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Various catalytic technologies are being developed to efficiently convert lignin into renewable chemicals. However, due to 

its complexity, catalytic lignin depolymerization often generates a wide and complex distribution of product compounds. 

Gas chromatography/mass spectrometry (GC-MS) is a common analytical technique to profile the compounds that 

comprise lignin depolymerization products. GC-MS is applied not only to determine product composition, but also to 

develop an understanding of catalytic reaction pathways and of relationships among catalyst structure, reaction 

conditions, and the resulting compounds generated. Although a very useful tool, the analysis of lignin depolymerization 

products with GC-MS is limited by the quality and scope of available mass spectral libraries and the ability to correlate 

changes in GC-MS chromatograms to changes in lignin structure, catalyst structure, and reaction condition. In this study, 

GC-MS data of the depolymerization products generated from organosolv hybrid poplar lignin using a copper-doped 

porous metal oxide catalyst and a methanol / dimethyl carbonate co-solvent was analyzed by applying a factor analysis 

technique, positive matrix factorization (PMF). Several different solutions to the PMF model were explored. A 13-factor 

solution sufficiently explains the chemical changes occurring to lignin depolymerization products as a function of lignin, 

reaction time, catalyst, and solvent. Overall, seven factors were found to represent aromatic compounds, while one factor 

was defined by aliphatic compounds.  

Introduction 

Biorefineries have attracted widespread interest as a 

promising scheme for renewable energy, chemical, and 

material production.
1-4

 If US second generation biofuel 

production targets are met in 2022, nearly 62 M dry tons/yr of 

lignin will be generated as a by-product, which is currently 

being under-utilized as low-grade fuel for heat and electricity.
5-

8
 Thus, technologies must be developed to efficiently use both 

carbohydrate and lignin fractions of biomass for biorefineries 

to be economical and have a minimal environmental footprint. 

Lignin is one of three main plant cell wall components (i.e., 

lignin, cellulose, and hemicellulose), comprising ~15-30% of 

the dry weight of lignocellulosic biomass.
9
 Described as a 

random copolymer, lignin is comprised of three major subunits 

[i.e., p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) 

monomers] linked by different types of inter-unit linkages 

(Figure 1). The native, aromatic-rich substructure of lignin 

makes it an ideal resource for the production of renewable 

aromatic and phenolic chemicals.
2, 10-12

 Evolution has made 

lignin an integral component of the defensive and support 

structures within plant cell walls. Accordingly, lignin is highly 

Figure 1. A structural representation of lignin, depicting various linkages and three 

monomers. In the bottom-left, the three monomers [i.e., coniferyl (G), sinapyl (S), 

and p-coumaryl (H) alcohol] are shown.  
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resistant to biological and chemical deconstruction. Therefore, 

thermal depolymerization approaches require harsh reaction 

conditions and lead to wide product distributions that 

compromise downstream processing of any particular 

compound for chemical production.  
In lignin, 50-75% of the inter-unit linkages are comprised of 

substructures that contain aryl-ether bonds.
13

 Therefore, 

selective depolymerization of lignin into its monomers for 

chemical production at lower temperatures, which limits 

secondary reactions, is possible through catalytic systems that 

target the cleavage of aryl-ether bonds. One such promising 

catalytic route is hydrogenolysis which generates aromatic and 

phenolic derivatives as products. 

Various catalysts have been evaluated for selective aryl-

ether bond cleavage and lignin depolymerization.
14-19

 For 

example, Song et al. reported using Ni catalyst on activated 

carbon, alumina, or porous silica to selectively convert birch 

wood lignin to GC-detectable phenolics in alcohols.
20

 In 

another contribution, Ye et al. showed the selective 

production of 4-ethylphenolics from hydrogenolysis of lignin 

via noble metals (Pt, Pd, and Ru) on an activated carbon 

support.
21

 Ford et al. studied a copper-doped porous metal 

oxide catalyst (CuPMO) for lignin depolymerization via 

hydrogenolysis in methanol (MeOH).
22-27

 In addition to 

catalyzing aryl-ether hydrogenolysis, CuPMO promotes alcohol 

reforming to provide the necessary reducing equivalents for 

hydrogenolysis.  

 There are many catalytic lignin depolymerization 

conditions (e.g., biomass/lignin source, reaction temperature, 

reaction time, catalyst structure, catalyst loading, stirring 

speed, etc.) and phenomena that can affect lignin 

depolymerization reaction kinetics and networks, and thus the 

resulting product distribution. Therefore, controlling lignin-

derived product selectivity and yield requires the ability to 

analyze lignin depolymerization products. More important 

than enabling product analysis would be the ability to leverage 

analytical results to develop a deeper understanding of lignin 

depolymerization reactions that facilitates the design of new 

catalysts and reaction systems for the conversion of lignin into 

desired products. However, due to the compositional 

heterogeneity and complexity of lignin and lignin 

depolymerization products, such analysis and its utilization is 

challenging.  

Gas chromatography/mass spectrometry (GC-MS) has long 

been applied in many catalytic lignin depolymerization 

studies.
28-34

 Even when applying selective catalysts that target 

aryl-ether bond cleavage, a complex distribution of 

compounds can still be generated. In this case, the resulting 

GC-MS chromatograms have a level of complexity reflecting 

the compositional complexity in the lignin depolymerization 

product. These complex GC-MS chromatograms generally 

consist of numerous chromatographic features (i.e., peaks), 

many of which are unresolved and associated with mass 

spectral fragmentation patterns that are not in available mass 

spectral libraries. The manual comparative analysis of GC-MS 

datasets for a small number of lignin depolymerization 

products, comparing their compositional distributions, can be 

performed.
35-38

 However, when probing large numbers of 

products to explore the effect of several lignin 

depolymerization conditions, the quantity and complexity of 

these GC-MS datasets make human analyses difficult and time-

consuming. Hence, computer-assisted signal processing can 

reduce GC-MS dataset complexity and transform GC-MS 

datasets into usable and actionable information. 

