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EOM-CC guide to Fock-space travel: The C2 edition

Sahil Gulania,a Thomas-C. Jagau,b and Anna I. Krylov∗a,c

Despite their small size, C2 species pose big challenges to electronic structure, owing to their
extensive electronic degeneracies and multi-configurational wave functions, which lead to a dense
manifold of electronic states. We present detailed electronic structure calculations of C2, C−2 , and
C2−

2 , emphasizing spectroscopically relevant properties. We employ double ionization potential
(DIP) and ionization potential (IP) variants of the equation-of-motion coupled-cluster method with
single and double substitutions (EOM-CCSD) and a dianionic reference state. We show that EOM-
CCSD is capable of describing multiple interacting states in C2 and C−2 in an accurate, robust,
and effective way. We also characterize the electronic structure of C2−

2 , which is metastable with
respect to electron detachment.

1 Introduction
Ironically, the smallest form of neat carbon, the C2 molecule,
features the most complex electronic structure. The complexity
stems from the inability of the eight valence electrons of the two
carbons to form a quadruple bond (remarkably, the bonding in
C2 is still hotly debated1–8). Because the optimal electron pair-
ing cannot be attained, multiple electronic configurations have
similar likelihood, leading to a dense manifold of low-lying elec-
tronic states. This results in rich spectroscopy: C2 features multi-
ple low-lying electronic transitions, which have been extensively
studied experimentally9–14. Nevertheless, C2 continues to gener-
ate interest. For example, recently, new band systems have been
identified15–17.

Besides its obvious fundamental importance, C2 (and its
anionic forms, C−2 and C2−

2 ), play a role in combustion18,
plasma19–21, and astrochemistry19,22. For example, C2 and C−2
have been observed in comet tails, protoplanetary nebulae, the
atmospheres of stars, and in the diffuse interstellar medium22–27.
C2 is responsible for the color of blue flames18. It is also a promi-
nent product of electrical discharges containing hydrocarbons20.

From the theoretical point of view, C2 is arguably the most dif-
ficult molecule among homonuclear diatomics from the first two
rows of the periodic table. Electronic near-degeneracies lead to
multiconfigurational wave-functions. Small energy separations
between different electronic states also call for high accuracy. Be-
cause of its complex electronic structure, C2 has often been de-
scribed as the poster child of multi-reference methodology. The
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availability of high-quality spectroscopic data, complex electronic
structure, and its small size make C2 a popular benchmark sys-
tem for quantum chemistry studies28–32. Among recent theoret-
ical studies of the low-lying states of C2, the most comprehen-
sive are the tour-de-force MR-CISD (multi-reference configura-
tion interaction with single and double excitations) calculations
by Schmidt and coworkers33 and by Szalay and co-workers34. In
both studies, the effect of basis set and higher-order corrections
have been carefully investigated. To correct MR-CISD energies for
violation of size-extensivity, Davidson’s quadruple correction was
used. Szalay and co-workers have also reported results obtained
with an alternative strategy, the so-called MR-average quadratic
coupled-cluster (AQCC) method. In both studies, the theoretical
values of the reported equilibrium distances (re) and term ener-
gies (Tee) agreed well with the experimental data.

The anionic forms of C2, C−2 and C2−
2 , have received less atten-

tion. C−2 is produced in plasma discharge from acetylene35,36.
Electronically excited C−2 has been observed in a carbon-rich
plasma via fluorescence21. Recently, C−2 has been proposed
as a candidate for laser cooling of anions37; this makes these
species interesting in the context of quantum information stor-
age. Ervin and Lineberger38 have measured the photoelectron
spectrum of C−2 using 3.53 eV photons; they reported the adia-
batic electron affinity (AEA) of C2 to be 3.269±0.006 eV. A sim-
ilar value (3.273±0.008 eV) has been derived by Neumark and
coworkers39, who reported vibrationally resolved photodetach-
ment spectra using 4.66 eV radiation. Feller has reported an
AEA of 3.267 eV calculated using a composite method based on
coupled-cluster (CC) methods40.

Because of its highly unsaturated character, C2 has relatively
large electron attachment energy, so that even the two lowest ex-
cited states of C−2 are bound electronically. In contrast, C2−

2 is
metastable with respect to electron detachment. Its existence,
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which has been postulated on the basis of features observed41,42

in electron scattering from C−2 , has been confirmed by calcula-
tions43,44.

In this contribution, we present detailed electronic structure
calculations of C2, C−2 , and C2−

2 , with an emphasis on spectroscop-
ically relevant properties. We employ an alternative methodology
based on CC and equation-of-motion CC (EOM-CC) theory45–49.
We show that electronic states of C2 and C−2 are well described by
the double ionization potential (DIP)50 and ionization potential
(IP)51,52 variants of EOM-CCSD (EOM-CC with single and double
substitutions) using a dianionic reference state. Formulated in a
strictly single-reference fashion, the EOM-CC family of methods
provides an accurate, robust, and effective alternative to cumber-
some multi-reference calculations45–49. To describe metastable
species, such as C2−

2 , we employ the complex-variable extension
of CCSD and EOM-CCSD via the complex absorbing potential
(CAP) approach53–55.

