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Teaching Vibrational Spectra to Assign Themselves†

Paul L. Houston,∗a,b Brian L. Van Hoozen, Jr.,c Chen Qu,c Qi Yu,c and Joel M. Bowmanc

A new paradigm for assigning vibrational spectra is described. Instead of proceeding from po-
tential to Hamiltonian to eigenvalues/eigenvectors/intensities to spectrum, the new method goes
“backwards” directly from spectrum to eigenvectors. The eigenvectors then “assign” the spectrum,
in that they identify the basis states that contribute to each eigenvalue. To start, we demonstrate
an algorithm that can obtain useful estimates of the eigenvectors connecting a real, symmetric
Hamiltonian to its eigenvalues even if the only available information about the Hamiltonian is its
diagonal elements. When this algorithm is augmented with information about transition inten-
sities, it can be used to assign a complex vibrational spectrum using only information about 1)
eigenvalues (the peak centers of the spectrum) and 2) a harmonic basis set (taken to be the
diagonal elements of the Hamiltonian). Examples will be discussed, including application to the
vibrationally complex spectral region of the formic acid dimer.

1 Introduction

How parts of a molecule move relative to one another is an es-
sential window for understanding what holds them together, how
they interact with their environment, and how they might disso-
ciate or react. Infrared and Raman spectroscopies are powerful
and ubiquitous tools that provide this window. However, inter-
preting the spectrum currently involves a route illustrated by the
red pathway in Fig. 1a. Typically, a potential, V , is determined
from electronic structure calculations. That potential is then used
with an accurate, preferably exact, representation of the kinetic
energy operator, to determine the Hamiltonian operator. Then,
the Hamiltonian is typically represented by a matrix expressed in
a complete basis of orthonormal functions, e.g., eigenfunctions of
some zero-order Hamiltonian, often the harmonic one. Next, the
Hamiltonian matrix is diagonalized to give eigenvalues, which
give the positions of peaks in the spectrum, and eigenvectors,
which together with the basis give the eigenfunctions. Finally,
additional information from the dipole moment and standard ex-
pressions for oscillator strengths of the vibrations are used with
the eigenvalues to obtain the calculated spectrum for compari-
son to the experimental one. When a good match is found, one
assumes that the potential correctly describes how the molecule
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vibrates and the eigenfunctions/eigenvectors are used to “assign"
the various spectral bands.

The standard process from potential, V , and dipole moment
to the spectrum, indicated in Fig. 1a, is certainly a correct, but
cumbersome one, which for large molecules can literally require
person-years to complete. There are numerous strategies to ob-
tain and represent V , for example a quartic expansion about a
minimum; a recent quartic expansion for CO2

1 is a good exam-
ple. Another method, embodied in the program MULTIMODE 2,
is the n-mode representation of V . MULTIMODE uses vibrational
self-consistent and configuration interaction methods to calculate
the eigenfunctions for vibrational eigenstates in terms of a prim-
itive harmonic basis set. Assuming that an accurate potential
is available, this approach requires the diagonalization of very
large matrices, even for moderately sized molecules and com-
plexes, and is quite time consuming. Indeed, all of these methods
scale at least as the square of the number of vibrational modes
and are thus limited to approximations for molecules with more
than about ten atoms. Another method is to use a “spectroscopic”
Hamiltonian. This method assumes a functional expansion for the
Hamiltonian elements and then fits the coefficients by matching
the spectrum. The spectroscopic Hamiltonian method was first
introduced to the chemistry community from nuclear physics3

by Iachello, Levine and colleagues4–9. Subsequent work has fo-
cused on effective model Hamiltonians10–22. Although spectro-
scopic Hamiltonians have been successfully applied to simple an-
harmonic systems,11,13,15,17–19 they have not yet been used to
describe complex spectral bands such as that of the formic acid
dimer described below.