The broad field of chemometrics generally aims to reduce 

the dimensionality of a given dataset to a more manageable 

number of components, clusters, or factors.
39, 40

 Principal 

components analysis (PCA) is one of the more widely used 

chemometric techniques, and works by identifying the 

orthogonal (uncorrelated) components that can best recreate 

a dataset.
41

 In addition to PCA, other factor analysis methods 

such as  positive matrix factorization (PMF) and non-negative 

matrix factorization (NMF), have been developed to aid the 

analysis of complex datasets.
42, 43

 Previous studies comparing 

PMF and PCA have found that PCA is prone to influence by low 

signal-to-noise measurements.
44-46

 PMF and NMF analysis 

techniques both constrain solutions to include only positive 

values, but use different algorithms to reach a solution and 

NMF does not utilize uncertainty weighting. Based on previous 

studies
44, 45

, uncertainty weighting (used only in PMF) limits 

Figure 2. A graphical illustration of PMF analysis. Original lignin depolymerized GC-MS datasets (on the left of the equal sign) were analyzed by grouping lignin depolymerization 

products, or more specifically their chromatographic features, according to mass spectral similarity. The reconstructed chromatograms (on the right of the equal sign) represent 

factors that best recreate the original datasets. 
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the impacts of outliers and any questionable data on the 

solution, and thus is key to obtaining solutions that can fully 

recreate the input data. PMF provides solutions to a bilinear, 

unmixing model in which a dataset matrix is assumed to be 

comprised of the linear combination of factors with constant 

profiles that have varying contributions across the dataset.
47-49

  

This study focuses on applying a PMF technique to analyze 

a large GC-MS dataset by grouping lignin depolymerization 

products, or more specifically their chromatographic features, 

according to mass spectral (i.e., ion fragmentation) similarity. 

Thus, all GC-MS detected products, including products 

attributed to unresolved chromatographic features or 

chromatographic features that have mass spectral 

fragmentation patterns not present in the mass spectral 

library, can be characterized by their chemical and structural 

similarities, defining factors that often represent chemical 

homologs (see Figure 2). PMF attempts to reduce the 

complexity of GC-MS datasets, and includes mechanisms that 

provide chemically-relevant solutions.
44

 PMF has been widely 

used in the atmospheric chemistry community to analyze bulk 

MS measurements,
50, 51

 and has recently been extended to 

more chemically-resolved GC-MS measurements of organic 

aerosol composition.
52, 53

  

  The present study was initiated to demonstrate the power 

of the application of PMF analysis to GC-MS datasets in the 

analysis of the complex reaction networks and product 

mixtures characteristic of lignin depolymerization. In total, 30 

different reaction conditions were applied, from which, were 

collected 30 different sets of lignin depolymerization products. 

Comparing the products from 30 such samples via traditional 

GC-MS analysis, and more importantly, extracting a 

meaningful understanding of how key reaction conditions 

affect lignin depolymerization pathways would be very 

difficult. To our knowledge, this is one of the first studies that 

use PMF analysis of GC-MS datasets to inform catalytic 

reaction pathways, specifically, for lignin catalysis.  

Results and discussion 

This study uses a methanol-soluble and methanol-insoluble fraction 

of lignin extracted from a hybrid poplar biomass source, 

respectively denoted as MS and MIS lignin. Depolymerization 

reactions were conducted at 300 °C using three reaction conditions: 

1) without catalyst in MeOH (non-catalyzed), 2) with CuPMO in 

MeOH (MeOH), and 3) with CuPMO in a MeOH and dimethyl 

carbonate (DMC) mixture (MeOH/DMC). DMC was applied as a co-

solvent with MeOH because in our previous work
26

, we found that 

DMC would O-methylate phenolic intermediates generated from 

catalytic hydrogenolysis. More importantly, we also found that the 

resulting aromatic methyl ether products from that O-methylation 

are much less susceptible to aromatic ring hydrogenation pathways 

than their phenolic counterparts. This study was done in a time-

resolved fashion, collecting products at reaction times of 1, 2, 3, 6, 

and 9 h. Gaseous products of MeOH reforming and lignin 

depolymerization were analyzed by GC with a thermal conductivity 

detector (GC-TCD). Solid residues remaining after lignin 

depolymerization (i.e., lignin that has undergone chemical 

modification such that it is methanol-insoluble and/or char) were 

analyzed by dioxane extraction, nitric acid digestion, and 

thermogravimetric analysis (TGA). Liquid products (i.e., methanol-

soluble lignin remaining after reaction that may or may not have 

undergone chemical modification and GC-detectable lignin 

depolymerization products) were analyzed by gel permeation 

chromatography (GPC) and GC-MS (see Supplemental Information 

for details on methods). Primarily though, GC-MS data is the main 

focus of this report. PMF analysis of the GC-MS data was applied to 

understand how lignin source (i.e., MS and MIS lignin), reaction 

time, and the presence of CuPMO and/or DMC affects the GC-

detectable (i.e., low-molecular weight and volatile) product 

distribution of lignin depolymerization. We found that, compared to 

traditional (manual) peak integration and assignment analysis for 

GC-MS datasets, our PMF analysis significantly reduces the time 

required to complete data processing, allows compounds to be 

chemically classified that are not in a MS library, and facilitates the 

analysis of the unresolved complex mixtures (UCMs). 

 

Factor analysis techniques. 

Table 1. Summary of the chemical assignment for individual factors with their major characteristic fragment ions. 

