactions computed at the HF/6-31G* level of the-
ory.80

3. Optimization of bonded and nonbonded objective functions
(Eqs. S1 and S2) with the L-BFGS-B algorithm.81

4. Structural perturbations to compute bond, angle, and dihe-
dral scans carried out at the MP2/6-31G* level of theory.77

5. Four different approaches to restricting allowed values in the
dihedral term Fourier series (Table S1), reducible to a linear
least-squares problem.82

6. Thrust83 and CUDA84 libraries were used to accelerate eval-
uation of the bonded objective function.

7. Incorporation of force magnitudes at quantum minima into
the minimized objective function (Eq. S2) through a weight-
ing parameter v.

3.3 Analysis

Upon completion of the optimization procedure under the dif-
ferent implementation conditions tested, analysis was performed
via a number of tests. These tests compared the fitted parameters
to both the target data used to generate the fit and simulation
observables that were not included during the optimization pro-
cess. The charges were evaluated based on how well they reca-
pitulated the interaction energies used as target data, as well as
the scale of the adjustments made relative to the CGenFF start-
ing point and computed enthalpy of vaporization for a subset of
molecules for which experimental data are available. Likewise,
the bonded terms were evaluated with respect to how small the
residuals were relative to the available target data. Separately,
we analyzed force magnitudes at the quantum mechanical mini-
mum energy geometries to determine the degree of overfitting in
constructing the molecular mechanics energy landscape.

In addition to target data comparisons, the bonded terms were
also evaluated in terms of how far, in geometric space, minimized
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structures in the newly optimized force field diverged from previ-
ously calculated quantum mechanical optimized structures. The
classical minimization was carried out in NAMD 2.1285 using the
16 different parameter combinations (4 dihedral sets, 4 different
values for v in Eq. S2) starting from each of the 199 minimum en-
ergy configurations determined quantum mechanically. This is a
surrogate metric for overall force field accuracy, as our optimiza-
tion scheme does not guarantee that the minimum energy con-
figurations determined from quantum level calculations are mini-
mum energy points on the potential energy landscape created by
our classical force field (Fig. S3). On the multidimensional po-
tential energy surface, if there is a net force along these degrees
of freedom orthogonal to the quantum mechanical target data
scans, the resulting geometry will distort. Minimizing the struc-
tures with this new classical potential energy surface informs us
as to how influential these orthogonal degrees of freedom would
be in typical simulation systems; we used the root mean square
deviation (RMSD) between the classical and quantum minimum
energy structures as a proxy for overfitting in the optimization.

Beyond minimization, a set of simulations were carried out
to determine the enthalpy of vaporization both from the initial
CGenFF parameter set as well as the newly optimized set. Due
to the paucity of available reference data, these calculations were
only carried out for phenol, catechol, guaiacol, and syringol. The
enthalpy of vaporization (∆Hvap) can be estimated from the av-
erage potential energies from molecular dynamics trajectories in
gas and liquid phases ∆Hvap = Ug −Ul + kT , where Ug and Ul

are the average molecular potential energies in gas and liquid
phases, respectively, observed during simulation.86 Thus, each of
the compounds were simulated four times, once with CGenFF pa-
rameters in the gas phase, once with CGenFF parameters in the
liquid phase, and in gas and liquid phases with our newly opti-
mized parameters instead. These 2 ns simulations were carried
out in NAMD 2.1285 with 2 fs timesteps and maintained at 298 K
through the use of a Langevin thermostat.87 To achieve a liq-
uid rather than a crystalline phase, 500 copies of each compound
were put into a box with 60 Å sides using the insert-molecules
program from the GROMACS simulation suite,88 and pressure
was maintained at 1 atm via the Langevin piston method.89 After
0.4 ns for simulation box equilibration, the last 1.6 ns of simula-
tion were used in the calculation of ∆Hvap.