In this report, we describe success in exploring a new paradigm
for spectral assignment that traverses the reverse, blue, route
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Fig. 1 a) Connections between the Potential Energy Function and the
Spectrum. The red path is the traditional method of fitting a spectrum.
The blue path, investigated here, provides an alternative way of assigning
the spectrum with little recourse to the potential. b) MCD algorithm used
for finding a Hamiltonian and its eigenvalues/vectors that is consistent
with the spectrum and the harmonic basis energies.

in Fig. 1a. This route builds from a model description of the
spectrum, specifically the text-book double-harmonic model. Al-
though the double-harmonic model generally falls short of the
level of accuracy needed to assign complex spectra, we show that
it can be used as stepping stone to the goal of assigning complex
spectra with no knowledge of the potential energy surface. We
approach this goal by casting the problem as an Inverse Eigen-
value Problem,23 to which we approximate the solution by using
the underlying harmonic model and what we call a Monte Carlo
Diagonalization (MCD) method, to be described below. We aug-
ment the method by making use of dipole derivatives (the second
part of the double-harmonic approximation). We show that it is
possible to fit a complex experimental spectral band extremely
“quickly,” with perhaps a day’s effort. The assignment is then
made using the eigenvectors determined from the spectrum. We
believe that the spirit of the approach is general and could be
applied to many problems in computational chemistry.

In what follows, we establish the credentials of the method
with a brief description of the algorithm as used to determine
eigenvectors for a two-mode representation of the CO2 molecule.
We then demonstrate the power of this new paradigm by apply-
ing it to the assignment of a complex spectral band of the formic
acid dimer, (HCOOH)2, (FAD) in the the 2500-3300 cm−1 spec-
tral region. The FAD exhibits a C2h structure containing two hy-
drogen bonds with tunneling between each over a D2h barrier to
give an equivalent C2h structure.24 It is a prototypical example
of double hydrogen bond exchange in carboxylic acids. Early
room-temperature spectra have been reported, but assignment
has proven difficult due to the many hot bands.25–29 More re-
cent spectra of FAD in a cooled supersonic jet or in a gas matrix
have been more informative.30–38 Nydegger et al.39 have recently
reported a 2D IR investigation of the C-D stretching region of
the deuterated analog. A recent room-temperature spectrum has
been reported by Mackeprang et al.40 Because of the large num-
ber of vibrational modes (24), most theoretical calculations have
had to compromise either on the electronic structure method or
on the method for calculating the Hamiltonian. Recent theoretical
efforts have all found extensive mixing. These include Florio et
al.,41 who found coupling between the O-H stretch and the bend-
ing modes, Matanović and Došlić,42 who found that the broaden-
ing of the spectrum involved Fermi resonances and coupling to
low-frequency modes, Barnes and Sibert,43 who found extensive
state mixing, Pitsevich et al.,44 who found agreement with some
experimental frequencies, and Mackeprang et al.,40 whose work
reproduced the complexity of the spectrum but whose frequen-
cies did not match the experimental ones. Despite the progress of
these and other studies, the spectrum remains largely unassigned,
and so it clearly is a major challenge for theory.

2 Methods

2.1 Diagonalization and Inverse Diagonalization

The goal of the numerical methods that follow is to generate from
known eigenvalues and known Hamiltonian diagonal elements
the eigenvectors that connect them. The H-matrix, as usual, is as-
sumed to be real-symmetric. We generally assume that the diago-
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nal elements of the Hamiltonian are the known basis energies. In
one approach, the eigenvectors are obtained using a Monte Carlo
search in which a trial H-matrix is diagonalized and, by a sim-
ple iterative procedure, convergence to the desired set of eigen-
values, Λ, is obtained. Once converged, the desired matrix of
eigenvectors, C, where C H CT =Λ, can be obtained by standard
techniques. Here, C is a matrix whose columns are the eigen-
vectors corresponding the the eigenvalues on the diagonal of Λ.
This procedure, which does not yield unique results, is repeated a
number of times to determine the dispersion of results. We term
this method the Monte Carlo diagonalization algorithm (MCD).

Another stochastic approach randomly changes trial vectors, C,
and from the equation H=CT ΛC, generates trial H-matrices. The
search algorithm looks for a match between the calculated diag-
onals of H and the basis energies. We term this approach the
Monte Carlo inverse diagonalization algorithm (MCID).

The details of the MCD and MCID algorithms are discussed in
Section S1 of the ESI; a summary of the MCD mehtod will be
provided below. We stress again that the goal in both cases is to
obtain a small number of eigenvectors (relevent to, say, a large
H-matrix) by seeking a connection between the eigenvalues of
one or perhaps several much smaller H-matrices and the known,
and thus constrained, Hamiltonian diagonal elements. We next
comment on the relationship between the dimensionality of the
problem and the number of unknown parameters.