 Defined Factor Major Characteristic m/z 

Factor 1 less polar and/or more volatile aromatics 39, 50, 65, 74, 93 

Factor 2 air and other light contaminates 31, 40, 44 

Factor 3 less polar and/or more volatile aromatics  39, 51, 63, 77, 91, 107 

Factor 4 aliphatics 41, 55, 69, 83, 97, 111 

Factor 5 carboxylics and carbonates 31, 47, 75 

Factor 6 benzoates 39, 65, 93, 121 

Factor 7 more polar and/or less volatile aromatics 39, 53, 67, 79, 95, 109, 123 

Factor 8 dimethoxy benzyls 39, 65, 79, 91, 107, 119, 135, 151 

Factor 9 methoxy phenyls 39, 55, 65, 79, 94, 105, 122, 137 

Factor 

10 

trimethoxy benzyls 39, 45, 52, 66, 79, 92, 105, 120, 136, 148, 167, 181 

Factor 

11 

unresolved compounds 31, 41, 55, 65, 77, 91, 105, 115, 135, 149, 165, 179, 191 

Factor 

12 
Column residues and heavier contaminants 

150, 165, 195, 253, 315, 393, 408, 451 

Factor 

13 

135, 156, 179, 197, 218, 239, 255, 315, 373, 393, 451, 529 
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As applied herein, PMF analysis is for grouping chromatographic 

features into classes of compounds (i.e., factors) based on 

similarities in MS fragmentation patterns, or more succinctly, 

similarities in chemical structure. Our use of PMF analysis also 

involves a chromatographic binning technique that sums together 

sequential MS scans to reduce computational time and minimize 

the effects of retention time shifting. GC-MS chromatographic 

signal intensities therefore undergo pre-processing (i.e., retention 

time shift correction, background subtraction and internal standard 

normalization) and chromatographic binning before PMF analysis.  

The combined chromatographic binning and PMF analysis of the 

GC-MS data from the 30 lignin depolymerization samples results in 

a set of PMF solutions where the number of factors within a 

solution is specified by the user. The Q/Qexp value for a given 

solution represents the extent to which the residual data (i.e., 

the data from the input data matrix that was not recreated 

through any of the factors) can be explained by the user-

provided uncertainty estimates. However, this measure alone 

cannot ultimately inform which solution is the “correct” 

solution, as an mathematical criteria would be arbitrary.
54

 A 

subjective choice by the user is still ultimately required to 

conclude the number of factors that best fits the data and its 

interpretation.
50

  

To settle upon a final solution and set of factors, solutions 

where we defined the number of factors as 2-18 were 

considered. The Q/Qexp values decreased monotonically with 

the addition of a new factor to the solution (Figure S1). 

Chemically distinct classes of compounds were identified in 

factors for solutions up to the 13-factor solution, but following 

that point factor splitting resulted in redundant factors that 

did not add additional chemical insight. Such factor splitting 

often results in factors that are composed of a single 

compound, which taken to its extreme would produce a factor 

for each compound detected and defeat the purpose of 

performing factor analysis. For solutions that are fewer than 

the optimal number of factors, resolvable factors are 

presumably superimposed. In our case, the 13-factor solution 

generated a set of factors that mostly did not display factor 

splitting yet yielded factors which provided the maximum 

chemical insight. Thus, a 13-factor solution (summarized in 

Table 1) was chosen and is the subject of further discussion. 

The mass spectrum for a given factor consists of a set of co-

varying fragment ions that best recreates the input dataset 

upon a linear combination with the other factors in the 

solution. The electron ionization (EI) used in MS analysis 

produces ions from GC-separated compounds that fragment in 

a reproducible way, generating similar fragmentation patterns 

for compounds that have similar structural moieties. 

Therefore, the factor mass spectrum is useful in the 

identification of a homologous series of compounds that 

defines the factor.  

The retention time-series data of a given factor upon 

further post-processing can be used to reconstruct a factor 

average chromatogram for a given factor eluting from the 

column. Factor average chromatograms can be reconstructed 

for either any sub-set of PMF input samples (e.g., different 

catalyst, lignin, and/or reaction conditions) or for all of the 

samples. For example, Figure S2A shows the factor average 

chromatograms constructed in this manner for product 

samples from catalyzed reactions in MeOH/DMC (green), 

catalyzed reactions in MeOH (blue), and non-catalyzed 

reactions in MeOH (black). Figure S2D shows the factor average 

chromatogram for the combination of all reaction conditions. 

The binned abundances displayed in a factor average 

Figure 3. Factor average chromatograms and mass spectra for Factor 8 (dimethoxy 

benzylic), Factor 9 (methoxy phenolic), and Factor 10 (trimethoxy benzylic) of the 13-

factor PMF solution for GC-MS datasets of lignin depoylmerization samples from 

MS/MIS lignin that have udergone depolymerization for 1-9 h using non-catalyzed, 

MeOH, and MeOH/DMC conditions.
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chromatogram corresponds to the amount of the signal (i.e., output 

from the mass spectrometer) that the model apportions to that 

factor at that retention time. The factor abundance (Figure S2C) of 

one (or multiple) factor(s) can be calculated by integrating the 

entire area of the factor chromatogram for a given sample (or set of 

samples). Due to the complexity of the products across the samples 

and differences in detector responses for different compounds, 

these factor abundances cannot quantitatively be thought of as the 

mass of compounds comprising different factors. The reported 

factor abundance is therefore in an arbitrary unit. However, 

considered in a more qualitative manner, a much higher abundance 

for a specific factor would suggest that the higher abundance factor 

is compositionally favored in the lignin depolymerization sample. 

More useful, when comparing two different lignin depolymerization 

samples, an increase in factor abundance for a specific factor when 

comparing one sample to another would suggest that one sample 

compositionally favors that factor relative to the other sample. 

Again, in that case, the intensity difference between factors is not 

quantitative, but suggestive in nature to the degree of difference. 

Thus, the comparisons of factor abundances can provide useful 

insights into the different processes occurring for different samples 

and under different reaction conditions. 