2 Molecular orbital framework and essen-
tial features of electronic structure of
C2species

!"#

!"#∗
!%#

!%#∗
&%'( &%')

*%+,

[core]6

Fig. 1 Molecular orbital diagram. The three lowest orbitals that remain
doubly occupied in the low-energy manifold of electronic states of C2 and
C−2 are denoted as ’core’. The electronic states of C2 are derived by dis-
tributing six additional electrons over four upper orbitals, σ∗2s, π2px/π2py,
and σ2pz. Shown is the leading electronic configuration of the ground
state, X1Σg. Low-lying states of C−2 are derived by distributing five elec-
trons over the four upper orbitals. In C2−

2 , all four upper orbitals are dou-
bly occupied. Shown are Dyson orbitals (isovalue = 0.05) computed with
EOM-IP-CCSD/aug-cc-pVTZ from the dianionic reference.

Fig. 1 shows the molecular orbital diagram and describes or-
bital occupation patterns in C2, C−2 , and C2−

2 . Due to orbital
near-degeneracies, various electronic configurations of six elec-
trons over the upper four orbitals have similar energies, lead-
ing to closely lying electronic states and multi-configurational
wave-functions. In C−2 , there are four important configurations
in which the unpaired electron resides on one of the upper or-
bitals. In C2−

2 , which is isoelectronic with N2, all four upper or-
bitals are doubly occupied, resulting in the electronic configura-
tion [core]6(σ∗2s)

2(π2px)
2(π2py)

2(σ2pz)
2. Consequently, the ground

state of C2−
2 is a well-behaved closed-shell state dominated by a

single Slater determinant; thus, it can be well described by single-
reference methods such as, for example, CCSD. From this refer-
ence state, EOM-IP and EOM-DIP operators can generate all im-
portant electronic configurations needed for describing the elec-
tronic states of C−2 and C2, respectively, as illustrated in Fig. 2.

Mathematically, the EOM-CCSD target states are described by
the following ansatz46–48:

Ψ = (R̂1 + R̂2)eT̂1+T̂2 Φ0, (1)

where eT̂1+T̂2 Φ0 is the reference CCSD wave function (the ampli-
tudes of the excitation operator T̂ are determined by the CCSD
equations for the reference state) and operator R̂ is a general ex-
citation operator. In EOM-IP-CCSD, R̂ comprises all 1h (one hole)
and 2h1p (two hole one particle) operators51,52, whereas in EOM-
DIP-CCSD it comprises all 2h and 3h1p operators. In EOM-EE-
CCSD (EOM-CCSD for excitation energies56) and EOM-SF-CCSD
(spin-flip EOM-CCSD57,58), R̂ is particle-conserving and includes
1h1p and 2h2p operators (in the SF variant, R̂ changes the number
of α and β electrons). In the EA (electron attachment) variant59,
the operator R is of the 1p and 1h2p type. The amplitudes of R̂
are found by diagonalization of the similarity-transformed Hamil-
tonian, H̄:

H̄ = e−T HeT , (2)

H̄Rk = EkRk. (3)

Linear parameterization ensures that different configurations can
mix and interact. There are no assumptions about their relative
importance—the relative weights of different configurations are
defined by the EOM eigen-problem and can span the entire range
of situations, from those dominated by a single electronic con-
figuration to those of equal contributions from multiple deter-
minants. The EOM-CC ansatz is capable of reproducing exact
degeneracies (such as between the two components of Π states
in linear molecules or Jahn-Teller degeneracies), which are vio-
lated by state-specific MR treatments. Since all important con-
figurations appear at the same excitation level, they are treated
in a balanced way. As a multi-state method, EOM-CC produces
the entire manifold of electronic states without requiring user
input regarding state character. These features make EOM-CC
very attractive for treating multiple electronic states and exten-
sive degeneracies49. Recent applications illustrating the power
of EOM-CC include calculations of electronic states of copper ox-
ide anions60, Cvetanović diradicals61, and molecules with several
unpaired electrons62,63.

The success of EOM-CC in treating a particular electronic struc-
ture depends on whether a proper well-behaved reference can be
found from which the manifold of target states can be reached
by an appropriately chosen R̂1. As illustrated in Fig. 2, the
electronic structure of C2 is best described by EOM-DIP using
the dianionic reference state. The DIP method is capable of
describing electronic degeneracies beyond two-electrons-in-two-
orbitals or three-electrons-in-three-orbitals patterns50,60,61,64–68;
however, its applications are limited by complications due to the
use of the dianionic reference.
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Fig. 2 EOM-IP (left) and EOM-DIP (right) manifolds generated from the dianionic reference (center). Only configurations generated by R̂1 from the top
four orbitals from Fig. 1 are shown. EOM-IP enables access to the ground and electronically excited states of C−2 , whereas EOM-DIP describes the
ground and excited states of C2.

Isolated dianions of small molecules are usually unstable with
respect to electron detachment and exist only as transient species
(resonances).69 In dianions, resonances emerge due to the com-
petition between the two factors: (i) long-range repulsion be-
tween the anionic core and an extra electron and (ii) short-range
stabilizing valence interactions. Together, these lead to a repul-
sive Coulomb barrier. The extra electron is trapped behind this
barrier but can escape the system by tunneling. This is simi-
lar to metastable radical monoanions, where the extra electron
is trapped behind an angular-momentum barrier, which affords
resonance character. In a computational treatment using a suf-
ficiently large basis, the wave function of a resonance becomes
more and more diffuse, approximating a continuum state corre-
sponding to an electron-detached system and a free electron70–72.