Another comparison to experimental observables comes in
the form of crystal simulations. Existing lignin-related com-
pound crystal structures are present in the Cambridge Structural
Database.90 We took a set of 20 of these structures (8 monomeric
crystals,91–96 11 dimeric crystals,97–106,108 and a trimeric crys-
tal107), and simulate them for 20 ns with both the general
CGenFF and the newly developed lignin force field. Chimera109

was used to create a complete unit cell model of each molecule,
which was then replicated along each axis using the VMD110 plu-
gin TopoTools such that the minimum dimension of the crystal
was at least 50 Å. The simulation was perfomed using GROMACS
2016.4,88,111 using TopoGromacs112 to facilitate the conversion
between input formats. The simulation thermostat was set to the
temperature at which the crystal structure was obtained (Tables 1,
2) using a Nose-Hoover thermostat.113 Other simulation param-

Table 1 Summary of monomeric lignin-crystals simulated. This includes
the small molecule structure, the common name of the molecule, the
Cambridge Structural Database 90 code, and the temperature T at which
the underlying X-ray data were collected. Dimeric and trimeric lignin
structures are presented in Table 2.

Structure Name CSD Code T (K)

OH

HO
Catechol CATCOL13 100

O

OH

H

p-Hydrox-
ybenzalde-
hyde

PHBALD1191 296

O

O

CH3 OH

H

Vanillin YUHTEA01 123

O

O

CH3 OH

H

Vanillin YUHTEA0392 296

O

O

CH3 OH

O

CH3

H

Syringalde-
hyde

IZALAW93 293

O

O

CH3 OH

H

Coniferalde-
hyde

SIPKEH94 295

OHO

O

CH3 OH

Vanillic acid CEHGUS95 293

OHO

O

CH3 OH

Ferulic acid GASVOL0196 110

eters were identical across crystals. Long-range electrostatics was
handled using particle mesh Ewald114 with a 1.2 Å grid spacing
past the typical 12 Å short-range cutoff and 10 Å switching dis-
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Table 2 Summary of multimeric lignin-crystals simulated, with the small molecule structure, coupling shorthand, Cambridge Structural Database 90

code, and temperature T at which the underlying X-ray data were collected. The linkage shorthand used here refers to the monomers and linkages
(Fig. 1) used to construct each structure, and does not distinguish between end-caps that were applied to individual monomers. The dibenzodioxocin-
like structure is not labeled in this way, and instead is the combination of three guaiacyl monomers, linked together by α-O-4, β -O-4, and 5-5 linkages.

Structure Shorthand CSD Code T (K) Structure Shorthand CSD Code T (K)

HO OH

O

O

CH3

O

CH3 OH

G-βO4-G RABWUM97 153 HO OH

O

O

CH3

O

CH3 OH

G-βO4-G SIPPEM98 295

HO OH

O

O

CH3

O

CH3 OH

O

CH3

S-βO4-G VADDOT99 295
HO

HO

O

O
H3C

OH
O

CH3

O

CH3 OH

O

CH3

S-βO4-S SAZHEG100 295

HO

HO

O

O
H3C

O

CH3

O

CH3 OH

O

CH3

S-βO4-S FOCGUA101 173
HO

HO

O

O
H3C

O

CH3

O

CH3 OH

O

CH3

S-βO4-S IDIKIP102 183

O O

O

CH3

OH

O

H3C
HO

G-ββ -G INELIW103 153 O O

O

CH3

OH

O

H3C
HO

G-ββ -G INELIW01104 153

O O

O

CH3

OH

O

H3C
HO

G-ββ -G FAFXUF105 295

OH

O
CH3

O

OH3C

HO G-β5-G FUMVUE106 295

OH

O
O

CH3
O

H3C CH3

O
CH3

O

H3C

HO

dibenzodioxocin TUGWAT107 193

HO

O
H3C

OH

O
CH3

HO
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tance. Bonds to hydrogen were constrained using P-LINCS,115

enabling a 2 fs integration timestep. To allow the triclinic unit cell
vectors to change independently, an anisotropic Berendsen baro-
stat116 was used to maintain the pressure at 1 atm. The last 10 ns
of simulation was consistently used when measuring changes in
crystal structure and density, as well as molecular-level changes
in structure.