In combination, the factor mass spectrum and average 

chromatogram are used to assign the chemical identity of a 

given factor. For example, in the 13-factor solution, the Factor 

1 mass spectrum contains fragment ions with m/z values of 39, 

50, 65, 74, and 93 (Table 1). These fragment ions match 

common diagnostic ions that originate from and represent 

fragments of compounds that contain aromatic/phenolic 

moieties. The factor average chromatogram for Factor 1 

indicates that compounds assigned to Factor 1 elute at early 

retention times, which corresponds to aromatics that are less 

polar and/or more volatile (due to the GC column type and GC 

oven heating ramp program). To verify the factor assignments, 

peaks in the factor average chromatograms were assigned by 

identifying compounds eluting at the same retention time for 

GC-MS datasets from the 30 lignin depolymerization samples. Due 

to the limited number of known compounds in the mass spectral 

library and the number of unresolved peaks, not all peaks could be 

assigned with a high level of certainty.  However, the majority of 

identified peaks suggested that the classifications of the factors 

based on the factor mass spectrum are reliable. A complete list of 

MS library-identified compounds from the GC chromatogram of all 

30 samples is provided in Table S1.          

The 13 identified factors include both resolved and unresolved 

GC-detectable products. Due to the reliance on differences in mass 

spectral fragmentation patterns in separating the factors, it is 

important to note that a single compound may contribute to more 

than a single factor. Table 1 defines each factor’s chemical identity 

based on the characteristic m/z values in the factor mass spectrum 

and the identified compounds associated with the factor. Table S2 

provides further details about fragment ions and their chemical 

assignment. Compounds in Factors 1 and 3 are primarily low 

polarity aromatic/phenolic compounds (Table 1, Figure S2, and 

Figure S4). Factor 3 compounds generate fragment ions that are 

associated with benzyl moieties (Table 1 and Figure S4). The 

differences between Factors 1 and 3 are driven by the association 

of fragments related to phenol and methyl 4-hydroxybenzoate with 

Factor 1, which are absent from Factor 3. Similarly, Factor 7 

compounds are also aromatic but tend to be more polar and/or less 

volatile than compounds in Factors 1 and 3 (Table 1 and Figure S8). 

Factor 6 compounds have fragment ions that are associated with 

benzoate moieties (Table 1 and Figure S7). The Factor 6 average 

chromatogram is dominated by two compounds: methyl 4-

hydroxybenzoate and methyl 4-hydroxy-3-methoxybenzoate. Other 

classes of aromatic compounds are found in Factors 8, 9, and 10. 

Specifically, Factors 8, 9, and 10 contain compounds that have 

fragment ions associated with dimethoxy benzylic, methoxy 

phenolic, and trimethoxy benzylic moieties, respectively (Table 1, 

Figure S9, Figure S10, and Figure S11). The mass spectra for Factors 

8, 9, and 10 are dominated by fragment ions at m/z 151, 137, and 

181, respectively (Figure 3).  Similarities in Factors 1 and 3 due to 

their association with fragments related to phenol and Factors 1 

and 6 due to their association with fragments related to methyl 4-

hydroxybenzoate suggest these factors may be the result of 

splitting. However, the 13-factor solution was the first solution 

to generate separate factors (i.e., Factors 8, 9, and 10) related to 

compounds that resemble lignin monomers.  Though not 

done, we could have also visualized the aggregated factor 

abundances of Factors 1 and 3; Factors 1 and 6; and Factors 1, 3, 

and 6 to account for this splitting and further detect trends that 

inform our understanding of lignin depolymerization. 

The mass spectrum of Factor 5 is dominated by a fragment ion 

at m/z 75, suggesting compounds in Factor 5 contain moieties that 

have a carboxylate and two additional carbons (e.g., methyl 

acetate, ethyl formate, propionate, etc.). Factors 4 and 11 contain 

unresolved chromatographic features within their factor average 

chromatograms. Factor 4 has primarily a low-retention time (low 

polarity and/or more volatile compounds) unresolved complex 

mixture (UCM) with mass spectral features indicative of substituted 

aliphatics (Table 1 and Figure S5). Conversely, Factor 11 features a 

high-retention time UCM (higher polarity and/or less volatile 

compounds) that includes mass spectral features indicative of both 

aliphatics and aromatics (Table 1 and Figure S12). UCMs appear as a 

hump or background feature in a chromatogram and represent a 

large number of co-eluting compounds. UCMs are commonly 

observed for petroleum or biomass-derived pyrolysis oils.
55, 56

 

Factors 4 and 11 suggest that our lignin depolymerization samples 

contain both polar and non-polar UCMs. The remaining factors can 

be assigned as measurement artifacts, which persist even after the 

pre-processing. Factor 2 comes from air within the GC-MS, with m/z 

32, 40, and 44 attributed to oxygen, argon, and carbon dioxide, 

respectively. The variation in abundance of Factor 2 across the 

different samples is largely driven by the scaling differences 

introduced with the internal standard normalization. The column 

bleed from the GC column is the defining feature of Factors 12 and 

13, and the variation in abundance across samples is driven by how 

similar the subtracted blank sample was to a given sample. Details 
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of the factor mass spectra and average chromatograms for all 

13 solution factors are given in Figures S2-S14.  

  

Analysis of trends in GC-detectable products as grouped by PMF. 

The overall GC-detectable aromatic compound production was 

monitored by combining the aromatic factors (Factors 1, 3, 6, 7, 8, 

9, and 10). Figure 4A is the factor average chromatogram for the 

combined aromatic factors and the aggregated factor abundance 

for these aromatic factors across reaction conditions are in Figure 

4B.  Similarly, the aliphatic factor average chromatogram (Factor 4) 

is in Figure 4C with the factor abundance for the aliphatic factor 

across reaction conditions in Figure 4D.  