Resonances can be described by a non-Hermitian extension of
quantum mechanics73 by using, for example, complex absorb-
ing potential (CAP)74,75. If one is interested in the dianionic
state itself, then the CAP-based extension of CC theory can be
used55. However, in practical calculations using EOM-DIP-CC,
the dianionic state just serves as a reference for generating tar-
get configurations. Thus, less sophisticated approaches can be
used to mitigate complications arising from its metastable char-
acter. The easiest and most commonly used approach is to use
a relatively small basis set, such that the reference state is ar-
tificially stabilized50,60,61,64–66,76. Kuś and Krylov have investi-
gated an alternative strategy: stabilization of the resonance using
an artificial Coulomb potential with a subsequent de-perturbative
correction71,72. Here we show that in the case of C2, using the
aug-cc-pVTZ basis provides a robust description of the dianionic
reference, which delivers accurate results for the target states. To
further validate these calculations, we carried out CAP-EOM-IP-
CCSD calculations in which the dianionic reference is stabilized
by the CAP and compare the potential energy curves of C2−

2 and
C−2 obtained by these two calculations.

In the CAP approach74,75, the Hamiltonian is augmented by a
purely imaginary confining potential iηW (the parameter η con-
trols the strength of the potential). This transformation converts
the resonances into L2-integrable wave functions with complex
energies

E = Eres−
iΓ
2
, (4)

where the real and imaginary parts correspond to the resonance
position (Eres) and width (Γ). In a complete basis set, the ex-
act resonance position and width can be recovered in the limit
of η → 0. In finite bases, the resonance can only be stabilized
at finite values of η . The perturbation due to the finite-strength
CAP can be removed by applying first-order de-perturbative cor-
rection53,54 and identifying the special points of η-trajectories
at which the dependence of the computed energy on η is min-
imal. When combined with the EOM-CCSD ansatz, this ap-
proach has been shown to yield accurate and internally consis-
tent results for both bound and metastable states55. For exam-
ple, these calculations yield smooth potential energy curves77–79

and in many cases correctly identify the points where resonances
become bound. We note, however, that in some polyatomic
molecules spurious widths of about 0.04 eV for bound states per-
sist79. In our previous calculations53,55,78–82, we used CAP-EOM-
CCSD to describe metastable EOM states from stable (bound)
CCSD references. Here we present the first example of a cal-
culation where the CCSD reference is metastable, but the target
EOM-CCSD states are bound.

3 Computational details

As explained above, we describe the electronic states of C−2
and C2 by EOM-IP-CCSD and EOM-DIP-CCSD, respectively, us-
ing the dianionic reference (see Fig. 2). In real-valued EOM-
CCSD calculations, we used the aug-cc-pVTZ basis. In the CAP-
augmented CCSD and EOM-IP-CCSD calculations, we used the
aug-cc-pVTZ+3s3p and aug-cc-pCVTZ+6s6p6d basis sets (the ex-
ponents of the additional diffuse sets were generated using the
same protocol as in our previous studies54,81). Two core or-
bitals, σ1s and σ∗1s, were frozen in correlated calculations except
when employing the aug-cc-pCVTZ basis. In the calculations us-
ing aug-cc-pVTZ+3s3p, the CAP onset was set according to the
expectation value of R2 of the triplet UHF wave function of C2

(at rcc=1.28 Å, the onsets were: x0 = y0=1.6 Å, z0= 2.6 Å).
In the calculations with aug-cc-pCVTZ+6s6p6d, the CAP onset
was set according to the expectation value of R2 of the dianion
computed using CCSD/aug-cc-pCVTZ (at rcc=1.2761 Å, this gave
x0 = y0= 2.4 Å, z0= 3.6 Å). First-order correction53 was applied
to the computed total energy and then optimal values of η were
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determined from these corrected trajectories using our standard
protocol53,54. All electronic structure calculations were carried
out using the Q-Chem package83,84. The calculations of partial
widths were carried out using ezDyson85.

4 Results and discussion
4.1 C2
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Fig. 3 Potential energy curves of low-lying singlet and triplet states of
C2.

Fig. 3 shows the potential energy curves of low-lying singlet
and triplet states of C2 computed using EOM-DIP-CCSD/aug-cc-
pVTZ. The respective electronic configurations, equilibrium dis-
tances, and term values are summarized in Table 1. Table 1 also
presents MR-CISD+Q/cc-pVTZ results from Ref. 34 and the ex-
perimental values. As one can see, C2 features 10 electronic states
within ∼24,000 cm−1 (about 3 eV).

