

Effect of lactoferrin on taste and smell abnormalities induced by chemotherapy: A proteome analysis

Journal:	Food & Function
Manuscript ID	FO-ART-04-2018-000813.R1
Article Type:	Paper
Date Submitted by the Author:	16-Aug-2018
Complete List of Authors:	Wang, Aili; Virginia Polytechnic Institute and State University, Food Science and Technology Duncan, S.; Virginia Tech, Lesser, Glenn; Wake Forest University School of Medicine Dietrich, Andrea; Virginia Tech, Civil and Environmental Engineering Ray, William ; Virginia Polytechnic Institute and State University

SCHOLARONE[™] Manuscripts

1	Effect of lactoferrin on taste and smell abnormalities induced by chemotherapy:
2	A proteome analysis
3	Aili Wang ¹ , Susan E. Duncan ¹ , Glenn J. Lesser ² , William K. Ray ³ , Andrea M. Dietrich ⁴
4	
5	¹ Food Science and Technology Department,
6	³ Department of Biochemistry, and
7	⁴ Department of Civil and Environmental Engineering, Virginia Tech, VA 24061
8	² Wake Forest School of Medicine, Winston-Salem, NC 27157-1082
9	
10	Corresponding Author: Aili Wang, Ph.D., Department of Food Science and Technology,
11	Virginia Tech, HABB1, 1230 Washington St SW, Blacksburg, Virginia, 24061-0924
12	Tel: 540-231-2075. FAX: 540-231-9293. Email: waili9@vt.edu.
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

24 Abstract

Cancer patients receiving chemotherapy often experience taste and smell abnormalities (TSA). 25 To date, the underlying molecular mechnisms of this frequent side-effect have not been 26 27 determined and effective treatments are not available. This study assessed the feasibility of lactoferrin (LF) supplementation as a treatment for TSA and investigate the related mechanisms 28 through salivary proteome analysis. Nineteen cancer patients with establishedTSA following 29 chemotherapy administration were enrolled in this study. Cancer patients and additional 12 30 healthy subjects took LF supplements, 3 tablets per day (250 mg/tablet), for 30 days. Saliva was 31 collected at three timepoints: baseline, 30-day LF supplementation, and 30-day post-LF 32 supplementation. Patient's TSA level, salivary proteome, and salivary minerals at each LF 33 treatment stage were analyzed. High TSA level was associated with high concentration of 34 35 salivary Fe and loss of critical salivary immune proteins. LF supplementation significantly decreased the concentration of salivary Fe (P = 0.025), increased the abundance (P < 0.05) of 36 salivary α -amylase and Zn- α -2-GP, and led to an overall increase of expression (\geq 2-fold changes) 37 of immune proteins including immunoglobulin heavy chain, annexin A1, and proteinase inhibitor. 38 Abundance of α -amylase and SPLUNC2 were further increased (P < 0.05) at 30-day post-LF 39 supplementation in cancer patients. At the same time, total TSA score was significantly reduced 40 (P < 0.001) in chemotherapy patients. This study demonstrated the feasibility of developing 41 lactoferrin supplementation as a treatment to reduce TSA caused by chemotherapy and improve 42 43 cancer patient's oral immunity.

44

Keywords Chemotherapy; Lactoferrin; Taste and smell abnormalities; Immune proteins; Saliva

63

Food & Function

Introduction 47

Many cancer patients receive chemotherapy as treatment during the course of their 48 disease. A secondary effect of this treatment is taste and smell abnormalities (TSA), experienced 49 by a large proportion of this population.^{1,2} Bernhardson et al.³ surveyed 518 patients following \geq 50 6 weeks of chemotherapy and 75% of these patients described taste and smell changes during 51 chemotherapy. The most common TSA symptom described by cancer patients is the perception 52 of a persistent metallic flavor and/or aftertaste with or without food intake.⁴ TSA commonly 53 occurs during active chemotherapy administration, and can last several hours, several weeks, or 54 even several months after the completion of the treatments.^{5,6} As a consequence, affected 55 patients may suffer poor appetite, weight loss, depression, and diminished nutrition, all of which 56 are detrimental to clinical rehabilitation.^{1,3} 57 Although TSA is widespread and a frequent complaint of cancer patients, there are no 58 established therapies that reliably prevent or treat this problem. In a systematic review of the 59 literature,⁶ the authors found only 26 articles addressing metallic taste in chemotherapy patients, 60 illustrating a paucity of information to address this frequent side effect. A dietary supplement of 61 synsepalum dulcifum, which is known as "miracle fruit", has been demonstrated to temporarily 62 (20-30 min) mask the metallic taste in 5 out of 8 patients receiving chemotherapy.⁷ A more

effective and longer lasting therapy is urgently needed to improve the prolonged and recurring 64 metallic taste abnormality described by cancer patients. 65

Recently, iron-binding proteins that effectively reduce iron-induced metallic flavor are 66 garnering attention. In our previous study, post-rinse of lactoferrin solution (10.4 mg/L) in the 67 mouth significantly decreased (P < 0.05) metallic flavor stimulated by ferrous sulfate solution (1 68 mg/L) in 53 healthy subjects.⁸ Thus, we hypothesized that LF may be used to treat 69

70 chemotherapy-induced TSA, which most commonly presents as a metallic taste abnormality. In addition, accumulated evidence has indicated that chemotherapy affects the integrity of the 71 immune system and destroys salivary peroxidase system.⁹ Lactoferrin is well-known as a first-72 line defense in the human body and induces host immune-modulatory activation.¹⁰ Effects of oral 73 LF supplementation on immunity-related gene expression in the small intestine have been well 74 studied.^{11,12} However, influence of LF supplementation on immune proteome, especially salivary 75 proteome in chemotherapy patients has not been reported yet. 76 The objective of this study is to assess the feasibility of LF supplementation as a treatment 77 for TSA induced by chemotherapy. In addition, our study investigated the molecular etiology of 78 TSA in chemotherapy patients and the treatment mechnism of LF supplementation by analyzing 79

80 salivary protein profiles through two-dimensional electrophoresis analysis.

81 Materials and methods

82 Human subjects

This study was approved by the Institutional Review Board at the Wake Forest Baptist 83 Medical Center (CCCWFU 98112) and Virginia Tech (IRB 14-880). The study was registered at 84 clinicaltrials.gov as NCT01596634. Nineteen cancer patients (8 females, ages 45-79 years with 85 median age of 65), who had developed self-reported TSA after receiving chemotherapy, were 86 recruited by treating oncologists at the Wake Forest Baptist Comprehensive Cancer Center for 87 this study. Eligible cancer patients had normal taste perception before the development of cancer 88 and were currently undergoing chemotherapy at the time of enrollment. Any dose or schedule of 89 chemotherapy administration was allowed as long as patients had self-reported TSA. Exclusion 90 criteria included difficulty in producing abundant saliva, HIV-positive test result, pregnant or 91 92 breastfeeding, milk/iron allergy, active oral infection, or active mucositis. A wide variety of

cancer types were represented in the patients enrolled on this study, including colorectal (6),
breast (4), brain (3), pancreatic (2), lymphoma (2), mycosis fungoides (1), and myeloma (1). All
19 cancer patients received LF supplementation and serial TSA assessements. A pre-salivary
proteome analysis was conducted on all patients. Twelve patients whose saliva showed
repeatable and stable protein profiles in two-dimensional electrophoresis gels were chosen for
proteome and mineral analysis.