As shown in Figure 4, catalyzed depolymerizations (MeOH 

and MeOH/DMC) generated higher factor abundances of GC-

detectable products (i.e., aromatic and aliphatic) compared to 

non-catalyzed depolymerizations. Additionally, the overall 

production of aromatic compounds in catalyzed depolymerizations 

was significantly higher than that without catalyst. This increase for 

catalyzed depolymerizations was due to the catalytic activity
26

 of 

CuPMO producing H2 (Figure S18) and performing aryl-ether 

hydrogenolysis. Over the course of the entire reaction, the 

production of GC-detectable products remained relatively low for 

depolymerizations without catalyst, which indicated that most of 

the depolymerized lignin fragments in liquid products are larger 

molecular weight species (i.e., non-GC-detectable) that were 

unreacted or subject to condensation reactions.  

Figure 4. A) Factor average chromatograms of the combined aromatic factors (i.e., Factors 1, 3, 6, 7, 8, 9 and 10); B) combined aromatic factor 

abundance; C) factor average chromatograms of the aliphatic factor (i.e., Factor 4); and D) aliphatic factor abundance for lignin depoylmerization 

samples from MS/MIS lignin that have udergone depolymerization for 1-9 h using non-catalyzed, MeOH, and MeOH/DMC conditions. 
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Aside from our work
26

, Bernt et al. also found that anisole and 

ethoxybenzene are much less reactive (i.e., slower rate of 

conversion) over CuPMO in MeOH than are phenol or guaiacol.
24

  

Phenol conversion was attributed primarily to reaction pathways: 1) 

reduction to cyclohexanol (kobs ~0.5 h
-1

), 2) methylation of the 

aromatic ring to give cresols (kobs ~0.1 h
-1

), and 3) O-methylation at 

phenolic alcohols to form anisole (kobs ~0.1 h
-1

).  The primary 

product of anisole over CuPMO in MeOH was benzene, a very stable 

product, which resulted from (Caryl-Omethoxy) hydrogenolysis of the 

methoxyl group; although, at longer reaction times some ring 

hydrogenation to methoxy-cyclohexane occurred. These results 

suggest that DMC and O-methylation of fragments from lignin 

depolymerization increases pathways to products that are less 

susceptible to certain reactions, such as ring hydrogenation 

reactions, when compared to their phenolic counterparts. We 

consider hydrogenation of phenolics as undesirable due to the loss 

of aromaticity and broadening of product distribution. With 

increasing reaction time, the abundance of the aliphatic factor 

increased for MeOH samples (Figure 4D), while a relatively lower 

abundance of the aliphatic factor was detected for MeOH/DMC 

samples. Observed relative increases for the abundances of Factors 

8 and 10, which represent increases in O-methylated aromatics, are 

the highest for MeOH/DMC samples.  

Factors 1 and 3 represent low polarity aromatic 

compounds (Figure S2 and S4), while Factor 11 compounds are 

associated with a more polar and/or less volatile UCM (Figure 

S12). The abundance of both Factors 3 and 11 in non-catalyzed 

samples are relatively lower when compared to their 

abundance in MeOH and MeOH/DMC samples. Whereas, the 

abundance for Factors 3 and 11 increase with reaction time for 

MeOH and MeOH/DMC samples.  

Factors 5, 6, and 7 represent compounds that contain 

carbonyl substituents that have been correlated with the 

production of reactive compounds similar to those that require 

stabilization and upgrading in lignin pyrolysis oil.
4, 57

 Factor 5 

compounds are aromatic and aliphatic compounds that generate 

carboxylate moieties upon EI, and are much more abundant in non-

catalyzed samples than MeOH or MeOH/DMC samples (Figure S6). 

The average factor chromatogram of Factor 5 for non-catalyzed 

samples shows two major chromatographic features at 

retention times of 32.33 min [3-(3,4-

dimethoxyphenyl)propanoic acid] and 38.23 min [methyl 

octadecenoate or methyl stearate ]. Factor 6 compounds, defined 

as having benzoate moieties, are more abundant in non-catalyzed 

samples than MeOH samples and then more abundant in MeOH 

samples than MeOH/DMC samples. The average factor 

chromatogram of Factor 6 for non-catalyzed and MeOH 

samples shows two major chromatographic features at 

retention times of 29.11 min [methyl 4-hydroxybenzoate] and 

30.61 min [methyl 4-hydroxy-3-methoxybenzoate], which are 

not present in the DMC/MeOH samples (Figure S7). The 

average chromatogram of Factor 6 for MeOH/DMC samples 

suggests that the DMC shifts reaction pathways in such a 

fashion that the production of compounds with benzoate 

moieties is reduced, in particular, methyl 4-hydroxybenzoate and 

methyl 4-hydroxy-3-methoxybenzoate. Factor 7 compounds 

are most prevalent in MeOH samples at reaction times of 6 

Figure 5. A) Factor 8 (dimethoxy benzylic); B) Factor 9 (methoxy phenolic); and C) 

Factor 10 (trimethoxy benzylic) abundance for lignin depoylmerization samples from 

MS/MIS that have udergone depolymerization for 1-9 h using non-catalyzed, MeOH, 

and MeOH/DMC conditions.
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and 9 h and MeOH/DMC samples at a reaction time of 9 h. For 

Factor 7, resolved compounds begin to elute from the column after 

22 min that are primarily associated with non-catalyzed and 

MeOH/DMC samples, whereas ~ 5 – 32 min the average factor 

chromatogram presents as a UCM as a result of contributions from 

MeOH samples (Figure S8).  The 2D 
13

C-
1
H heteronuclear single 

quantum correlation (HSQC) nuclear magnetic resonance (NMR) 

spectra of MS and MIS lignin substrates show they contain α-

oxidized syringyl, α-oxidized guaiacyl and p-hydroxybenzoate 

monolignols (Figure S16).  Factor 6 and 7 compound production 

could be, in part, linked to the release those monomers. 