2.2 Dimensionality and degree to which problem is under-
determined

At first glance, it doesn’t seem likely that any method will be use-
ful: if H is an ndim× ndim matrix, then the number of unique off-
diagonal elements (unknowns) goes as 1

2 ndim(ndim− 1) whereas
the number of diagonals (knowns) goes as ndim. We could al-
ternatively look at the number of eigenvector components that
need to be determined, but we need to take into account the or-
thonormal constraints on the n2

dim eigenvector components. There
are 1

2 ndim(ndim− 1) constraints from orthogonality and ndim con-
straints from normalization. Simple algebra shows that the num-
ber of unconstrained eigenvector components is exactly equal to
the number of unique off-diagonal elements of H, showing again
that the approach of diagonalization of a guessed H and the in-
verse diagonalization using guessed eigenvector coefficients are
equivalent problems. In either case there are 1

2 ndim(ndim−1) un-
knowns. How many knowns are there? There are ndim known
basis energies and ndim known eigenvalues, but these knowns
are not independent: the sum of each group must be the same.
We are thus left with ndim − 1 equations relating the knowns.
The result is that the number of degrees of freedom goes as
1
2 ndim(ndim − 1)− (ndim − 1) = 1

2 (ndim − 2)(ndim − 1). The system
will be under-determined for all ndim > 2. Given this result, how
can either algorithm for solution be useful?

An answer to this question is to focus on the how the equations
relating the knowns constrain the range of unique off-diagonal
elements (or, equivalently, the range of the eigenvector compo-
nents). This information comes from the determinant equation.

2.3 The determinant equation

Only certain combinations of the unknown unique off-diagonal el-
ements (or the unknown unconstrained eigenvector components)
are allowed by the determinant equation, which connects the
known eigenvalues and the known basis energies:

ndim

∑
i=0

fi× (λ ( j))i = 0, j = 1, ...ndim. (1)

Note that there are (ndim + 1) coefficients fi of the powers of
λ ( j) in the determinant equation; all but two of these involve the
off-diagonal elements. In order for the determinant equation to
have the appropriate eigenvalues, these (ndim +1)−2 values of fi
must be invariant to any choices of the off-diagonal elements of
the Hamiltonian. These resulting ndim− 1 equations are the con-
straints imposed by the known values referred to in the previous
section.

A simple example is instructive. If ndim = 3, there is only
1
2 (ndim − 2)(ndim − 1) = 1 degree of freedom, and there are
1
2 ndim(ndim− 1) = 3 unique off-diagonal unknown elements. We
thus expect the solutions for these unknowns to lie on a one-
dimensional curve in the three-dimensional space of the unknown
off-diagonal elements. Specifically, solution of the determinant
for ndim = 3 gives the constraints:

−E(1)E(2)E(3)+E(3)H2
12−2H12H13H23 +E(1)H2

23 = f0,

E(1)E(2)+E(1)E(3)+E(2)E(3)−H2
12−H2

13−H2
23 = f1,

(2)

where E(i) are the three basis energies and Hi j are the three
unique off-diagonal Hamiltonian elements.

The solution for the Hi j will be a family of points on a 1D curve
that satisfies the total number of constraints. The curve for a par-
ticular example is shown in the top panel of Fig. 2. As shown
in the middle panel of Fig. 2, the projections of this curve onto
the H13 (red) or H23 (blue) vs H12 axes show the correlations that
must hold in order for the determinant equation to be invariant.
We see that for this example the range of H12 is limited approxi-
mately to 20-54 cm−1, that of H13 to 0-70 cm−1, and that of H23

to 0-50 cm−1. Finally, we see from the bottom panel of Fig. 2
that the limit on H12 places a limit on component one of eigen-
vector one, as calculated using MCID; it must be between 0.90
and 0.945. Even though the solution provides only a range of
answers, the finding that this eigenvector component is limited
to somewhere near 0.92 provides the useful information that the
first eigenvalue is composed primarily of the first basis function.

The situation becomes rapidly more complicated as ndim in-
creases. For ndim = 4, there are 3 degrees of freedom and 6 un-
known elements. The solution will be a family of points in a
three dimensional volume located in the six-dimensional space
of off-diagonal elements. In general, when ndim > 2 there will
be many solutions to the problem, but the range of possible off-
diagonal element combinations, or the range of possible eigen-
vector components, will be limited by the coefficients fi in the
determinant equation. As found for the ndim = 3 example, the
limit on the possible eigenvalue components, particularly those
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Fig. 2 Constraints imposed by the determinant equation for ndim = 3.
Top panel: The closed curves describing the solution to Eq. (2) in the
3D space of H12,H13, and H23. Middle panel: projection of the curve onto
the positive-positive quadrants of H13 vs H12 (red) and H23 vs H12 (blue),
showing the limits of these variables. Bottom panel: The limit on the first
component of the first eigenvector imposed by the limit on H12.

that are large, is usually tighter than the limit on the possible
off-diagonal elements. These components may provide very use-
ful information. However, because the system becomes increas-
ingly under-determined as ndim increases, the limit on the range
of eigenvector components becomes looser as ndim increases.