Additionally, twenty healthy subjects were originally recruited for this study as normal 99 controls from the local community (New River Valley region, and students, faculty and staff of 100 Virginia Tech) by Virginia Tech researchers. Six of the healthy subjects were withdrawn from 101 the study and two was exluded due to poor repeatability and stability of salivary protein 102 composition shown on 2-D image. Therefore, 12 healthy subjects (six females) with age ranging 103 104 from 45-71 years (median age of 59) were ultimately enrolled. Enrolled healthy subjects had normal taste perception, no chronic oral or general health problems, no milk/iron allergy, were 105 non-smokers, and were neither pregnant nor breastfeeding. 106

107 Lactoferrin treatment

Enrolled cancer patients (n=12) and healthy subjects (n=12) were provided with

109 lactoferrin tablets, with directions to take one tablet three times a day for 30 days. Lactoferrin

tablets (250 mg/tablet) used in this study were purchased from Jarrow Formulas Inc. (Los

111 Angeles, California). Lactoferrin (LF) supplementation was continued for 30 days, followed by a

112 30-day washout period. Data collection occurred before LF supplementation (baseline),

following 30-days of LF supplementation, and 30 days after the completion of LF

supplementation (30-day post-LF supplementation).

115 Salivary collection

116 Saliva samples were collected at each stage of LF treatment for all subjects. Participants were required not to consume any food or beverage (except water) at least one hour prior to 117 saliva collection. Before sample collection, participants were instructed to rinse their mouth with 118 119 purified drinking water (Kroger®). After a 1-minute rest, they sipped 2 mL of purified drinking water as the control sample, swished it around their mouth for 15-20 sec. Without swallowing, 120 participants expectorated saliva into a clean sample collection tube until approximately 4 mL of 121 saliva was collected. Collected saliva samples were immediately frozen and stored at -80°C until 122 analysis. 123

124 TSA assessment

We used a taste and smell questionnaire (Appendix) that has been previously used to 125 evaluate TSA in AIDS patients,¹³ to assess TSA of the cancer patients in our study. The 126 assessment was conducted prior to saliva collection. In the taste section, cancer participants were 127 asked to rate their individual taste changes as "insignificant", "mild", "moderate", "severe", or 128 "incapacitating" during LF treatment, and rate their taste abnormality when experiencing salt, 129 130 sweet, sour, and bitter. This tool yields a taste score (0-10) based on subject's responses to nine questions addressing changes to the sense of taste. One point was added for each reported taste 131 complaint and additional one point would be added if a rating was "severe" or "incapacitating". 132 Similarly, a smell complaint score (0-6) was generated by adding one point for a positive 133 response to each of five questions addressing self-perceived changes to the senses of smell. Two 134 points were assigned to a severity rating of "severe" or "incapacitating" for the severity of the 135 smell abnormality question. The total abnormality score (0-16) was calculated by adding the 136 taste and smell abnormality scores. 137

138 Salivary proteome analysis

139	Twelve of the cancer patients and 12 healthy subjects were selected for salivary proteome
140	analysis. Selection criterion included salivary proteins which were able to be clearly separated on
141	2-DE gels, number of missing proteins spots between duplicate gels was below 10, and
142	correlation coefficients (calculated by PDQuest® software) of protein spots between gels of each
143	group (healthy and cancer) was above 0.85. Saliva samples were analyzed by two-dimensional
144	electrophoresis (2-DE) as previously described. ¹⁴ Thawed samples were mixed thoroughly by
145	vortex mixer followed by centrifugation at 18500 \times g (4 °C) for 15 min to reduce viscosity and
146	remove debris.

Proteins in each saliva sample were precipitated by adding a solution containing 10% trichloroacetic acid (TCA)/90% acetone/20mM dithiothreitol (DTT) at twice the volume of saliva sample, and chilled overnight at -20 °C.¹⁵ The next day, the samples were placed in a chilled centrifuge (18500 ×g, 4°C) for 15 min to pelletize the protein. The pellet was washed a second time using a 20 mM DTT/acetone wash and spun in the chilled centrifuge (18500 × g, 4°C) for 15 min to pellet the protein once again.

153 The protein pellet was then resuspended in the 2D cell lysis buffer containing 9 M urea, 2% CHAPS (w/v), 50 mM DTT, 0.5% IPG buffer (v/v), and 0.01% bromophenol blue. Saliva protein 154 concentration was determined by 2D-Quant Kit (GE Healthcare, Pittsburgh, PA) following the 155 protocol given in the brochure and using BSA as a standard. Each saliva sample was loaded (20 156 µg protein) on a 11cm immobilized pH gradient strip (pH 3-11NL, GE Healthcare, Pittsburgh, 157 PA), and carried out by GE Healthcare Ettan IPGphor 3 Cell (GE Healthcare, Pittsburgh, PA). 158 Sample strips were equilibrated with a two-step process: (1) rinsed with equilibration buffer 159 containing 6 M urea, 4 % SDS (w/v), 0.375 M Tris-HCl (pH 8.8), 20 % glycerol (v/v), and 130 160 161 mM DTT for 15 min, (2) rinsed with equilibration buffer containing 6 M urea, 4 % SDS (w/v),

162 0.375 M Tris-HCl (pH 8.8), 20 % glycerol (v/v), and 130 mM iodoacetic acid (IAA) for 15 min.

163 Then, sample strips were transferred into 11 cm Criterion Precast 12.5 % Polyacrylamide Gels

164 (BIO-RAD, Hercules, CA). The gels were run at 35 mA for 15 min and then at 70 mA until the

165 dye front ran out of the gels. Gels were stained using FlamingoTM Fluorescent Gel Stain (BIO-

166 RAD, Hercules, CA) following the manufacturer's instructions or stained by silver staining

167 (PlusOne Silver Staining kit; GE Healthcare). Gel images were scanned by Molecular FX Imager

168 (BIO-RAD, Hercules, CA).