Factors 8, 9, and 10 most resemble the monomeric 

substructures of lignin (Figure 3 and 5). Factors 8 and 10 are 

individually defined by characteristic features of di- and tri-

methoxylated compounds, which most likely result from O-

methylation of phenolic intermediates from G and S lignin 

monomers. Consequently, these two factors have higher 

abundance in MeOH/DMC samples (Figure 5). The average 

chromatograms of Factors 8 and 10 for MeOH and 

MeOH/DMC samples each have two major chromatographic 

peaks at retention times of 24.27 min [4-ethyl-1,2-

dimethoxybenzene] and 26.26 min [1,2-dimethoxy-4-

propylbenzene] for MeOH and as 28.68 min [5-ethyl-1,2,3-

trimethoxybenzene] and 30.29 min [1,2,3-trimethoxy-5-

propylbenzene] for MeOH/DMC (Figure S9 and S11). Bernt el al. 

showed that 1,2-dimethoxybenzene was more reactive than 

anisole over CuPMO in MeOH; however, the primary product of 1,2-

dimethoxybenzene was anisole resulting from the (Caryl-Omethoxy) 

hydrogenolysis of a methoxyl group.
24

 As a result, we expect that 

the di- and tri-methoxybenzene compounds resulting from DMC 

mediated lignin depolymerization would similarly be susceptible to 

methoxyl group hydrogenolysis. The average chromatograms for 

Factors 8 and 10 suggest that the presence of the catalyst does 

promote phenolic O-methylation  producing di- and tri-

methoxylated aromatic compounds but that, even without 

catalyst, some phenolic O-methylation occurs. Notably, non-

catalyzed reactions tend to produce a wide distribution of di- 

and tri-methoxylated compounds that are more polar than 

1,2-dimethoxy-4-propylbenzene and 1,2,3-trimethoxy-5-

propylbenzene due to the presence of various of 

functionalities on the fragment at the monolignol propyl 

substituent. The abundances for Factors 8 and 10 suggest that 

at longer reaction times (> 3 h), di- and tri-methoxylated 

aromatic compounds are converted into some other species. 

Conversely, Factor 9 represents characteristic features of 

compounds that contain aromatic rings with both hydroxyl and 

methoxyl substituents, which are generated from G lignin 

monomers that did not undergo O-methylation. The average 

chromatogram of Factor 9 for MeOH and MeOH/DMC samples 

each have a common major chromatographic peak at 

retention times of 24.87 min [2-methoxy-4-propylphenol]. 

Compounds related to Factor 9 show significantly higher 

abundance in the MeOH samples at short reaction times 

between 1-3 h than other samples. The decrease in Factor 9 

abundance for MeOH samples beyond a reaction time of 3 h is 

likely due to reaction pathways shown to be prevalent for 

phenol conversion over CuPMO.  The average factor 

chromatogram of Factor 9 for non-catalyzed samples has three 

additional major chromatographic peaks not observed in 

MeOH or MeOH/DMC sample at retention times of 29.64 min 

[2-(4-hydroxy-3-methoxyphenyl)acetaldehyde], 31.31 min [4-

(2-hydroxyethyl)-2-methoxyphenol], and 32.33 min [1-(4-

hydroxy-3-methoxyphenyl)propan-1-one] (Figure S10).   

Comparing the lignin depolymerization products generated 

from MS and MIS lignin, overall GC-detectable aromatic compound 

production as well as Factors 8 and 10 abundances for MS and MIS 

samples were similar. This suggests there was little effect on 

product distributions caused by room temperature solubility 

or by chemical differences that existed for MS and MIS, which 

are highlighted in Table S3, Table S4, and Figure S16. However, 

Factor 6 abundances suggest that under non-catalyzed and 

MeOH conditions MS-derived samples contain more benzoates 

compounds, while Factor 4 abundances suggest that at 

reaction times of 6 and 9 h in MeOH, MS is more susceptible to 

aliphatic forming reaction pathways. Factor 5 abundances 

suggest that under non-catalyzed conditions and at a reaction 

times of 1 and 2 h, MIS-derived samples contain more 

carboxylate compounds. 

 

PMF and NMF comparison. 

In an effort to assess the effectiveness of PMF analysis on 

these GC-MS datasets, a 13-factor NMF solution was also 

obtained using the same input data matrix. As expected, 

computation time was much faster for NMF (approximately 14 

seconds to converge) compared to PMF (approximately 600 

seconds to converge). However, the NMF solution with the 

same number of factors had a much larger residual 

component, with 71% of the input data left unexplained 

whereas only 21% of the signal was unexplained by the PMF 

solution. While the residual would likely decrease with 

additional factors in the NMF solution, the same should be 

true for PMF. The average abundance for all samples obtained 

from the summation of the NMF factors only better recreates 

the input data for a single GC peak compared to PMF (Figure 

S15). Given these observation and our previous efforts in 

source apportionment of atmospheric organics, PMF seems to 

be a better method for this dataset and may better lend itself 

to similar chromatographic datasets of complex mixtures with 

resolved and unresolved features.   

 

Non-GC-detectable products. 

Lignin oligomers are both intermediates and products of lignin 

depolymerization; however, these lignin oligomers are not 

detectable by GC-MS. Hence, the production of lignin oligomers was 

Figure 6. GPC chromatograms for untreated lignin and  for product samples from MS 

and MIS liignin that have udergone depolymerization for 1-9 h using non-catalyzed, 

MeOH, and MeOH/DMC conditions.  
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examined by GPC analysis. Untreated lignin and their 

depolymerized liquid products were directly injected into the GPC. 

Relative molecular weight values, including number-average 

molecular weight (Mn), weight-average molecular weight (Mw), and 

polydispersity index (PDI = Mw/Mn), were determined based on GPC 

retention times and a polystyrene standard calibration curve (Table 

S5 and S6). A higher PDI means a broader distribution of molecular 

weights. Lignin depolymerization, as signified by chromatographic 

shifts toward longer retention times, occurred faster for catalyzed 

depolymerizations. After reaction times of 2 h for catalyzed 

depolymerizations, the broad peak from ~22-30 min representing 

untreated lignin almost completely disappears (Figure 6). However, 

this peak persists or even shifts toward shorter retention times for 

non-catalyzed depolymerizations at long reaction times. This 

suggest either that effective depolymerization is not occurring or 

that re-condensation of GC-detectable compounds is occurring.  