In the algorithms that follow, we characterize the success of
the algorithm by comparing the resultant off-diagonal Hamilto-
nian elements or eigenvalue coefficients to those of the known
system used for the test. Each algorithm is run for many trials,
using random starting values, and each algorithm gives a range
of answers for the elements or coefficients. While there is no rea-
son to assume that the frequency of values is subject to normal
statistics, our observation is that characterizing each off-diagonal
Hamiltonian element or eigenvalue coefficient by a mean and a
standard deviation is more successful than, for example, charac-
terizing it by the center and width of the range of results.

3 Algorithms
We briefly summarize the theoretical background and computa-
tional algorithm before proceeding to examples. There are two
main aspects of the method. We first consider the solution to the
following inverse eigenvalue problem appropriate to the assign-
ment and analysis of vibrational spectra: given a set of model en-
ergies (diagonal elements of an otherwise unknown Hamiltonian
matrix) and a set of eigenvalues (the spectrum), is it possible to
determine off-diagonal Hamiltonian elements and ultimately the
eigenvectors that can be used to assign the spectrum? The sur-
prising answer to this question is that determination of the major
components of the eigenvectors is possible. Second, we summa-
rize how information about transition dipole moments can im-
prove the determination of these eigenvectors.

Inverse Eigenvalue Problems are well-known in many appli-
cations,23 but it does not appear that determining eigenvectors
from only the diagonal elements of a matrix and its eigenvalues
has been attempted in the literature. The reason, no doubt, is that
for all ndim > 2 such a system is increasingly under-determined as
the matrix dimension, ndim, increases. The problem looks hope-
less. Nonetheless, we find that when the eigenvectors have only
a few components that comprise most of the probability, it is pos-
sible to estimate the magnitude of these components accurately
because, for such systems, the mapping between Hamiltonians
and eigenvectors is such that a wide range of Hamiltonians map
to a small range of eigenvectors. Thus, determination of the best
Hamiltonians that fit the eigenvalues gives a reasonable estimate
of the principal eigenvector components. We provide an applica-
tion to CO2 in the Results section below.

The second major component of our method involves the tran-
sition dipole moments, which determine the intensities in the
spectrum. We briefly review the basic quantum theory of the IR
spectrum. Recall that the intensity of an infrared transition at ν f

from the ground vibrational state to an excited state | f 〉 is given
rigorously by

I ∝ ν f
∣∣〈 f |−→µ |0〉∣∣2 , (3)

where there is an equation such as (3) for each eigenstate (i),
where ν f is the frequency corresponding to the energy of eigen-
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state (i), and −→µ is the dipole moment, which depends on the
molecular vibrational coordinates. In the double-harmonic ap-
proximation, the vibrational states are harmonic ones and −→µ is
approximated by a simple linear expansion

−→
µ =−→µ0 +

3N−6

∑
n=1

∂
−→
µ

∂Q(n)
Q(n)+ ..., (4)

I ∝ ν f
1

2ω f

∣∣∣∣ ∂
−→
µ

∂Q( f )

∣∣∣∣2 , (5)

where ω f is the harmonic frequency and where, as a result of
truncation of the expansion in Eq. (4), the only allowed transi-
tions are fundamental ones.

In the rigorous approach, the exact wavefunctions are ex-
panded in a complete orthonormal basis {χk}, which here is the
harmonic basis. Thus, | f 〉= ∑

k
c(i)k χk and the intensity is given by

I ∝ ν f ∑
α=x,y,z

∑
k,k′

c(i)k′ c(i)k

〈
k′
∣∣µα |0〉〈k|µα |0〉 , (6)

where for simplicity the ground state is (well-) approximated by
the harmonic ground-state wavefunction. This equation is central
to our approach.

Before proceeding, and at the risk of stating the obvious, it is
important to note that if the eigenvectors c(i)k are the exact ones,
and the dipole moment function is also exact, then the above
equation gives the exact spectrum, both in terms of the band
positions and intensities. With this in mind, we can state the
objective. The goal is determine these eigenvectors from exper-
imental band positions and intensities. The “known” quantities
are the harmonic frequencies and, if available, the dipole matrix
elements above.