The results illustrate that EOM-DIP-CCSD is capable of tackling
the complexity of C2 rather well. It describes the entire mani-
fold of the low-lying states with an accuracy comparable to that
of much more cumbersome and labor-intensive multi-reference
calculations. When compared to the experimental values, the
root-mean-square (RMS) errors in the equilibrium bond lengths
and term energies computed with EOM-DIP-CCSD/aug-cc-pVTZ
are 0.0165 Å and 1661 cm−1. The errors in bond lengths are
only marginally bigger than those of MR-CISD+Q/cc-pVTZ val-
ues (0.0114 Å). Remarkably, the errors in energy are consistently
smaller than a conservative estimate of the EOM-CCSD error bars,
which is roughly 0.3 eV (2420 cm−1). The relative state ordering
is also correctly described. MR-CISD+Q/cc-pVTZ yields, on aver-
age, smaller errors in term energies (RMS of 469 cm−1), however,
for three out of nine states, the EOM-DIP-CCSD/aug-cc-pVTZ val-
ues are closer to the experiment.

For a fair comparison, it is important to stress that the EOM-
DIP-CCSD ansatz is very compact and includes only 2h and 3h2p
configurations, whereas in MR-CISD+Q and AQCC, the size-
extensivity corrections entail contributions of up to quadruply
excited configurations. As with other EOM-CCSD methods, per-
turbative or explicit inclusion of connected triple excitations is
expected to significantly reduce the errors. We note that higher

excitations can also describe orbital relaxation thus mitigating the
effect of the unstable dianionic reference.

To put the results presented in Table 1 in a perspective, it is
instructive to compare the performance of various flavors of mul-
tireference methods and to discuss the effects of basis set increase
and higher-order corrections. Szalay et al. carried out34 extensive
comparisons between MR-CISD, MR-CISD+Q, and MR-AQCC for
thirteen states of C2. The effects of higher-order corrections have
also been investigated by Jiang and Wilson31 in the framework of
the correlation-consistent composite approach (MR-ccCA) based
on the complete active space self-consistent field (CASSCF) the-
ory with second-order perturbative corrections (CASPT2).

The size-extensivity correction is significant—the errors of MR-
CISD decrease when either Davidson’s correction or MR-AQCC is
employed. Without size-extensivity corrections, the RMS in the
equilibrium bond lengths and term energies computed with MR-
CISD/cc-pVTZ are 0.0117 Å and 623 cm−1. The effect of the basis
set on the term energies is less systematic34. The RMS error in
bond lengths within MR-AQCC/cc-pVTZ is 0.0115 Å (to be com-
pared to 0.0114 Å of MR-CISD+Q). The errors in term energies
were also comparable to MR-CISD+Q/cc-pVTZ. We note that in
the MR-AQCC(TQ) calculations, the largest errors in term ener-
gies were observed for 1∆u and e3Πg (999 cm−1 and 722 cm−1).
Both MR-AQCC and MR-CISD+Q calculations were sensitive to
the orbital choice and showed improved performance when using
state-averaged CASSCF orbitals. Extrapolation to the complete
basis set based on the cc-pVTZ and cc-pVQZ calculations results
in a systematic decrease of equilibrium bond lengths by 0.01 Å.

Several studies have also investigated the magnitude of higher-
order corrections, with an aim to achieve spectroscopic accu-
racy31,86. Schmidt and co-workers showed that the inclusion of
core-valence correlation combined with scalar relativistic correc-
tions in the framework of MR-CISD+Q brings the spectroscopic
constants within 1% from the experimental values33. Jiang and
Wilson have reported similar trends31.

In addition to the states shown in Table 1, we also com-
puted two electronic states, 1∆u and e3Πg, which have been re-
cently identified experimentally15–17. The electronic configura-
tions of these states are: [core]6(σ∗2s)

2(π2px)
2(π2py)

1(π∗2px
)1 and

[core]6(σ∗2s)
2(π2px)

1(π2py)
1(σ2pz)

1(π∗2px
)1. Thus, they cannot be

generated by the 2h operator from the dianionic reference, so
that the norm of the 3h1p EOM amplitudes becomes large (≈1).
Consequently, the computed term energies are too high. In or-
der to describe these states with the same accuracy as the states
dominated by 2h configurations, the EOM-DIP ansatz needs to be
extended up to 4h2p operators.

We note that several lowest state of C2 can also be de-
scribed by EOM-SF-CCSD using a high-spin triplet reference,
e.g., [core]6(σ∗2s)

2(π2px)
2(π2py)

1(σ2pz)
1. Using ROHF-EOM-SF-

CCSD/aug-cc-pVTZ, vertical excitation energy from 1Σ+
g to a3Πu

at rcc=1.2425 of C2 is 319 cm−1, to be compared with 1924
cm−1 computed by EOM-DIP-CCSD/aug-cc-pVTZ. To quantify the
bonding pattern in C2, we also computed Head-Gordon’s index87,
which characterizes the number of effectively unpaired electrons.
For the EOM-SF-CCSD wave function of the ground state of C2 at
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Table 1 Equilibrium bond lengths (re, Å) and term energies (Tee, cm−1) of the low-lying states of C2.