High abundance of Factors 5 and 6 seem to correlate with samples 

that are susceptible to GPC chromatographic shifts toward longer 

retention times; however, well-defined, co-varying trends between 

GPC behavior and factor abundance were difficult to extract. 

 

Solid products.  

Raw solid residues were also analyzed to study the leftover 

lignin and char formation as shown in Figure S17. Solid residues 

from each reaction were first separated from liquid products 

by filtration. Dioxane was used to extract dioxane-soluble solid 

products after lignin depolymerization. Note that both MS and 

MIS lignin are soluble in dioxane at room temperature. For the 

reactions without catalyst, the leftover solids after dioxane 

extraction were composed of dioxane-insoluble lignin and 

char. In this case, dioxane-insoluble solids were treated with 

nitric acid to determine char yields. Char formation increased 

with reaction time and was higher for MIS. For the reactions 

with catalyst, char formation was never observed and dioxane-

insoluble solid content were higher than reactions without 

catalyst.  In addition, dioxane-insoluble solid content 

decreased as a function of increasing reaction time. Dioxane-

insoluble solids formation most likely result from reactions 

that modify the chemical structure of the lignin such that it is 

no longer soluble in dioxane. Dioxane-insoluble solids contents 

were higher for MIS lignin depolymerization samples when 

compared to MS lignin depolymerization samples.  

 

Gas products.  

Gas products were collected and analyzed to track the 

formation of H2 production (Figure S18). No gas or H2 formed 

for non-catalyzed depolymerizations. Gas products in both MeOH 

and MeOH/DMC catalyzed depolymerizations are mainly 

composed of H2 and CO2, with small amounts of CO and CH4. 

The production of H2 corresponds well with the increase overall 

aromatic compound production monitored by aromatic factors 

(Factors 1, 3, 6, 7, 8, 9, and 10) and the aliphatic compound 

production monitored by Factor 4. 

 Conclusions 

In summary, upon PMF analysis of GC-MS datasets from 30 

different lignin depolymerization products that were 

depolymerized as a function of lignin, reaction time, catalyst, 

and solvent, we determined a 13-factor solution sufficiently 

explains the chemical changes occurring. These 13 factors 

represent various classes of compounds based on similarities 

in chemical structure that best reconstruct the original lignin 

depolymerization PMF inputs. Factors include low and high 

polarity aromatic compounds, compounds with carbonyl 

moieties, compounds that resemble lignin monomers, and 

aliphatic compounds. Overall catalyzed depolymerizations 

generated higher factor abundances of GC-detectable 

products compared to non-catalyzed depolymerizations. In 

addition, we found that with increasing reaction time, the 

abundance of the aliphatic factor increased for MeOH samples 

while MeOH/DMC samples remained at a relatively low 

abundance. Thus, catalyzed depolymerization in the latter 

medium was superior at preserving product aromaticity. The 

products generated by reaction in MeOH in the absence of 

catalyst seemed to contain more compounds with carbonyl 

substituents. Lastly, we determined that there was little 

discernable difference in the GC-detectable products 

generated from MS and MIS lignin.  

The complexity of lignin makes conducting fundamental 

research into its catalytic reactivity difficult. As a result, the 

development of analytical tools that can effectively capture 

this complexity and data processing methods that can 

interpret those analytical results is critical to the success of 

such fundamental research. Our results show that PMF 

analysis, as a computer-assisted signal processing tool to 

reduce GC-MS dataset complexity, can be applied to GC-MS 

datasets not only for the purposes of understanding lignin 

depolymerization but also a broad range of other chemical 

processes that involve complex reaction networks and product 

distributions. 

Experimental 

Materials.  

Analytical grade methanol, n-decane, and reagent grade 

dimethyl carbonate (DMC) were used as purchased from 

Sigma-Aldrich. Lignin used in this work was extracted from 

Populus spp. biomass (see Supplementary Information). The 

CuPMO catalyst used in this work was synthesized by following 

the same procedure as reported by Ford et al. (see 

Supplementary Information).
26

 

 

Lignin depolymerization. 

The lignin depolymerization reactions have been conducted in 

stainless steel bomb reactors with internal volume of ~ 10 mL. 

The bomb reactor design used was from previous work by Ford 

et al.
22, 23, 26, 58, 59

 Each reactor was charged with 100 mg of 

lignin (MS or MIS) and 100 mg of CuPMO catalyst. Either 

methanol (3 mL) only or pre-mixed methanol and dimethyl 
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carbonate (2:1 ratio, 3 mL) solution with n-decane (1.76 µL) as 

internal standard was added into the reactor as solvent. The 

reactor was heated in an isotherm muffle furnace (Thermo 

Fisher Scientific) at 300 °C for reaction times of 1, 2, 3, 6, and 9 

h. A series of reactions on the same lignin substrates were 

conducted without catalyst in methanol. Reactors were 

quenched within an ice water bath. Gas products were 

collected by an inverted graduate cylinder, which is pre-filled 

with water. The volume of gas products was measured by the 

displacement of water by gas collected in the cylinder. Gas 

composition was determined by GC-TCD. Solid residues and 

liquid products were separated by a vacuum filtration 

apparatus with a 0.45 µm nylon membrane filter. Solids were 

further washed by analytical grade methanol portion by 

portion until the total liquid products volume is 20 mL. Liquid 

products were collected for GPC and GC-MS analysis. Solid 

residues were further washed by dioxane (5 mL) three times to 

extract leftover untreated lignin (that was soluble in dioxane) 

from dioxane-insoluble lignin, char, and catalyst. The solids 

following dioxane extraction were subjected to TGA and nitric 

acid digestions to determine the amount of catalyst and char 

present.  