Like much of the parameterization framework, the analysis
leveraged several python libraries, including NumPy,117 SciPy,
matplotlib,118 NetworkX,119 as well as VMD for visualization.110

To generate 2-D representations of each molecule, we extensively
used Marvin and its molconvert tool, developed by ChemAxon
(https://www.chemaxon.com).

4 Results and Discussion
Having reimplemented the typical CHARMM parameterization
workflow, there were a number of implementation questions
that needed to be evaluated. These questions include which
atoms should carry the same atomic point charges across differ-
ent molecules to aid in parameter transferability, and what are the
most appropriate dihedral terms to include to accurately recapit-
ulate the potential energy surface. As mentioned in the Meth-
ods, we tried two separate approaches to determining equivalent
chemical environments for atomic charges, as well as four varia-
tions for both the dihedral set and the incorporation of force data
into the optimization (Eq. S2). Determining which of the pos-
sible approaches is most suitable overall is discussed thoroughly
in the Supporting Information, where quantitative metrics were
evaluated to determine the optimal parameter set, also provided
in the Supporting Information. The results presented here only
compare the optimal parameter set to the original CGenFF start-
ing point, highlighting the improvements obtained relative to a
generic force field.

4.1 Charge Analysis

As our charge optimization objective function (Eq. S1) explicitly
considers lignin-water interaction energies as a metric to improve,
we expected improvement in matching quantum-mechanical in-
teraction energies with the newly optimized force field (Fig. 3).
The interaction energy matching between quantum and molecu-
lar mechanical reduced the scattering within Fig. 3A compared
to the CGenFF starting point, with most interaction energies im-
proving. The improvement in practical terms is demonstrated in
Fig. 3B, where we see that, after optimization, approximately
50 % of the calculated water interaction energies are within
0.5 kcal mol−1 of their quantum energy targets, a significant im-
provement on the 40 % from the CGenFF starting point. These
improvements are most striking at the tail end of the distribu-
tions, with residual range spanning the 10th and 90th percentiles
shrinking to just over 1 kcal mol−1, rather than the 1.3 kcal mol−1

as in CGenFF.

These improvements in interaction energy generally required
only small changes from the initial point charges provided by
CGenFF. The charge changes were bounded by the imposed con-
straints during the optimization process, in which a maximum
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Fig. 3 Comparison of water interaction energies determined through
quantum calculations and the parameterized point charges in our molec-
ular mechanics framework. (A) Scatter diagram comparing the adjusted
quantum (QM) and classical (MM) interaction energies for the low in-
teraction energy poses (E int

QM < 5 kcal mol−1 and E int
V DW < 1 kcal mol−1)

for CGenFF (black) and our optimized lignin force field (violet). The
cutoffs reduce the number of points plotted, which improves the visual
clarity. The solid black diagonal line indicates the line where E int

QM =

E int
MM , which is surrounded by darker and lighter bands indicating devi-

ations of 1 kcal mol−1 and 2 kcal mol−1. In (B), the scatter plot is trans-
formed into a cumulative distribution of the interaction energy residuals
(E int

QM −E int
MM), with a highlighted grey region representing residuals less

than 0.5 kcal mol−1.
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Fig. 4 Cumulative distribution of the difference in charges between the
initial charges assigned by CGenFF (qCGenFF ) and the new charges as-
signed through the near-integer sum grouping method implemented here
(qopt ). This includes breaking down the difference in charge depending
on the element of each atom, since most hydrogen charges were ex-
plicitly held fixed to values found elsewhere in the CHARMM force field.
Most other charges change only modestly, and very few drift as much as
they were allowed by the imposed bounds in the optimization. An alter-
native quantification including the neighbor-based charges is presented
in Table S2.
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Table 3 Enthalpy of vaporization (∆Hvap, reported in kJ mol−1) for small
organic molecules constructed with this parameter set and CGenFF com-
pared to existing experimental data. a For syringol, a heat of vaporization
is not available, and a heat of sublimation is used as the reference state
instead. Based on the difference between heats of sublimation and va-
porization for catechol, 121 the heat of vaporization for syringol is likely
20-30 kJ mol−1 lower than this literature value for sublimation.