169 In-gel trypsin digestion and mass spectrometry identification

Selected spots were excised from 2-DE gels by hand with spot picker. Protein digestion 170 was carried out by adding 0.065 µg of trypsin and incubated on ice for 15 min, then followed by 171 incubation at 37 °C overnight. The next day, 1 µL of each digest was transferred to a freshly-172 173 polished MALDI plate and covered with freshly-prepared matrix containing 4 mg/mL α -cyano-4-hydroxycinnamic acid, 50 % CH₃CN, 0.1 % TFA (v/v), 0.1 % formic acid (v/v), and 5 mM 174 (NH₄)Cl. Protein identification was performed by an Applied Biosystems 4800 MALDI-175 176 TOF/TOF (matrix-assisted laser desorption ionization-time-of-flight/ time-of-flight) mass spectrometer (AB Scienx, Framingham, MA), which was based on peptide fingerprint mass 177 mapping (using MS spectra) and peptide fragmentation mapping (using MS/MS spectra). The 178 MASCOT search engine software (Matrix Science, Boston, MA) was used to identify proteins 179 from the National Center Biotechnology Information nonredundant Homo sapiens amino acid 180 sequence database. The parameters for searching and identifying matches were adjusted as 181 follows: enzyme of trypsin, 1 missed cleavage, fixed modifications of carbamidomethyl (C), 182 variable modifications of oxidation (M), peptide mass tolerance: ± 0.5 Da, fragment mass 183 184 tolerance: ± 0.5 Da, mass tolerance of 30 ppm, peptide charge of 1+ and monoisotopic.

185	Salivary minerals analysis
186	Thawed saliva samples (500 μ L) were diluted with 4.25 mL deionized water followed by
187	digesting with 250 μ L trace metals grade nitric acid (TraceMetal TM Grade, Fisher, St. Louis, MO)
188	at room temperature, which resulted in a final dilution ratio at 1:10 (v/v). Reagent blank was
189	prepared by adding 250 μ L nitric acid into 4.75 mL deionized water. Concentration of salivary
190	minerals including iron, magnesium, potassium, copper, zinc, sodium, calcium, phosphorus,
191	sulphur, and chloride of each diluted saliva sample were measured by emission spectroscopy
192	using Inductively Coupled Plasma (ICP) technique (Thermo Electronic Corporation, X-Series
193	ICP-MS, Waltham, MA). ^{16,17}
194	Statistical analysis
195	Differential expression of salivary proteins between 2D gels were analyzed by
196	PDQuest® software v.7.3.1 (Bio-Rad, Hercules, CA). Intensity of proteins was determined as the
197	percentage of total valid spots volume on respective gels. Protein spots that had at least 2-fold
198	change in intensity were considered as differences among treatments in each replicated group. P
199	value was calculated based on Wilcoxon test and $P < 0.05$ was used as cutoff for significance.
200	Differences of abnormality score among different stages of LF treatment were analyzed by one-
201	way ANOVA (analysis of variance) followed by Tukey's test ($\alpha = 0.05$). Concentrations of
202	salivary minerals between healthy and cancer subjects at each stage of LF treatment were
203	analyzed by student's t-test ($\alpha = 0.05$). Changes of salivary minerals between each stage of LF
204	treatment were analyzed by paired t-test ($\alpha = 0.05$) for both healthy and cancer subjects.
205	Statistical analysis was performed by statistical software programs JMP® Pro 13.0.0.

206 **Results**

207 Taste and smell abnormalities

208	TSA scores of cancer patients (n=12) at each stage of LF treatment are shown in Fig.1.
209	Compared with baseline, taste abnormality scores ($P = 0.0197$), smell abnormality scores ($P =$
210	0.0110), and total abnormality scores ($P = 0.0006$) were significantly reduced for cancer patients
211	at 30-day post-LF supplementation. A decreasing TSA score implies improved taste and smell
212	function. Although there was no significant change ($P > 0.05$) of taste/smell/total abnormality
213	score at 30-day LF supplementation, a decreasing trend in patients' abnormality score was
214	observed throughout the intake of LF supplements.
215	Salivary proteome
216	Based on repeatability and stability of salivary proteins shown on 2-D image, twelve of
217	the cancer patients and 12 healthy subjects were subjected to salivary proteome analysis. Saliva
218	of each human subject was loaded on each 2-DE gel at equal amount of protein (20 μ g) for 2-DE
219	analysis. After in-gel image analysis, 102 salivary protein spots with expression differences in
220	intensity were found in all comparisons (cancer patient/healthy subjects, pre/post -LF
221	supplementation). Based on their fold change (\geq 2-fold change) and abundance, 47 protein spots
222	were further excised and analyzed by MALDI-TOF-TOF mass spectrometry. Identified protein
223	spots were marked on each 2-DE image with consistent spot ID number (Table 1). The reference
224	whole salivary proteome maps from representative healthy subjects and cancer patients are
225	shown in Fig. 2. Fold changes of differentially expressed proteins in saliva of healthy subjects
226	and cancer patients at each stage of LF treatment are shown in Table 2.
227	Healthy subjects

228	LF supplementation led to a significant increase (Wilcoxon test, $P < 0.05$) in intensity of
229	zinc-alpha-2-glycoprotein (Zn- α -2-GP) (spot 8,13,14,15) and prolactin-inducible protein (PIP)
230	(spot 16-21) in saliva of healthy subjects (Fig. 2b, Table 2). Abundance of these salivary proteins
231	then significantly decreased ($P < 0.05$) without consistent intake of lactoferrin tablets (Fig. 1c).
232	There was no significant increase ($P = 0.068$) in intensity of salivary lactoferrin (spot 35) in
233	healthy subjects along with LF supplementation.
234	Human whole saliva proteome showed variation between individuals in previous
235	studies, ^{16,17,18} especially the relative location and intensity of low-abundance salivary proteins.
236	Although this variation was also found in our study, low-abundance salivary proteins [pH 5.5-8.5,
237	MW (molecular weight) 25-75 kDa] in healthy subjects showed an overall increase (intensity \geq
238	2-fold change) in response to LF supplementation (Fig. 2b). The up-regulated protein spots
239	included CAVI (spot 33,34), α -amylase (spot 24,36,37,40,41,42,43), and immunoglobulin heavy
240	chain (spot 28,29), as shown in Table 2. However, most of the up-regulated proteins did not
241	retain their intensity in saliva after the termination of LF supplementation (Fig. 2c). Furthermore,
242	we found that after termination of LF intake for 30 days, composition of low-abundance salivary
243	proteins was changed as the expression of α -amylase (spot 22,23,24,38,39,44,45) was
244	significantly increased ($P < 0.05$) and the intensity of CAVI (spot 5,6,7,32,33,34) was decreased
245	(P < 0.05) (Table 2).