A search procedure is the basis of the approach we use here.
Basing the search on the energies is known as an Inverse Eigen-
value Problem, which is very under determined. Adding informa-
tion about intensities should in principle aid in the search. Two
general physical insights also assist the search algorithm. The
first is that the intensity of the peaks in most complex spectra is
dominated by a few “bright” states, typically fundamentals, that
mix with many “dark” states, typically combination states. This
conjecture seems to be reasonable because the expansion of the
dipole moment, given by Eq. (4) is usually truncated at the sec-
ond term due to the fact that the second partial derivatives and
cross derivatives are often very small relative to first derivatives.
For example, in the case of FAD, Qu et al.45 have found a two-
order-of-magnitude difference between coefficients of the second
and third terms of the expansion. If only the first two terms are
included, combination bands have no intensity, so that all of the
oscillator strength must be carried by the fundamentals. Other
states will absorb only to the extent that they take on the charac-
ter of the bright fundamentals via a Hamiltonian that mixes them.

A second physical insight is that interaction between states is
usually appreciable only if the states are near one another in en-
ergy. For example, in a two-state system, the strength of the in-
teraction varies as the reciprocal of the energy difference between
the basis states. The resulting eigenstates have the same average

energy as that of the basis states, but one is shifted to higher en-
ergy than the upper basis state, while the other is shifted to lower
energy than the lower basis state.

Thus, our method assumes that we have a spectrum, usually
from experiment, but it presupposes only a very limited knowl-
edge of the potential, i.e., just the harmonic basis energies for the
molecule. If, additionally, we have information about the rela-
tive oscillator strengths of the fundamental modes that lie in or
near the region the spectrum, we will use this information, but
it is not absolutely required. We note that the transition dipole
moments and fundamental vibrational frequencies are often pro-
vided by even the most basic molecular structure calculations.
In the case of FAD, more sophisticated calculations45 have pro-
vided the squared dipole transition elements for the O-H, C=O,
and C-H stretching modes (see Table S4), and we incorporate this
information into the method.

The computational method used is what we call a Monte Carlo
Diagonalization (MCD) method. As shown in Fig. 1b, initiation
of the method requires a starting Hamiltonian, Hguess, taken to
be a matrix with zeros as the off-diagonal elements and with the
harmonic basis energies as the diagonal elements. This Hamil-
tonian is used to compute a calculated spectrum using Proce-
dure 1, which consists of four steps: a) diagonalizing Hguess to
obtain its eigenvalues and eigenvectors; b) creating a Gaussian
peak at each eigenvalue for which the amplitude is proportional
to the eigenvalue times the weighted squared dipole matrix ele-
ment from Eq. (6), c) multiplying the calculated spectrum by a
constant chosen to best fit the experimental spectrum; and d) de-
termining the variance from point-by-point comparison between
the calculated and experimental spectra. This completes the ini-
tiation step. Further detail on steps b) and c) is included in the
Dipole Transition Moment section (S2) of the ESI as well as in
Table S4.45

The iterative step in the method is to vary the initial Hguess

by adding a small random number to each off-diagonal element
while maintaining the symmetry of the Hamiltonian. Procedure 1
is applied to the new Hamiltonian, and if the variance decreases,
the new Hamiltonian is accepted; if not, the old one is retained.
This step is then repeated for a large number of iterations (1500-
10000) until there is no longer improvement in the fit to the ex-
perimental spectrum. In the CO2 example, which we consider
first in the next section, the iterations conclude when the vari-
ance in the eigenvalues reaches a minimum. Other methods and
comments on algorithms can be found in Section S1 of the ESI.

4 Results

2-mode CO2

The MCD procedure is verified for a 2-mode CO2 example that
exhibits classic Fermi resonances due to the near 2:1 ratio of the
bend and symmetric stretch frequencies. Note, in our procedure,
we do not assume the existence of this resonance.

Our calculations make use of a recent ab initio, coupled-cluster
quartic force field (QFF) due to Rodriguez-Garcia et al.:1
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They determined the coefficients from the potential calcula-
tions and then used vibrational self-consistent field and vibra-
tional configuration-interaction methods to calculate the anhar-
monic energy levels, which were found to be within a mean ab-
solute deviation of 3.5 cm−1 from the experimental values.