State Configuration EOM-DIP-CCSDa MR-CISD+Qb Expt.c

re Tee re Tee re Tee

X1Σ+
g [core]6(σ∗2s)

2(π2px)
2(π2py)

2 1.224 - 1.2536 - 1.2425 -
A1Πu [core]6(σ∗2s)

2(π2px)
2(π2py)

1(σ2pz)
1 1.316 8127 1.3294 8000 1.3184 8391

B1∆g [core]6(σ∗2s)
2(π2px)

1(π2py)
1(σ2pz)

2 1.404 10408 1.3972 11684 1.3855 12082
B′1Σ+

g [core]6(σ∗2s)
2(π2px)

1(π2py)
1(σ2pz)

2 1.377 15012 1.3897 15134 1.3774 15409
C1Πg [core]6(σ∗2s)

1(π2px)
2(π2py)

1(σ2pz)
2 1.246 36489 1.2682 34788 1.2552 34261

D1Σ+
u [core]6(σ∗2s)

1(π2px)
2(π2py)

2(σ2pz)
1 1.208 45166 1.2521 43810 1.2380 43239

a3Πu [core]6(σ∗2s)
2(π2px)

2(π2py)
1(σ2pz)

1 1.310 694 1.3228 256 1.3119 716
b3Σ−g [core]6(σ∗2s)

2(π2px)
1(π2py)

1(σ2pz)
2 1.390 4971 1.3786 5794 1.3692 6434

c3Σ+
u [core]6(σ∗2s)

1(π2px)
2(π2py)

2(σ2pz)
1 1.185 10531 1.2170 9618 1.2090 9124

d3Πg [core]6(σ∗2s)
1(π2px)

2(π2py)
1(σ2pz)

2 1.258 23025 1.2777 20382 1.2661 20022
a aug-cc-pVTZ basis set.

b MR-CISD with Davidson correction using the cc-pVTZ basis set from Ref. 34.
c From Refs. 9–14.

equilibrium, nu,nl=0.29. This value indicates that C2 has substan-
tial diradical character, comparable63 to that of singlet methy-
lene (0.25) or meta-benzyne (0.26). In other words, there is
no support for a quadruple bond, which would be manifested by
nu,nl ≈ 0.

4.2 C−2
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Fig. 4 Potential energy curves of the three lowest states of C−2 .

Fig. 4 shows the potential energy curves of the three bound
states of C−2 computed using EOM-IP-CCSD/aug-cc-pVTZ. The
respective electronic configurations, equilibrium distances, and
term values are given in Table 2. The Dyson orbitals89 represent-
ing the unpaired electrons in C−2 are shown in Fig. 1.

As one can see, the computed equilibrium distances and term
energies are in excellent agreement with the experimental data.
The computed oscillator strengths show that transitions to both
excited states are optically allowed. The computed Tee of the
2Σ+

u →2 Σ+
g transition is 2.37 eV. Vertically, at the equilibrium ge-

ometry of the 2Σ+
u state, the energy gap between two states is 2.29

eV, which is exactly equal to the fluorescence signal observed in

Ref. 21. Thus, our results confirm that fluorescence observed in
Ref. 21 can be attributed to the 2Σ+

u →2 Σ+
g transition of C−2 .

We also computed AEA of C2. Using EOM-DIP-CCSD/aug-cc-
pVTZ total energy of X1Σ+

g and EOM-IP-CCSD/aug-cc-pVTZ to-
tal energy of the X2Σ+

g state at the respective re, the computed
value of AEA is 4.57 eV (without zero-point energy), which is
more than 1 eV larger than the experimental value38,39 of 3.27
eV and high-level ab initio estimates40. This suggests that the
current correlation level is insufficient to describe relative po-
sition of the two manifolds. The two relevant states, X1Σ+

g
and 2Σ+

g , can also be computed using an alternative EOM-CC
scheme, via SF and EA using the high-spin triplet reference,
[core]6(σ∗2s)

2(π2px)
2(π2py)

1(σ2pz)
1. These calculations yield AEA

of 3.44 eV when using UHF triplet reference and 3.42 eV eV when
using the ROHF reference. The analysis of the total energies
shows that the EOM-EA energy of the anion is very close to the
corresponding EOM-IP energy whereas the EOM-SF energy of the
neutral state is significantly lower than the EOM-DIP energy. We
attribute this to orbital relaxation effects—while the dianionic or-
bitals are reasonably good for the anion, they are too diffuse for
the neutral and the EOM-DIP ansatz with only 2h and 3h1p oper-
ators is not sufficiently flexible to account for that.

4.3 C2−
2

Fig. 5, which shows potential energy curves of C2−
2 and C−2 ,

clearly illustrates the metastable nature of C2−
2 . Adiabatically,

C2−
2 is 3.41 eV (at the EOM-IP-CCSD/aug-cc-pVTZ level) above

the ground state of C−2 and can decay into any of the 3 states of
the anion. The squared norms of the respective Dyson orbitals89

computed using the EOM-IP-CCSD/aug-cc-pVTZ wave functions
at the equilibrium bondlength of C2−

2 (1.28 Å) are 0.86, 0.80, and
0.86 for the

2
Σ+

g , 2Πu, and
2
Σ+

u states, respectively. These values
indicate that each of these channels corresponds to a one-electron
detachment process. In the case of the autoionization, the shape
of the Dyson orbital represents the state of the outgoing electron.
Thus, the lowest channel (2Σg) corresponds to a d-wave whereas
the two other channels correspond to p-waves. This qualitative
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Table 2 Equilibrium bond lengths (re, Å) and term energies (Tee, cm−1) of bound electronic states of C−2 . EOM-IP-CCSD vertical excitation energies
(Eex, cm−1) and oscillator strengths ( fl ) are also shown.