246 *Cancer patients*

247 Compared with healthy subjects, cancer patients showed significantly lower (P < 0.05) 248 intensity of salivary α -amylase (spot 51, spot 52,53), Zn- α -2-GP (spot 8,13-15), PIP (spot 16-21), 249 and low-abundance proteins (pH 5.5-8.5, MW 25-75 kDa) at baseline. LF supplementation 250 significantly increased (P < 0.05) the intensity of salivary Zn- α -2-GP (spot 8,15) and α -amylase

(spot 52.53) compared with baseline (Fig. 2e). Low-abundance salivary proteins spots presented 251 an overall increase in expression (\geq 2-fold change) along with LF supplementation, including 252 immunoglobulin heavy chain (spot 29), annexin A1 (spot 48), proteinase inhibitor (spot 22), and 253 254 α -amylase (spot 23,24,49) (Table 2). A post-LF supplementation effect was observed, in which the intensity of α-amylase (spot 37,39,44,45,49,52,53) and SPLUNC2 (spot 9) were further 255 increased (P < 0.05) as shown in Fig. 2f. At the same time, cancer patients' taste (P = 0.0389) 256 and total abnormality scores (P = 0.0025) were significantly decreased compared with baseline 257 (Fig. 1). There was no significant increase (P = 0.058) in intensity of salivary lactoferrin (spot 35) 258 along with LF supplementation. 259

260 Salivary minerals

As expected, LF supplementation significantly decreased (P = 0.025) the concentration 261 262 of salivary Fe from 0.20 ± 0.05 mg/L to 0.07 ± 0.04 mg/L in cancer patients (n=12). In addition, the decreased salivary Fe content was maintained at 0.08 ± 0.06 mg/L in cancer patients even 263 after 30 days without consistent LF supplement intake, which was still significantly lower (P =264 265 0.032) than salivary Fe content at baseline (Figure 3b). There was no significant difference (P >0.05) in concentration of salivary minerals between baseline and 30-day post-LF 266 supplementation. However, compared with 30-day LF supplementation, a post-LF effect on 267 minerals was observed, including significantly increased concentrations of salivary P (P =268 0.0216), S (P = 0.0451), K (P = 0.0313), Ca (P = 0.0242), and Mg (P = 0.0025) in cancer 269 patients. For healthy subjects (n=12), LF treatment at each stage did not significantly influence 270 (P > 0.05) the concentration of any tested salivary minerals. 271 Compared with healthy subjects, cancer patients showed significantly higher 272

concentration of salivary Na (P = 0.013) and Fe (P = 0.033) at baseline (Figure 3a and 3b). This

significant difference, however, was eliminated following LF supplementation. In contrast,

concentrations of salivary Mg (P < 0.001), P (P = 0.021), K (P = 0.011), Ca (P = 0.002), S (P = 0.

276 0.003) in cancer patients increased at 30-day post-LF supplementation compared with healthy

277 subjects.

278 Disccussion

279 Production of Taste and Smell Abnormalities

In this study, concentrations of salivary Fe in cancer patients were significantly higher (P 280 = 0.033) than those in healthy subjects at baseline. According to Toyokuni's study.¹⁹ disease 281 pathology such as cancer is usually associated with the release of unbound and reactive forms of 282 iron (Fe^{2+}), which might result in metallic taste abnormality. In addition, high Fe concentration 283 in cancer patients' saliva not only produces metallic taste, it also is highly associated with 284 285 neurodegenerative changes that commonly results in sensory disorders, such as taste (sweet, sour, salty, bitter) impairment found in Parkinson's disease.^{20,21} In addition, chemotherapeutic agents 286 such as procarbazine lead to an increase in reactive oxygen species.²² which results in lipid 287 oxidation of oral epithelial cells that contributes to the production of carbonyls that causes 288 metallic taste.²³ 289

Another possible mechanism of taste/smell abnormality is the localized taste/smell damage caused by chemotherapy.²⁴ Accumulated evidence has indicated that cytotoxic chemotherapy agents not only kill cancer cells, but they also destroy the salivary peroxidase system.⁹ In our study, production of metallic taste in chemotherapy patients was associated with the significant decrease of salivary α -amylase and immune proteins including CAVI, Zn- α -2-GP, PIP, and immunoglobulin. Our result was in agreement with previous studies that patients with taste disorders had lower abundance of Zn- α -2-GP, PIP, and CAVI in saliva.²⁵ In addition, 297 chemotherapy agents such as oxaliplatin are reported to cause peripheral sensitization and

destroy the sensory neurons that lead to neuropathic pain and TSA.^{26,27}

299 Effect of lactoferrin treatment on Taste and Smell Abnormalities

300 *Lactoferrin*

Lactoferrin is produced by activated microglia and dopaminergic neurons around the central nervous system, which contributes to the repair of neuropathological disorders.²⁸ Injection of lactoferrin conjugates in a rat model of Alzheimer's disease further confirms a potential neuroprotective effect of lactoferrin in neurodegeneration through metal-chelation therapy.²⁰ The supply of lactoferrin in this study might assist in repairing and transmitting neural signals to the central nervous system, which relieved TSA as a consequence.

Furthermore, serving as a metal chelator, lactoferrin may have been able to reduce 307 308 metallic taste abnormality by binding salivary Fe that was naturally higher in chemotherapy patients' saliva. After transferring ferrous to ferritin, lactoferrin would be eliminated through 309 receptor-mediated endocytosis of phagocytic cells. Excess lactoferrin could also be removed 310 311 from the circulation through direct uptake by liver, then degraded and excreted into the urine by the kidneys.²⁹ This might explain the non-significant (P > 0.05) increase of salivary lactoferrin 312 in all human subjects during LF supplementation in this study. In addition, lactoferrin might 313 decrease the metallic taste caused by lipid oxidation in oral epithelial cell through minimizing the 314 catalytic action of salivary Fe. 315

As a first-line immune defense protein, abundant lactoferrin in the body might trigger innate protective mechanisms in mucosal immunity and in nonimmune mucosal defense,³⁰ which stimulated the production of other associated salivary defense proteins such as immunoglobulin A secretory chain (anti-bacteria and anti-viruses), α -amylase (anti- inflammation), annexin A1

320	(anti-inflammation), and prolactin-induced protein (anti-bacteria and anti-viruses). ³¹⁻³⁴ Oral
321	infection and inflammation often result in taste disorders; ion transportation and the associated
322	afferent nerve of salt taste perception are acutely sensitive to inflammatory stimuli. ³⁵
323	Furthermore, accumulating evidence suggests that systemic peripheral inflammation may result
324	in exacerbation in several neurodegenerative diseases that commonly cause taste/smell
325	dysfunction, such as Parkinson's disease. ³⁶ In a recent study, taste dysfunction in obesity has also
326	been proven to be a result of systemic inflammation. ³⁷ Therefore, controlling of oral
327	inflammation should be an integral part of prevention of taste dysfunction and salivary immune
328	proteins are important in maintaining normal taste function.
329	Other immune proteins
330	Zn- α -2-GP and PIP were reported to play an important role in mucosal immunity and