Compound Literature ∆Hvap CGenFF ∆Hvap Opt. ∆Hvap

Phenol 59.1122 62.1±1.2 60.1±0.9
Catechol 70.0±0.7121 64.3±1.1 68.9±1.1
Guaiacol 62.6±0.5123 46.0±1.3 59.5±1.3
Syringol 98.4±1.1a 123 53.1±1.3 67.3±1.4

change of 0.25 charge units was allowed. This upper bound
is almost never reached, with most atomic charge changes be-
ing restricted to less than 0.05 charge units (Fig. 4, Table S2).
The charge changes observed depend on the identity of the
atom. Most hydrogen charges were unchanged, with much of
the remainder changing by less than 0.02 charge units to re-
flect the modifications required to make charge groups integer
charges. Oxygen atoms, by contrast, tend to show the largest
charge changes, with many charges becoming more positive
through optimization, counterbalanced by small decreases in car-
bon charges. In effect, we have lowered the polarization of in-
dividual functional groups relative to the starting point. The
CHARMM fixed-charge force field is intentionally overpolarized
to better reproduce structure and energetics in the condensed
phase,70,120 which we accounted for by biasing the molecular
dipole to be between 20-50 % larger in our parameter set than
the quantum dipoles in a vacuum, consistent with CHARMM pa-
rameterization methodology.40,44

A quantitative point of comparison to assess the impact of
polarization is to compute an enthalpy of vaporization,70,120 a
quantity dependent on the quality of the non-bonded parameters.
As evidenced in Table 3, our newly optimized charges yielded en-
thalpies of vaporization that were uniformly closer to the avail-
able experimental reference values,121–123 as is particularly no-
ticeable when a methoxy group is present (as in guaiacol or sy-
ringol). One possible explanation is that the adjacent alcohol to
the methoxy group in lignin withdraws electrons more strongly
relative to the methoxy groups, reducing the polarization of the
methoxy groups in native lignin. However, the parameterized
molecule from CGenFF that is used for methoxy charge assign-
ment, anisole, has an isolated methoxy. The isolation of this elec-
tron withdrawing oxygen increases the magnitude of the partial
negative charge, overpolarizing guaiacol and syringol in CGenFF
and leading to less accurate vaporization enthalpies (Table 3).
This suggests that the reduced polarization of individual func-
tional groups while retaining the overall polarization of the whole
molecule is an improvement on the CGenFF defaults, although
the conclusion is limited by the availability of comparable ref-
erence data. However, given the evidence showing the improve-
ment of the new charge set relative to the initial charges provided
by CGenFF in recapitulating lignin-water interactions (Fig. 3, Ta-

B

C D

A

Fig. 5 Examples of the quantum mechanical and classical potential en-
ergy surface for a limited subset of the 2574 bond, angle or dihedral
scans used as target data. Each subpanel shows the energy trace for
a series of molecular poses corresponding to a relaxed quantum me-
chanical energy scan along a specific degree of freedom. The quantum
mechanical energy trace is drawn in black, the CGenFF energy trace is
gray, and the energy trace after optimization is shown in orange, matching
the color scheme used for the multi-set optimization shown in Fig. S4. A
molecular image of the compound being scanned in its central pose can
be found within each panel, with a black arrow indicating which degree
of freedom is being probed by the scan. (A) shows a typical methoxy ro-
tation, (B) demonstrates an angular change between a lignin and sugar
monomer, (C) shows an α-hydroxyl rotation, and (D) shows a rotation
around an ester-adjacent bond. A similar figure showing the scans for
the alternative dihedral sets is presented as Fig. S4.

ble S3), we think that the improvement is not isolated to just the
small organic molecules tested in Table 3, but that the new model
more accurately tracks experimental observables more broadly.