  

Product characterization. 

GC-MS was used to characterize the GC-detectable products 

from lignin depolymerization. GC-MS samples (1 µL) were 

injected on an Agilent GC system 7890A coupled with an 

Agilent 5975C mass spectroscopy with triple-axis detector. 

Triplicate injections were performed for the 6h MeOH/DMC 

samples derived from MS and MIS lignin. GC analysis was 

performed using a Restek fused silica RTX-50 capillary column 

(ID: 0.25 mm, film thickness: 0.5 µm, and length: 30 m) with 

the following program: 2 min at 35 °C and then ramped at 5 

°C/min up to 300 °C for 5 min with helium as a carrier gas 

(splitting ratio: 10:1). The mass spectral scan rate was 1.6 

scans/s with acquisition from m/z 30-600. GC-MS data was 

exported and analyzed through ChemStation Software. 

Identification of the compounds was carried out by comparing 

the mass spectra obtained with these from Palisade Complete 

Mass Spectral Database (600 K edition, Palisade Mass 

Spectrometry, Ithaca, NY). Non-GC-detectable products (gas, 

solid, and non-GC-detectable liquid products) characterization 

details are described further in the Supplementary Information 

section.  

 

PMF and NMF analysis. 

Positive matrix factorization (PMF) takes an input data matrix, �(n x m), and separates the data into a time series matrix, � (n 

x p), and factor profile matrix, � (p x m), where p is the user-

specified number of factors in the solution. A residual matrix, � (n x m), consists of the portion of the input data that cannot 

be captured by the factors to ensure mathematical continuity 

(equation 1).  � = �� + �                                                                               [1] 

The determination of the factors is achieved through the 

minimization of a function, �, which is the sum of uncertainty-

weighted squared residuals: 

 � = ∑ ∑ 
������������� , such	that	��� ≥ 0	!"#	$�� ≥ 0	      [2] 

where %��  is the residual for a given value &��, and this is weighted 

by '��, which corresponds to the uncertainty in the measured value. 

Constraining ��� and $��to positive values ensures that nonsensical, 

negative solutions are not obtained. An idealized � value (�
()), in 

which the degrees of freedom for the input are fully accounted for 

by the uncertainty in the measurements can be calculated as: �
() = *"− ,(* + ")                                                                    

[3] 

and the ratio of �/�
() should approach one if both an appropriate 

number of factors are selected for the solution and the uncertainty 

estimates are appropriate.
60

 

Prior to PMF analysis, preprocessing of the GC-MS data is 

required, and was carried out in a custom software package 

developed within Igor Pro (version 6.37, Wavemetrics, Inc.), which 

is available upon request and will be more broadly available 

following further development. The pre-processing package 

includes: 1) loading in the GC-MS datasets, 2) correcting for shifts in 

chromatographic retention times across samples, 3) subtracting 

mass spectral background contributions identified by blank 

samples, 4) binning sequential MS scans, 5) generating uncertainty 

estimates for each bin, and 6) scaling a given sample’s abundance 

by a user-defined factor. For the retention time shift corrections, a 

relatively simple, linear shift was applied to each based upon the 

change in retention time of the n-decane internal standard. Blank 

samples, both with and without DMC in addition to MeOH solvent 

with internal standard, were used to attempt to remove the 

influence of instrumental artifacts. However, this approach is often 

insufficient to remove all artifacts (e.g. the presence of air or 

column bleed), due to sample-to-sample variation.
52

 A 

chromatogram binning approach, described in detail previously,
52

 

was used to decrease the computational burden of solving the PMF 

model, and bins were composed of 5 sequential mass spectral 

scans. In total, 667 bins for each of the 30 reaction conditions were 

constructed from 3335 mass spectral scans, corresponding to 

retention times of 8.97 - 44.76 minutes for each sample. The 

included mass spectra, which comprise the columns of the input 

data matrix, ranged from 30-600 Th. 

One of the most challenging aspects of conducting PMF analysis 

of an entire chromatogram's dataset is deriving appropriate 

uncertainty estimates ('��) for all input data values. Building upon 

previous efforts to use PMF on datasets from GC-MS work,
52, 61

 the 

uncertainties were calculated as: 

 '�� = / 2	 × 234�� , 5$	&�� < 234��
78&�� × ,9%:5;5<"=> + 8234��=>, 5$	&�� > 234��      [4] 

where 234�� is a retention time and mass-to-charge (m/z) ratio 

dependent detection limit estimate based on a sample blank 

chromatogram, and precision is an estimate of the reproducibility 

of the instrument (10% for this study). 
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Finally, the data for each sample was scaled based upon the 

integrated abundance of the n-decane internal standard. The peak 

integrations were performed in the Igor-based “TERN” software 

(version 2.1.6), which utilizes a peak fitting approach for 

quantification.
62

 The PMF calculations were carried out in another 

custom software package (PMF Evaluation Tool version 3.00A) 

within Igor Pro, which utilizes the PMF2 solver.
51

 To prevent an 

oversized impact from low abundance data within the matrix, m/z 

values with a signal-to-noise ratio (SNR) of less than 2 had their 

uncertainty values increased by a factor of 2, and values with SNR < 

0.2 were excluded from the analysis entirely, as has been reported 

previously.
44

 While the various Igor packages used are freely 

available, both the Igor Pro software and PMF2 solver require 

licenses for use. 

The same input data matrix was entered into the NMF package 

within Matlab (MATLAB R2018a, MathWorks, Inc.), and a 13 factor 

solution was solved for with termination tolerances for both the 

residual and matrix elements of 1∙e
-6

. No corresponding matrix 

containing the uncertainty estimates, as is used in PMF, is required 

for NMF.  
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Positive matrix factorization analysis significantly enables the use of gas chromatography-mass 

spectrometry to elucidate complex catalytic reaction networks, specifically, for lignin catalysis. 
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