330 mucosal defense functions through high binding affinity with bacteria and proteins.³⁸ In this 331 study, intensity of Zn- α -2-GP and PIP were significantly lower in saliva of cancer patients who 332 developed TSA. Our result was in agreement with the observation that patients with taste 333 abnormality showed decreased expression of $Zn-\alpha-2$ -GP and PIP in saliva.²⁵ Thus, $Zn-\alpha-2$ -GP 334 and PIP might be critical immune proteins in maintaining normal taste function. We hypothesize 335 that $Zn-\alpha-2$ -GP and PIP might competitively bind with taste compounds or taste receptors 336 through their high binding affinity, thus reducing metallic perception in the oral cavity. 337 In this study, increased expression of low-abundance immune proteins was associated 338 with a lower taste/smell/total abnormality score. CAVI has long been recognized as a critical 339 protein that is responsible for the growth of taste buds.³⁹ Failure of CAVI synthesis in saliva was 340 associated with the development of taste bud abnormalities which resulted in the loss of taste 341 capacity such as dysosmia and dysgeusia.³⁹ In the current study, CAVI was absent in saliva of 342

343 most cancer patients at baseline. Our result suggests that metallic taste abnormality might be caused by inhibition of taste bud growth or damage to taste buds induced by chemotherapy. 344 Alpha-amylase is well known as a digestive enzyme in saliva,⁴⁰ which degrades 345 carbohydrates into glucose/maltose and generates sweet taste perception. In this study, cancer 346 patients showed a significantly lower intensity of salivary α -amylase than healthy subjects. The 347 decreased expression of α -amylase in chemotherapy patients might result in a difficulty to fully 348 digest carbohydrates in foods and a relative increase the intensity of metallic taste. 349 To understand the universality of LF treatment on chemotherapy-induced taste and smell 350 dysfunction, patients with a variety of cancers receiving different chemotherapy regimens were 351 included in this study. Although individual factors of cancer patients may influence the effect of 352 LF treatment, such as personal eating behavior, diet, tobacco history, and supertaster 353 354 (hypersensitive) or non-taster status, this study has found a positive immune system response to LF supplementation was common among cancer patients. Therefore, saliva would provide an 355 easily available and noninvasive method to determine useful bio-markers for the early detection 356 357 of TSA in high-risk patients. Salivary minerals 358

Lactoferrin is well known as an iron-binding protein that sequesters overabundant iron in order to quickly decrease the oxidative stress; LF transports and delivers iron to cells in all organisms for utilization or storage. Lactoferrin binds and transfers iron ions through its polypeptide folding pattern.⁴¹ Apart from iron, lactoferrin is also capable of binding many other metal ions such as Al^{3+} , Ca^{2+} , Na^+ , K^+ , Cu^{2+} , and Zn^{2+} , ⁴¹ which explained the slight decline of salivary minerals after 30 days of intake of LF supplements.

365	In this study, concentrations of salivary minerals including P, S, K, Ca, Mg, were
366	significantly increased (P<0.05) in cancer patients at 30-day post-LF supplementation. To the
367	best of our knowledge, influence of LF supplementation on salivary minerals has not been
368	studied yet and the mechanism of lactoferrin intake on changes of salivary minerals is not yet
369	clear. However, we reason that the large amount of ingested lactoferrin might combine with
370	certain salivary minerals, which caused the decrease of these minerals in concentration. In
371	addition, cancer patients showed significantly higher ($P < 0.05$) concentration of salivary
372	minerals than healthy subjects at baseline. The increase of salivary minerals in cancer patients
373	might be a direct result of the chemotherapeutic agents or result from the chemotherapy-induced
374	salivary disorder. Therefore, the increase of salivary minerals after termination of LF
375	supplementation might be due to the continued chemotherapy effect.
376	Although Mg, K, Ca are all metal cations, they do not produce metallic flavor because
377	these metal cations do not cause lipid oxidation. Ca, Mg Na, and K are associated with bitter
378	taste and have not been reported to produce metallic taste. ^{42,43,44,45} Furthermore, according to
379	previous studies, recognition threshold (taste sensitivity) of metallic flavor induced by ferrous
380	sulfate solution was weakened when adding minerals such as Ca and Mg. ^{46,47} Therefore, LF
381	treatment might relieve metallic taste by increasing the concentration of salivary Mg, S, Cl, K,
382	Ca while decreasing salivary Fe at the same time.
383	In conclusion, LF supplementation successfully reduced TSA caused by chemotherapy

and this effect lasted at least 30 days. To our knowledge, this study is the first to associate taste abnormality with the salivary proteome. Furthermore, our proteomic analysis in this study was the first to illustrate the molecular mechanism of LF supplementation on salivary immunity: intake of lactoferrin increased overall expression of salivary immune proteins, which are

388	associated with taste bud growth, neutral signal transduction, and taste threshold recovery. Our
389	results suggest lactoferrin may be developed as an effective dietary supplement to treat TSA
390	caused by chemotherapy and increase the expression of salivary proteins. Results of this study
391	may pave the way for further clinical studies in patients with TSA caused by taste buds damage
392	(such as radiotherapy), innate and diseases-associated immune deficiency, and
393	neurodegeneration (e.g. Parkinson's disease).
394	
395	Conflict of interest
396	The authors have stated that they have no conflicts of interest.
397	
398	Acknowledgements
399	The authors acknowledge Dr. Dennis Dean, Valerie Cash, the Fralin Life Science Institute
400	(Virginia Tech, Blacksburg), and the Virginia Tech Mass Spectrometry Incubator laboratory for
401	programmatic support. This project was funded, in part, by the Virginia Agricultural Experiment
402	Station (Blacksburg), the Hatch Program of the National Institute of Food and Agriculture, U.S
403	Department of Agriculture (Washington, D.C.), and the Virginia Tech Water INTERface
404	Interdisciplinary Graduate Education Program. This project was also funded, in part, by the
405	Wake Forest Baptist Comprehensive Cancer Center pilot grant program.
406	
407	
408	References
409	1 A. Zabernigg, E.M. Gamper, J.M. Giesinger, G. Rumpold, G. Kemmler, K. Gattringer,
410	B. Sperner-Unterweger and B. Holzner, Taste alterations in cancer patients receiving