4.2 Intramolecular Interactions
As described in the Supporting Information, 16 different bonded
optimizations were tested during the optimization of the bonded
terms of the potential energy function (Eq. 1). Relaxed quantum
mechanical geometry optimizations that scan along internal de-
grees of freedom were the primary input for this optimization,
with a selection of these scan results shown in Fig. 5.

Subpanels within Fig. 5 highlight general trends within the
larger population of potential energy scans. Sometimes, as in
Fig. 5A, CGenFF did not have the right weighting between multi-
plicities to fully recapitulate the underlying quantum mechanical
potential energy scan. Another related example is presented in
Fig. 5B, where the optimum angle at the bridging oxygen was not
originally correct in CGenFF due to poor analogy, but is improved
in our optimization. In other cases, the improvements relative to
CGenFF were modest, such as in Figs. 5C and 5D, where the quan-
tum potential energy surface is not perfectly fit by the optimized
parameter set. The residuals relative to quantum, although gen-
erally smaller than in CGenFF, were on the order of 1 kcal mol−1.
Forcing the residuals to zero appears to be impossible given the
structure of Eq. 1, as even when all dihedral terms in the Fourier
sum were nonzero, the overall energy trends were not always
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preserved (Figs. S4E & S4F).

Broader analysis showed significant reductions in the quantum
mechanical energy residuals from CGenFF to the newly optimized
parameters (Table S4), as the Cauchy distribution of residuals
(Fig. S5) showed significantly less spread away from the mean
of zero after optimization. Ideally the distribution would have
zero width, with all molecular mechanics energies coincident
with quantum energies, but the harmonic and sinusoidal approx-
imations made in the potential energy function (Eq. 1) limit the
eventual accuracy of the force field. Typical errors in local poten-
tial energy minima were around 0.2 kcal mol−1, with larger errors
sometimes exceeding 1 kcal mol−1 for barrier heights (Figs. 5 &
S32). The improved energies also improve local molecular struc-
ture, such as when comparing RMSDs relative to a quantum min-
imized structure (Figs. S6 & S7).

4.3 Structure Analysis

Due to the heterogeneity of native lignin polymers, few experi-
ments exist with which the overall performance of the force field
can be directly compared. Small molecule crystal structures of
lignin derived compounds (Tables 1 and 2) provide a starting
point for lignin structural studies. By comparing the published
crystal structures with the results of simulation using both our
developed optimized force field and a general CGenFF force field
(Table 4, Figs. S8–S27), we assess the improvements in structure
along a number of metrics. In 14 of the 20 crystals simulated, the
optimized lignin force field had a density closer to the crystalline
density than did the CGenFF force field. In three quarters of the
simulated crystals, the RMSD of the whole crystal (RMSDC) is
improved relative to the experimental starting structure, once by
nearly 3 Å when CGenFF parameters caused the crystal to melt.
By contrast, the RMSD difference when CGenFF better matched
the crystal tend to be small. The exceptions were syringaldehyde
and the G-55-G crystals, in which both the new force field and
CGenFF adopt a new crystal packing during simulation as judged
by the unit cell parameters (Table S5), increasing deviations from
the initial crystal structure. Together, these results highlight the
improvement in the intermolecular interactions in the optimized
force field and the resulting improvement in quantifiable experi-
mental observables.