State Configuration EOM-IP-CCSD/aug-cc-pVTZ Expt.a

re Tee Eex fl re Tee

2Σ+
g [core]6(σ∗2s)

2(π2px)
2(π2py)

2(σ2pz)
1 1.260 1.268

2Πu [core]6(σ∗2s)
2(π2px)

2(π2py)
1(σ2pz)

2 1.310 3989 4575 0.004 1.308 3986
2Σ+

u [core]6(σ∗2s)
1(π2px)

2(π2py)
2(σ2pz)

2 1.219 19113 19801 0.085 1.223 18391
a From Ref. 88.
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Fig. 5 Potential energy curves of C2−
2 and C−2 . Total electronic energies

are shown. Solid lines show CCSD/aug-cc-pVTZ and EOM-IP-CCSD
energies. Orange squares show the results from CAP-CCSD/aug-cc-
pvTZ+3s3p (first-order corrected energy).

analysis is supported by the calculations of partial waves using
ezDyson.

Table 3 First-order corrected energies of C2−
2 at optimal values of the η

parameter and the corresponding trajectory velocities (in a.u.) computed
with CAP-CCSD/aug-cc-pVTZ+3s3p.

rCC/ Å ERe Γ ηopt η | dE
dη
|

1.1 -75.67858 0.02790 0.0176 8.324×10−5

1.2 -75.73037 0.02618 0.0164 2.061×10−5

1.28 -75.74059 0.02506 0.0156 1.250×10−4

1.3 -75.74022 0.02458 0.0148 2.355×10−4

1.4 -75.72646 0.02346 0.0140 2.016×10−4

1.5 -75.70046 0.02302 0.0128 1.104×10−4

1.6 -75.66865 0.02224 0.0120 1.827×10−4

1.7 -75.63523 0.02172 0.0116 1.427×10−4

To characterize lifetimes of the dianion and to quantify the ef-
fect of its resonance character on the computed quantities of C−2 ,
we carried out CAP-CCSD and CAP-EOM-IP-CCSD calculations.
The results are summarized in Tables 3 and 4 and shown in Figs.
5 and 6.

As one can see from Fig. 5, the total energies of C2−
2 obtained

from the CAP-augmented calculations are nearly identical to the
real-valued results. Moreover, the impact on the computed term

energies of C−2 is also small: at rCC=1.28 Å, the differences in ex-
citation energies of C−2 between the two calculations are ∼0.03
eV. The adiabatic energy gap between C2−

2 and C−2 is 3.16 eV
computed with CAP-CCSD/aug-cc-pCVTZ+6s6p6d, only slightly
smaller than the value obtained in real-valued calculations (3.41
eV).

Previous calculations using the charge-stabilization method43

estimated that the closed-shell 1Σ+
g resonance of C2−

2 lies below 4
eV, roughly around 3.4 eV, above the ground state of C−2 . Later,
CAP-augmented MR-CISD calculations44 yielded Eres= 3.52 eV
and re=1.285 Å. Thus, our results confirm the findings of these
earlier studies43,44.

The resonance position and width are rather sensitive to the ba-
sis set employed, as Table 3 illustrates. For example, at the equi-
librium bond length (rCC=1.28 Å), the aug-cc-pVTZ+3s3p basis
yields adiabatic Eres=3.7 eV and Γ=0.68 eV, whereas the aug-
cc-pCVTZ+6s6p6d basis produces Eres=3.16 eV and Γ=0.25 eV.
A distinct stabilization point of the η-trajectory is only obtained
using the larger basis set (see Fig. 6); in the small basis only first-
order corrected trajectory shows the stabilization point. Our best
value for the resonance width (0.25 eV) is in very good agreement
with the CAP-MR-CISD value (0.30 eV)44 and also agrees quali-
tatively with the estimate from charge-stabilization calculations
(0.26-0.55 eV)43. Compared to singlet resonances with open-
shell character, for example, those of CN− that have Γ=0.48-0.56
eV81, C2−

2 is a narrow resonance. On the other hand, C2−
2 reso-

nance is rather broad compared to other small dianions69, such
as CO2−

3 or SO2−
4 .

We also estimated partial widths corresponding to the three
decay channels. Within the Feshbach formalism, partial widths
of autodetachment can be approximated by the following matrix
element82:

Γc =
(

2π〈ξωc |F̂ |φ d
c 〉
)2

, (5)

where Γc is the partial width corresponding to detachment chan-
nel c, ωc and φ d

c are the respective detachment energy and Dyson
orbital, ξωc is the wave function of the free electron, and F̂ is
the Fock operator. Given the localized nature of F̂ , this matrix
element is bound by the value of the overlap between the Dyson
orbital and the free-electron wave function. Thus, branching ra-
tios xp corresponding to different detachment channels can be
estimated as follows:

xp =
〈ξωp |φ d

p 〉2

∑c〈ξωc |φ d
c 〉2

, (6)

giving rise to Γp = xpΓ. Note that the contributions from the
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Table 4 First-order corrected energies of C2−
2 at optimal values of the η parameter computed with CAP-CCSD/aug-cc-pCVTZ+6s6p6d and CAP-

HF/aug-cc-pCVTZ+6s6p6d.