411		chemotherapy: a neglected side effect? Oncologist, 2010, 15(8), 913-920.
412	2	I. Ijpma, R.J. Renken, J.A. Gietema, R.A. Slart, M.J. Mensink, J.D. Lefrandt, G.J. Ter
413		Horst, A.K.L. Reyners. Changes in taste and smell function, dietary intake, food
414		preference, and body composition in testicular cancer patients treated with cisplatin-
415		based chemotherapy, Clin. Nutr., 2016, 36(6), 1642-1648.
416	3	B.M. Bernhardson, C. Tishelman and L.E. Rutqvist, Self-reported taste and smell
417		changes during cancer chemotherapy, Support Care Cancer, 2008, 16(3), 275-283.
418	4	A. Boltong, R. Keast and S. Aranda, Experiences and consequences of altered taste,
419		flavour and food hedonics during chemotherapy treatment, 2012, Support Care
420		Cancer, 20, 2765–2774.
421	5	S. Steinbach, T. Hummel, C. Böhner, S. Berktold, W. Hundt, M. Kriner, P. Heinrich,
422		H. Sommer, C. Hanusch, A. Prechtl, B. Schmidt, I. Bauerfeind, K. Seck, V.R. Jacobs,
423		B. Schmalfeldt and N. Harbeck, Qualitative and quantitative assessment of taste and
424		smell changes in patients undergoing chemotherapy for breast cancer or gynecologic
425		malignancies, J. Clin. Oncol., 2009, 27, 1899–1905.
426	6	I. Ijpma, R.J. Renken, G.J. Horst and A.K.L. Reyners, Metallic taste in cancer patients
427		treated with chemotherapy, Cancer Treat. Rev., 2015, 41, 179-186.
428	7	M.K. Wilken and B.A. Satiroff, Pilot study of "miracle fruit" to improve food
429		palatability for patients receiving chemotherapy, Clin. J. Oncol. Nurs., 2012, 16, 173-
430		177.
431	8	P. Ömür-Özbek, A.M. Dietrich, S.E. Duncan and Y. Lee, Role of lipid oxidation,
432		chelating agents, and antioxidants in metallic flavor development in the oral cavity, J .
433		Agric. Food Chem., 2012, 60(9), 2274-2280.

434	9	L. Zitvogel, L. Apetoh, F. Ghiringhell and G. Kroemer, Immunological aspects of
435		cancer chemotherapy, Immunology, 2008, 8, 59-73.
436	10	T. Siqueiros-Cendón, S. Arévalo-Gallegos, B.F. Iglesias-Figueroa, I.A. Garcia-
437		Montoya, J. Salazar-Martinez and Q. Rascon-Cruz, Immunomodulatory effects of
438		lactoferrin, 2014, Acta Pharmacol Sin., 35(5), 557-566.
439	11	H. Wakabayashi, N. Takakura, K. Yamauchi and Y. Tamura, Modulation of
440		immunity-related gene expression in small intestines of mice by oral administration
441		of lactoferrin, Clin. Vaccine Immunol., 2006, 13, 239-245.
442	12	M. Tomita, H. Wakabayashi, K. Shin, K. Yamauchi, T. Yaeshima and K. Iwatsuki,
443		Twenty-five years of research on bovine lactoferrin applications, Biochimie, 2009,
444		9(1), 52-57.
445	13	J.L. Hutton, V.E. Baracos and W.V. Wismer, Chemosensory dysfunction is a
446		primary factor in the evolution of declining nutritional status and quality of life in
447		patients with advanced cancer, J. Pain Symptom Manag., 2007, 33, 156-165.
448	14	S. Hu, Y. Xie, P. Ramachandran, P.R.O. Loo and D.T. Wong, Large-scale
449		identification of proteins in human salivary proteome by liquid chromatography/mass
450		spectrometry and two-dimensional gel electrophoresis-mass spectrometry,
451		Proteomics, 2005, 5, 1714-1728.
452	15	R. Vitorino, M.J. Lobo, A.J. Ferrer-Correira, J.R. Dubin, K.B. Tomer, P.M.
453		Domingues and F.M. Amado, Identification of human whole saliva protein
454		components using proteomics, Proteomics, 2004, 4, 1109-1115.
455	16	S. Mirlohi, S.E. Duncan, M. Harmon, D. Case, G. Lesser and A.M Dietrich, Analysis
456		of salivary fluid and chemosensory functions in patients treated for primary malignant

457	brain tumors, Clin. Oral Invest., 2015, 19(1), 127-137.	
458	17 M. Watanabe, M. Asatsuma, A. Ikui, Y. Yamada, S. Nomura and A. Igarashi,	
459	Measurements of several metallic elements and matrix metalloproteinases (MMPs) in	1
460	saliva from patients with taste disorder, Chem. Senses., 2005, 30(2), 121-125.	
461	18 C. Hirtz, F. Chevalier, D. Centeno, J.C. Egea, M. Rossignol, N. Sommerer and D. de	į.
462	Périère, Complexity of the human whole saliva proteome, J. Physiol Biochem., 2005	,
463	61(3), 469-480.	
464	19 S. Toyokuni, Role of iron in carcinogenesis: cancer as a ferrotoxic disease, Cancer	
465	Sci., 2009, 100(1), 9-16.	
466	20 G. Kamalinia, F. Khodagholi, F. Atyabi, M. Amini, F. Shaerzadeh, M. Sharifzadeh	
467	and R. Dinarvand, Enhanced brain delivery of deferasirox-lactoferrin conjugates for	
468	iron chelation therapy in neurodegenerative disorders: in vitro and in vivo studies,	
469	Mol. Pharm., 2013, 10(12), 4418-4431.	
470	21 M.J. Ricatti, S. Ottaviani, F. Boschi, A. Fasano, M. Tinazzi and M.P. Cecchini, A	
471	prospective evaluation of taste in Parkinson's disease, J. Neural Transm., 2017,	
472	124(3), 347-352.	
473	22 K. Berneis, M. Kofler, W. Bollag, A. Kaiser and A. Langeman, The degradation of	
474	deoxyribonucleic acid by new tumor inhibiting compounds: the intermediate	
475	formation of hydrogen peroxide, <i>Experientia</i> , 1963, 19, 132–133.	
476	23 H.T. Lawless, S. Schlake, J. Smythe, J. Lim, H. Yang, K. Chapman and B. Bolton,	
477	Metallic taste and retronasal smell, Chem. Senses, 2004, 29, 25-33.	
478	24 J.H. Hong, P. Omur-Ozbek, B.T. Stanek, A.M. Dietrich, S.E. Duncan, Y.W. Lee and	
479	G. Lesser, Taste and odor abnormalities in cancer patients, J. Support Oncol., 2009, 7	',

25	A. Igarashi, K. Ito, S. Funayama, Y. Hitomi, S. Nomura, A. Ikui and M. Ikeda, The
	salivary protein profiles in the patients with taste disorders: The comparison of
	salivary protein profiles by two dimensional gel electrophoresis between the patients
	with taste disorders and healthy subjects, Clin. Chim. Acta., 2008, 388, 204-206.
26	A. Areti, V.G. Yerra, V.M. Naidu and A. Kumar, Oxidative stress and nerve damage:
	role in chemotherapy induced peripheral neuropathy, Redox Biology, 2014, 2, 289-
	295.
27	A.A. Argyriou, P. Polychronopoulos, G. Iconomou, E. Chroni and H.P. Kalofonos. A
	review on oxaliplatin-induced peripheral nerve damage, Cancer Treat Rev., 2008, 34,
	368-377.
28	C. Fillebeen, M.N. Ruchoux, V. Mitchell, S. Vincent, M. Benaissa and A. Pierce,
	Lactoferrin is synthesized by activated microglia in the human substantia nigra and its
	synthesis by the human microglial CHME cell line is upregulated by tumor necrosis
	factor α or 1-methyl-4-phenylpyridinium treatment, Mol. Brain Res., 2001, 96, 103-
	113.
29	T.W. Hutchens, J.F. Henry, T.T. Yip, D.L. Hachey, R.J. Schanler, K.J. Motil and C.
	Garza, Origin of intact lactoferrin and its DNA-binding fragments found in the urine
	of human milk-fed preterm infants. Evaluation by stable isotopic enrichment, Pediatr.
	Res., 1991, 29, 243–250.
30	K. Lorenz, M. Bader, A. Klaus, W. Weiss, A. Görg and T. Hofmann, Orosensory
	stimulation effects on human saliva proteome, J. Agric. Food Chem., 2001, 59(18),
	10219-10231.
	25 26 27 28 29 30