The improvements in crystalline behavior were not the result
of intramolecular interactions, as the average structural change
observed within individual molecules (RMSDM) was typically
small, the expected result for a thermalized crystal (Figs. S8–
S27). Within molecules, the mean differences in RMSDM were
typically less than 0.04 Å between CGenFF and optimized force
fields (Table 4). Of the remaining four molecules with signifi-
cant differences in RMSDM , the two force fields are evenly split
in performance, with two exhibiting a lower RMSD in CGenFF
and two instead showing smaller deviations from the crystal un-
der the optimized force field, although again CGenFF occasion-
ally exhibited much higher RMSDs than is seen in the reverse
direction. The high RMSDs for specific molecules are emblematic
of the trends shown in Fig. 5. Usually, CGenFF parameters ade-
quately described the underlying potential energy surface of the

molecule, resulting in comparable RMSDM values with the newly
optimized force field. However, there are internal degrees of free-
dom that are poorly described by a generic force field, such as in
Figs. 5C & 5D, which can dramatically increase the RMSDM . In
particular, the description of the bonds and angles within a β -β
linkage improved significantly in the new force field, reducing the
molecular RMSDM for these lignin linkages.

Given the good structural agreement between experiment and
simulation, we need to consider the possibility of our parameter
set being overfit given the target data provided during optimiza-
tion. The minimal structural deviations observed for our parame-
terized compounds against quantum-derived optimum structures
(Fig. S6, Table S6) suggested that the optimum geometries coin-
cide. Additional tests of our force field compared against small
molecule crystal structures also indicated that the molecular ge-
ometries were in line with a typical all-atom force field (Table 4).
This analysis suggests that the overfitting scenario sketched out
in Fig. S3 was avoided in force field development. We conclude
that the developed force field for lignin should be applicable to
general lignin polymers.

5 Conclusion
The parameter set generated here is an important step forward to-
wards accurate molecular simulation of lignin. These new lignin
parameters are self-consistent, and extend the prior force field38

into linkage types that were not previously parameterized. As
we purposefully chose charge and parameter sets that are local
to simplify lignin polymer construction, it is straightforward to
apply these parameters to newly built lignin systems. In addi-
tion, strict adherence to the CHARMM parameterization philos-
ophy maximizes the compatibility between the lignin parame-
ters determined here and the rest of the CHARMM force field.
Furthermore, with specifically parameterized linkages to sugars,
this new force field enables the construction of complete biomass
models, including direct interaction between lignin and hemicel-
lulose, thereby permitting new questions of biomass structure and
interaction to be addressed through computational modeling.

The extensive parameterization carried out here offers a num-
ber of improvements over a general force field. The new param-
eters better recapitulated experimental enthalpy of vaporizations
(Table 3), improved the fit against the scanned potential energy
surfaces (Fig. 5), and better mimicked structures seen in small
crystals of lignin analogs (Table 4). These improvements came
with only minimally increasing the number of free parameters
relative to the original general force field, specifically splitting up
aromatic carbon parameters depending on the bonded functional
groups to reproduce the different angles seen in minimum en-
ergy structures (Fig. S28), and adding selected dihedral terms to
fit specific potential energy scans (Figs. S4A and S4B). The im-
proved energetics did not come at the cost of structure, with min-
imum energy configurations that differed from quantum calcula-
tions just as was observed for the general force field (Table S6),
suggesting that the parameters are not overfitted to the target
data, and should be broadly applicable to native lignins.

There are innovations in the parameterization process that can
be applied to other systems. The GPU-accelerated bonded opti-
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Table 4 Comparison of mean crystal properties when simulated using the developed force field (Opt), and using the general force field (CGenFF).
This includes the density (ρ) ratio of simulated and experimental crystals ( ρsim

ρcrys
), the RMSD of the complete simulated crystal relative to the starting

crystallographic structure (RMSDC), and the average intramolecular RMSD for individual molecules within the crystal (RMSDM). The uncertainties
in the last digit are reported in parentheses, and were determined from the standard deviation of the 200 samples taken over the last 10 ns of the
source trajectory used to determine the mean. The separator between ferulic acid and G-βO4-G marks the boundary between the monomeric crystals
(Table 1) and multimeric crystals (Table 2).