CAP-CCSD CAP-HF
rCC/ Å ERe Γ ηopt ERe Γ ηopt

1.0372 -75.730907 0.014406 0.0030 -75.298280 0.004573 0.0028
1.0901 -75.786473 0.012892 0.0030 -75.353147 0.003828 0.0026
1.1430 -75.821827 0.011584 0.0030 -75.387436 0.003267 0.0024
1.1959 -75.841880 0.010590 0.0028 -75.406232 0.002968 0.0020
1.2489 -75.850425 0.009711 0.0028 -75.413353 0.002924 0.0018
1.2761 -75.851410 0.009350 0.0028 -75.413483 0.003025 0.0018
1.3018 -75.850542 0.009089 0.0026 -75.411820 0.003178 0.0018
1.3547 -75.844523 0.008589 0.0026 -75.403959 0.003601 0.0018
1.4076 -75.834038 0.008303 0.0024 -75.391521 0.004147 0.0018
1.4605 -75.820500 0.007975 0.0024 -75.375802 0.004719 0.0018
1.5134 -75.804992 0.007837 0.0024 -75.357905 0.005367 0.0018
1.5664 -75.788195 0.007646 0.0024 -75.338755 0.005815 0.0020
1.6193 -75.770789 0.007618 0.0024 -75.318637 0.006414 0.0020
1.6722 -75.753150 0.007604 0.0022 -75.298126 0.007005 0.0020
1.7251 -75.735635 0.007578 0.0022 -75.277573 0.007564 0.0020
1.7780 -75.718455 0.007528 0.0022 -75.257580 0.007895 0.0020
1.8310 -75.701660 0.007486 0.0020 -75.237545 0.008336 0.0020
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Fig. 6 Uncorrected and first-order corrected CAP-CCSD using aug-cc-
pCVTZ+3s3p (top) and aug-cc-pCVTZ+6s6p6d (bottom) η-trajectories
for C2−

2 at equilibrium bondlengths.

degenerate channels (such as Πu) should be multiplied by the
respective degeneracy number (2 for Π-states). The overlap
〈ξωp |φ d

p 〉2 is proportional to the norm of φ d
c and depends strongly

on the energy of the detached electron and the shape of the Dyson

orbital. Fig. 7 shows the energy dependence of the computed
values of the squared overlap between the normalized Dyson or-
bitals and the free-electron wave function approximated by the
Coulomb wave. As one can see, the overlap values are zero at
low detachment energies and increase at higher energies. The
trends for the Σu and Πu channels are very similar, which is not
surprising given the similar shape of the respective Dyson orbitals.
Fig. 7 immediately suggest that the autodetachment process will
be dominated by the channels producing the two lowest states of
the anion, Σg and Πu.
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Fig. 7 Squared overlap between Dyson orbitals and a Coulomb
wave with charge=-1. Solid lines correspond to Dyson orbitals from
EOM-IP-CCSD/aug-cc-pVTZ (scale on the left). Dashed lines corre-
spond to Dyson orbitals (real part) from CAP-EOM-IP-CCSD/aug-cc-
pVTZ+6s6p6d (scale on the right).

Table 5 lists the computed values using Eres=3.41 eV (from
EOM-IP-CCSD/aug-cc-pVTZ). As one can see, the contribution
of the Σu is negligible and the Σg channel is dominant. When
using lower energy value (3.16 eV, from CAP-EOM-IP-CCSD/aug-
cc-pCVTZ+6s6p6d), the contribution from the Σu channels
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Table 5 Calculation of partial widths using Coulomb wave and Dyson orbitals from real-valued and complex-valued EOM-IP-CCSD calculations.

EOM-IP-CCSD/aug-cc-pVTZ CAP-EOM-IP-CCSD/aug-cc-pVTZ+6s6p6d
Channel/DEa ||φd ||2 Overlapb xp Γp ||φd ||2 Overlapb xp Γp
2Σ+

g /3.41 0.86 1.12 0.69 0.17 0.73 3.61 0.83 0.21
2Πu/2.91 0.86 0.25 0.31 0.08 0.71 0.39 0.17 0.04
2Σ+

u /1.04 0.80 2.13×10−4 1.4×10−4 ∼0 0.62 1.6×10−4 ∼0 ∼0
a Adiabatic EOM-IP-CCSD/aug-cc-pVTZ energies (eV).
b Overlap (squared) is computed between normalized Dyson orbitals and the Coulomb wave with charge=-1 and kinetic energy corre-
sponding to adiabatic detachment energy.

drops even further while the ratio between the Σg and Πu

channels remains unchanged. Using Dyson orbitals from the
CAP-EOM-IP-CCSD/aug-cc-pCVTZ+6s6p6d calculations leads
to the increase of the relative weight of the Σg channel. These
simple estimates are in qualitative agreement with partial widths
computed using CAP-MR-CISD wave function and an approach
based on the CAP projection44; their reported values correspond
to xp of 0.31, 0.66, and 0.02 for the Σg, Πu, and Σu channels.
One important difference is that our calculations predict that
the dominant decay channel is Σg, producing the ground-state
of C−2 . We note that using plane wave to describe the state of
the free electron yields an entirely different picture: the overlaps
are rather large around the threshold and change much slower,
resulting in comparable branching ratios for all three channels.
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Fig. 8 First-order corrected resonance width of C2−
2 as a function of

bond length computed with CAP-CCSD and CAP-HF and the aug-cc-
pCVTZ+6s6p6d basis set.