503	31 L.D.R. Goncalves, M.R. Soares, F.C.S. Nogueira, C. Garcia, D.F.	t. Camisasca, G.
504	Domont, A.C.R. Feitosa, D.A. Perecira, R.B. Zingali and G. Alv	es, Comparative
505	proteomic analysis of whole saliva from chronic periodontitis pa	tients, J. Proteomics,
506	2010, 73, 1334-1341.	
507	32 G. Cirino, S.H. Peers, R.J. Flower, J.L. Browning and R.B. Pepin	ısky, Human
508	recombinant lipocortin 1 has acute local anti-inflammatory prope	erties in the rat paw
509	edema test, Proc. Natl. Acad. Sci. USA, 1989, 86, 3428-3432.	
510	33 L.C. Schenkels, E. Walgreen-Weterings , L.C. Oomen, J.G. Bols	cher, E.C. Veerman
511	and A.V. Amerongen, In vivo binding of the salivary glycoprote	in EP-GP (identical
512	to GCDFP-15) to oral and non-oral bacteria detection and identif	ication of EP-GP
513	binding species, Biol. Chem., 1997, 378, 83-88.	
514	34 G. Bachrach, Z. Muster, I. Raz, G. Chauschu, A. Stabholz, G. Nu	issbaum, M. Gutner
515	and S. Chauschu, Assessing the levels of immunoglobulins in the	e saliva of diabetic
516	individuals with periodontitis using checkerboard immunodetect	ion, Oral Dis., 2008,
517	14, 51–59.	
518	35 D. Kumarhia, L. He, and L.P. McCluskey, Inflammatory stimuli	acutely modulate
519	peripheral taste function, J. neurophysiol., 2016, 115(6), 2964-29	975.
520	36 Y. Zlotnik, Y. Balash, A.D. Korczyn, N. Giladi and T. Gurevich	, T. Disorders of the
521	oral cavity in Parkinson's disease and parkinsonian syndromes.	Parkinson's Disease,
522	2015. <u>http://dx.doi.org/10.1155/2015/379482</u> .	
523	37 A. Kaufman, E. Choo, A. Koh, and R. Dando, Inflammation aris	sing from obesity
524	reduces taste bud abundance and inhibits renewal. PLOS Biol., 2	2018, 16(3),
525	e2001959.	

526	38	L.M. Sanchez, C. Lopez-Otin, P.J. Bjorkman, Biochemical characterization and
527		crystalization of human Zn-a2-glycoprotein, a soluble class I major histocompatibility
528		complex homolog, P. Natl. Acad. Sci. USA, 1997, 94, 4626-30.
529	39	R.I. Henkin, B.M. Martin and R.P. Agarwal, Decreased parotid saliva
530		gustin/carbonic anhydrase VI secretion: an enzyme disorder manifested by gustatory
531		and olfactory dysfunction, Am J. Med. Sci., 1999, 318, 380-391.
532	40	U.M. Nater and N. Rohleder, Salivary alpha-amylase as a non-invasive biomarker
533		for the sympathetic nervous system: current state of research, Psychoneuroendocrino,
534		2009, 34(4), 486-496.
535	41	E.N. Baker, B.F. Anderson, H.M. Baker, C.L. Day, M. Haridas, G.E. Norris, S.V.
536		Rumball, C.A. Smith, and D.H.Thomas, Three-dimensional structure of lactoferrin in
537		various functional states, Experi. Medic. Biol, 1994, 357, 1-12.
538	42	A.M. Dietrich, and G.A. Burlingame, Critical review and rethinking of USEPA
539		secondary standards for maintaining organoleptic quality of drinking water, Environ.
540		Sci Technol., 2015, 49(2), 708-720.
541	43	D.A. Sinopoli, and H.T. Lawless. Taste properties of potassium chloride alone and in
542		mixtures with sodium chloride using a check - all - that - apply method, J. Food.
543		Sci., 2012, 77(9), S319-S322.
544	44	United States Environmental Protection Agency. Drinking water advisory: consumer
545		acceptability advice and health effects analysis on sodium, EPA 822-R-03-006, US
546		Environmental Protection Agency: Washington, DC, 2003, p 29.
547	45	World Health Organization. Guidelines for drinking water quality, World Health
548		Organization: Geneva, Switzerland, 2011, p 541.

549	46 A. Wang, S.E. Duncan and A.M. Dietrich, Effect of iron on taste perception and
550	emotional response of sweetened beverage under different water conditions, Food
551	Qual. Prefer., 2016, 54, 58-66.
552	47 K. Hoehl, G.U. Schoenberger and M. Busch-Stockfisch, Water quality and taste
553	sensitivity for basic tastes and metallic sensation, Food Qual. Prefer., 2010, 21, 243-
554	249.
555	

Protein name	Spots ² ID	Accession	Matched	MW ³ (kDa)		PI ⁴	
		No.	peptides	theo.	obs.	theo.	obs.
α-Amylase, salivary	23,24,36,37,38 ,39,40,41,42,43 ,44,45,49,51,52,53	gi 178585	12	57.8	40.5 - 62.0	6.5	4.5 - 7.4
Annexin A1	48	gi 119582950	4	40.2	37.8	6.6	7.2
Carbonic anhydrase VI precursor	5,6,7,32,33,34	gi 112693294	4	40.3	35.4 - 39.6	6.6	6.5 - 7.6
Immunoglobulin heavy chain variable region	28,29	gi 122892400	10	40.5	37.6	6.6	6.1
Lactoferrin	35	gi 85700158	4	84.5	85.8	9.3	9.6
Prolactin-inducible protein	16,17,18,19,20 ,21	gi 4505821	6	9.1	8.9 - 14.5	5.3	4.2 - 5.4
Proteinase inhibitor	22	gi 52001472	2	43.5	44.6	6.1	6.2
Short palate, lung and nasal epithelium carcinoma-associated protein 2 (SPLUNC2)	9,10,11,12	gi 34395850	4	27.2	26.8 - 29.1	5.4	4.8 - 5.6
Transferrin precursor	1,2,3	gi 553788	4	76.8	81.5	8.4	7.2 - 8.2
Unidentified protein	50	-	-	-	33.4	-	6.6
Zinc-alpha-2- glycoprotein precursor	8,13,14,15,26,27	gi 4502337	10	33.9	35.4 - 44.0	5.5	5.1 - 5.6

Table 1 Mass spectrometric identification of differentially expressed proteins in saliva of healthy subjects and cancer patients¹during LF treatment.