Name/shorthand CSD Code ρOpt ratio ρCGenFF ratio RMSDC
Opt (Å) RMSDC

CGenFF (Å) RMSDM
Opt (Å) RMSDM

CGenFF (Å)

Catechol CATCOL13 0.9687(2) 0.9708(2) 0.977(8) 1.336(8) 0.05(1) 0.07(2)
p-Hydroxybenzaldehyde PHBALD11 0.9755(6) 0.9607(6) 1.09(2) 1.26(2) 0.11(3) 0.11(3)
Vanillin YUHTEA01 0.9749(2) 0.9571(2) 1.331(8) 1.426(9) 0.10(2) 0.09(2)
Vanillin YUHTEA03 1.061(1) 1.0451(4) 1.52(3) 1.61(1) 0.14(4) 0.13(3)
Syringaldehyde IZALAW 0.9491(4) 0.9214(3) 8.92(1) 8.40(1) 0.19(4) 0.18(4)
Coniferaldehyde SIPKEH 0.9913(6) 0.9867(5) 3.16(2) 3.14(2) 0.5(1) 0.3(1)
Vanillic acid CEHGUS 0.9360(4) 0.9348(5) 1.01(1) 1.06(1) 0.15(4) 0.15(4)
Ferulic acid GASVOL01 0.9557(2) 0.9468(2) 0.837(6) 1.352(7) 0.11(3) 0.13(4)

G-βO4-G RABWUM 0.9630(2) 0.9584(2) 0.592(7) 0.631(6) 0.20(4) 0.16(4)
G-βO4-G SIPPEM 0.9538(3) 0.9543(3) 0.93(1) 1.100(9) 0.36(9) 0.38(5)
S-βO4-G VADDOT 0.9546(3) 0.9451(4) 1.15(1) 1.72(2) 0.29(7) 0.30(7)
S-βO4-S SAZHEG 0.9474(4) 0.9475(4) 0.95(1) 0.84(1) 0.25(6) 0.27(9)
S-βO4-S FOCGUA 0.9559(1) 0.9393(2) 0.917(7) 0.84(1) 0.19(4) 0.17(4)
S-βO4-S IDIKIP 0.9480(2) 0.9289(3) 0.84(1) 1.83(1) 0.19(4) 0.23(6)
G-ββ -G INELIW 0.9626(2) 0.9460(3) 0.786(9) 1.42(1) 0.11(7) 0.11(7)
G-ββ -G INELIW01 0.9656(2) 0.9543(2) 0.82(2) 2.322(8) 0.12(9) 0.2(2)
G-ββ -G FAFXUF 0.9368(4) 0.8415(8) 0.99(1) 3.97(2) 0.19(4) 1.5(3)
G-β5-G FUMVUE 0.9357(3) 0.9367(3) 1.01(1) 1.07(1) 0.25(7) 0.23(6)
dibenzodioxocin TUGWAT 0.9518(4) 0.9603(3) 0.88(2) 1.23(2) 0.29(4) 0.26(9)
G-55-G UJOGIK 0.9692(1) 0.9482(4) 2.521(4) 1.77(4) 0.78(4) 0.6(2)

mization procedure is generically useful to any parameterization
effort of classical force fields, allowing a quick assessment of how
each term contributes to the overall quality of the optimized pa-
rameters, and how individual parameters should change to im-
prove the global fit. Our attempts to include force information
into the bonded optimization process ultimately did not improve
the energetics or structure of the generated parameter set. How-
ever, with the machinery now in place to include that as part of
the objective function and within the optimization workflow, we
are confident that in the future others can incorporate forces into
their own workflows and possibly eliminate the time-consuming
potential energy scans.

It is also eminently possible that emerging generic force fields
based on machine learning124–126 will obviate the need for force
fields tailored to specific biopolymers in the future. However, for
current ongoing work in modeling lignin within biological or in-
dustrial processes, the force field as it stands now significantly ex-
pands the set of currently tractable problems, including those fea-
turing complex lignin topologies and interactions between lignin
and hemicelluloses that were not explicitly parameterized previ-
ously. We envision tools that work in conjunction with this force
field to facilitate lignin atomic model construction and enable re-
searchers to visualize their molecules of interest.
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