Finally, we investigate the dependence of the resonance width
on the bond length. As illustrated by Figure 8, the CAP-CCSD res-
onance width shrinks with an increasing bond length near the
equilibrium distance while it is nearly constant beyond 1.6 Å.
This is consistent with the potential energy curves of C2−

2 and the
2Σ+

g and 2Πu states of C−2 becoming nearly parallel at elongated
bond distances (see Figure 5). However, the behavior is differ-
ent from that of valence shape resonances in diatomic molecules
(for example, H−2 or N−2 ) that become bound when the bond is
stretched somewhat.55 It is more reminiscent of dipole-stabilized
resonances whose width is also rather insensitive to the changes
of the bond lengths.80 Figure 8 also shows that the resonance

width behaves differently at the CAP-CCSD and CAP-HF levels.
Within the HF approximation, Γ has a minimum around the equi-
librium structure (0.08 eV) and grows when the bond is stretched.
This behavior is similar to the results reported in Ref. 44 where
CAP-CIS and CAP-MR-CISD also yielded Γ increasing with bond
length between 1.2 and 1.4 Å. A detailed investigation of these
differences is beyond the scope of the present work, but we note
that the resonance width of C2−

2 has to vanish eventually, when
the bond is stretched far enough, because the 4S ground state of
C− obtained in the dissociation limit is stable towards electron
detachment.

The description of the decay channels reveals a shortcoming of
the CAP-CCSD approach based on a metastable reference. The
CAP-EOM-IP-CCSD energies of the three bound states of C−2 fea-
ture sizable positive imaginary parts of more than 0.3 eV (at the
equilibrium bond length and optimal η values for the dianionic
resonance). This is despite that real parts of absolute CAP-EOM-
IP-CCSD energies agree with the CAP-free values within ∼0.1 eV.
Also, it is in stark contrast to the performance of CAP-EOM-CCSD
based on bound reference states53,54, where the imaginary ener-
gies of bound states typically stay below 0.03 eV. We note that
application of the de-perturbative correction53,54 does not rectify
this problem. This is not surprising as the original analysis of E(η)

in terms of perturbation theory75 was designed for resonances
but not bound states. Furthermore, the imaginary energies of the
three bound states of C−2 differ by more than a factor of two so
that a single, not state-specific, correction is not realistic. How-
ever, since a positive imaginary energy is unphysical and since no
stabilization of the η-trajectory is observed for the CAP-EOM-IP-
CCSD states, the problem is easily discernible. Importantly, de-
spite this shortcoming, CAP-EOM-CCSD calculations using an un-
stable reference clearly distinguish bound and metastable states.

Experimentally41,42, the C2−
2 resonance manifest itself as a

broad feature around 10 eV in electron scattering detachment
spectra from C−2 , however, the interpretation of these spectra in
terms of the position of the resonance is not straightforward, as
explained by Sommerfeld and co-workers43. We hope that our
results will stimulate further experimental efforts to characterize
electronic structure of C2−

2 .

5 Conclusion

We reported electronic structure calculations of C2, C−2 , and C2−
2

using the CC/EOM-CC family of methods. Our results illustrate
that EOM-CCSD provides an attractive alternative to MR ap-
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proaches. The low-lying states of C2 and C−2 are well described
by EOM-DIP-CCSD and EOM-IP-CCSD using the dianionic closed-
shell reference (C2−

2 ), despite its metastable nature.
EOM-DIP-CCSD offers a much simpler computational approach

based on a single-reference formalism. In the EOM-DIP calcula-
tions, no active-space selection is required, and the results of the
calculations do not depend on the number of states computed,
in contrast to state-averaged MR schemes. One does not need to
guess the electronic configurations of the states to be computed—
once the user specifies how many states in each irrep are desired,
the algorithm computes them.

The electronic structure of C2−
2 was characterized by CAP-

augmented CCSD. The calculations placed the closed-shell C2−
2

resonance 3.16 eV adiabatically above the ground state of C−2 .
The computed resonance width is 0.25 eV, corresponding to a
lifetime of 2.6 fs. The C2−

2 resonance can, in principle, decay
into three open channels, producing the ground (X2Σg) or an ex-
cited (2Πu or 2Σu) state of C−2 . Our calculations of the partial
widths suggest that the dominant decay channel (70-80%) corre-
sponds to the ground state of the anion while the 2Σu channel is
essentially blocked. The analysis of the respective Dyson orbitals
reveals that the main effect controlling the branching ratios in
this system is the energy of the outgoing electrons. Importantly,
the CAP-augmented calculations yield detachment energies that
are very close to the real-valued EOM-CCSD calculations with the
aug-cc-pVTZ basis set, thus confirming the validity of the results
obtained with EOM-DIP-CCSD and EOM-IP-CCSD using the dian-
ion reference.
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