¹Saliva samples were collected from 12 healthy subjects and 12 cancer patients.

²Identified proteins using the National Center Biotechnology Information nonredundant *Homo sapiens* amino acid sequence database and compared with previous publications.

³Molecular weight of theoretical (theo.) and observed (obs.) values.

⁴Isoelectric point of theoretical (theo.) and observed (obs.) values.

Protein	Spots	30-Da	y LF	30-Day post-LF		
	ID	supplem	entation ²	suppleme	ntation	
		Healthy	Cancer	Healthy	Cancer	
	23	2.1	4.6*	11.4**	2.9	
	24	2.5	3.3*	12.6**	2.1	
	36	4.7*	-	-2.1	-	
	37	6.5*	-	-4.3*	3.8*	
	38	-	-	10.1*	-	
	39	-	-	15.0*	3.4*	
	40	4.8*	-	-6.5*	-	
	41	2.5	-	-5.4*	-	
α-Amylase, salivary	42	4.2*	-	-4.1*	-	
Sunvary	43	2.4	-	-3.2*	-	
	44	-	-	10.2**	8.1**	
	45	-	-	11.5**	2.5*	
	49	-	2.2	-	6.8*	
	51	2.4	-2.1	1.4	-3.9	
	52	2.5	7.9**	-2.5	5.6*	
	53	3.4	9.5**	-2.4	4.4*	
Annexin A1	48	-	2.1	-	4.7	
	5	-1.3	-	-5.4*	-	
	6	-0.8	-1.1	-8.2*	0.8	
Carbonic	7	1.2	1.2	-8.5*	1.1	
anhydrase VI	32	1.5	-	-2.8*	-	
precursor	33	4.3*	-	-5.1*	-	
	34	2.7*	-	-3.8*	-	
Immunoglobulin	28	2.5*	2.4*	3.3	1.1	
heavy chain variable region	29	2.4	1.2	5.8*	2.1	
Lactoferrin	35	2.8	3.1	-0.5	-2.2	
	16	0.8	-	-2.1*	-	
Prolactin-	17	1.5	2.4	-3.5*	-1.4	
inducible proteins	18	3.2*	3.8	-8.8*	-2.7	
Protonis	19	9.6**	-	-5.5*	-	

Table 2 Fold changes of differentially expressed proteins in saliva of healthy subjects and cancer patients¹ at each stage of LF treatment.

Protein	Spots ID	30-Da supplem	ay LF entation ²	30-Day post-LF supplementation ³		
		Healthy	Cancer	Healthy	Cancer	
Prolactin-	20	2.1*	4.3	-5.9**	-3.1	
inducible proteins	21	0.6	-	-2.2*	-2.1	
Proteinase inhibitor	22	-3.4	4.5*	5.5*	-4.1	
	9	2.9	2.2	6.8	10.5*	
	10	2.1	1.5	-1.9	2.2	
SPLUNC2	11	2.6	1.4	-2.4	-1.1	
	12	2.1	1.4	-1.8	-1.2	
	1	1.1	-	2.2	-	
Transferrin	2	1.2	-	4.1	-	
precursor	3	0.8	-	4.4	-	
Unidentified protein	50	-	-	-	2.3	
•	8	12.8**	2.6*	-10.6**	2.1	
	13	2.5*	1.1	-5.1*	1.5	
Zinc-alpha-2-	14	4.1*	0.8	-5.6*	1.8	
glycoprotein	15	10.1**	2.8*	-11.5**	1.2	
precursor	26	-	-	-	2.3	
	27	-	-	-	2.2	

¹Saliva samples were collected from 12 healthy subjects and 12 cancer patients. ²Fold change of each individual protein was compared to the same protein spot shown in baseline.

³Fold change of each individual protein was compared to the same protein spot shown in 30-day LF supplementation.

*Differences of protein expression between LF treatment stages reaching statistical significance indicated by a single (P < 0.05) or double asterisk (P < 0.01).

Figure 1. Taste, smell, and total abnormality scores of 12 cancer patients at baseline, 30day LF supplementation, and 30-day post-LF supplementation.

Figure 2. Salivary proteome of the representative healthy subject and cancer patient, at baseline (a,d), 30-day LF supplementation (b,e), and 30-day post-LF supplementation (c,f). Gels were stained by fluorescent staining. Grouped spots that are shown on top of each gel picture were cut from silver-stained gel to provide a better visualization. Differentially expressed proteins (Wilcoxon test, P < 0.05) are circled on each 2-DE image with consistent spot ID number as listed in Table 3. Low-abundance protein spots concentrated between pH 5.5-8.5 and MW (molecular weight) 25-75 kDa are grouped in each 2-DE image. pI, isoelectric point; LF, lactoferrin.

Figure 3. Comparison of salivary minerals between healthy subjects (n=12) and cancer patients (n=12) at each stage of LF treatment for a) major minerals including Na, P, S, Cl, K, Ca, and b) minor minerals including Mg, Fe, Cu, Zn.

Figure 2.

Figure 3b.

Appendix Smell and Taste Questionnaire

Please answer these questions based on your current perception of your sense of taste and smell. For those questions that require a comparison, please compare your current sense of taste and smell with your sense of taste and smell prior to developing cancer and receiving chemotherapy.

Taste Complaints: Please rate

Questions	Insignificant	Mild	Moderate	Severe	Incapacitating
I have noticed a change in my sense of taste					
A food tastes different than it used to					
I have a persistent bad taste in my mouth					
Drugs interfere with my sense of taste					
I would rate my abnormal sense of taste as					

Taste Complaints: Answer "yes" or "no"

Questions	Yes	No	If "Yes" then:
I am experiencing an abnormal sensitivity to salt			Salt tastes: Stronger or Weaker
I am experiencing an abnormal sensitivity to sweet			Sweet tastes: Stronger or Weaker
I am experiencing an abnormal sensitivity to sour			Sour tastes: Stronger or Weaker
I am experiencing an abnormal sensitivity to bitter			Bitter tastes: Stronger or Weaker

Smell Complaints: Please rate

Questions	Insignificant	Mild	Moderate	Severe	Incapacitating
I have noticed a change in my sense of smell					
A food smells different than it used to					
Specific drugs interfere with my sense of smell					
I would rate my abnormal sense of smell as					
Smell Complaints: Answer "yes" or "no"					
	X 7			TO 11 X 7 11 /1	

Questions	Yes	No	If "Yes" then:
I have an abnormal sensitivity to odors			Odors are: Stronger or Weaker

Latoferrin supplementation significantly reduced taste and smell abnormality in chemotherapy patients and improved their oral immunity.