The test of the algorithm for determining eigenvectors from
known eigenvalues and harmonic basis functions is restricted to
the symmetric stretching and bending modes. Thus, only terms in
the QFF involving these modes were considered. The benchmark,
target eigenvalues come from a diagonalization of a 9 × 9 H ma-
trix, built from a direct-product of v = 0,1,2 harmonic functions
for each mode. The diagonal harmonic energies of the starting
9 × 9 H matrix are (1015.8, 1696.3, 2358.4, 2376.8, 3038.9,
3719.4, 3701.0, 4381.5, 5062.0), where all energies are in cm−1.
(The QFF matrix is given in detail in Table S5 of the SM.)

Figure 3 shows the magnitudes of the nine MCD trained (red
dots) and “exact" (open circles) eigenvectors, which are given in
increasing energy going from left to right on the x-axis. Note that
vector numbers 3, 4 and 6, 7 have values around 0.7. These are
two sets of Fermi resonance doublets. The 3, 4 pair correspond
to the plus and minus combinations of 2νb and νs and the 6, 7
pair to the plus and minus combinations of νs+2νb and 2νs. The
MCD algorithm captures these very well, with, as noted above,
no prior knowledge of them. It is simply the difference between
the assumed-known harmonic energies and the exact ones that
leads to the correct “training”. The splitting between these pairs
of doublets in the harmonic approximation is 18.4 cm−1 for both
pairs, 78 and 107 cm−1 respectively for the “exact” and trained
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Fig. 4 a) Calculated (blue) and jet-cooled experimental 31 (red) spec-
tra of the formic acid dimer. b) Calculated (blue) and room-temperature
experimental 40 (red) spectra of the formic acid dimer.

doublets. Thus, the MCD algorithm succeeds in capturing the val-
ues of the vector component magnitudes and, in particular, pro-
viding an accurate analysis of the Fermi Resonance. Overall, the
correlation between the eigenvector magnitudes from the origi-
nal Hamiltonian and those determined from the calculation using
only the eigenvalues and the basis functions has an R2 value of
0.9882. Results for a few other systems, some more complicated,
some less, are provided in the ESI section on Supplementary Re-
sults.

The Formic Acid Dimer
We now turn to the application of the methods described above to
the spectrum of the formic acid dimer. A choice of basis set must
be made from the harmonic basis energies. If we consider the
range from 1600-3500 cm−1, then even if we were to include only
those fundamentals, overtones, and combination bands of the in-
plane Bu modes that have a maximum of 4 fundamental compo-
nents, we would need to consider more than 380 basis states. A
much smaller but still very reasonable selection of 42 basis states
has been made for the calculations reported below. These include
the three fundamentals carrying oscillator strength: v20, the C=O
stretch, v22, the C-H stretch, and v24, the O-H stretch. Most of the
remaining states were chosen to be in the 2500-3300 cm−1 re-
gion, where a jet-cooled infrared spectrum has been reported.31

Three were in the region of the C=O stretch near 1750 cm−1 and
two, including v24, were above 3300 cm−1. A list of the basis
states and their harmonic energies is provided in the first three
columns of Table S6.

Figure 3a shows a jet-cooled spectrum and a calculated fit for
FAD in the 2500-3300 cm−1 region. The algorithm used to pro-
duce the blue calculated spectrum has been shown in Fig. 1b and
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was used with the following modifications. At first we performed
the fit as described above and in Fig. 1b, but we later found that
more rapid convergence could be achieved by alternating on each
iteration between a step in which all off-diagonal elements of Hi, j

were modified by a small random variation and a step in which
only those elements involving the “bright” states, ν20, ν22, and
ν24 were modified. To a first approximation, the first step lets
the dark states interact with one another to give the correct peak
positions, whereas the second step adjusts the amplitudes. In
addition, if a substantial number of iterations occurred without
improvement, we halved the range of the random changes. The
FWHM used for the calculated peaks was set at the apparent ex-
perimental resolution, 11.8 cm−1. The fits would be improved by
increasing this broadening (32 cm−1 minimizes the variance), but
it would then be more difficult to identify which calculated peaks
and eigenstates belonged to the various spectral features.

As can be observed from the calculated (blue) and experimen-
tal (red) spectra in Fig. 4a, nearly every peak in the experimental
spectrum corresponds to one (or more) peaks in the calculated
spectrum. The identities of the peaks are given by their eigen-
state number, shown in the comb at the top of the figure. For each
eigenstate, the three basis function components with the largest
absolute magnitudes are listed in Table S6; these comprise an as-
signment of the spectrum. A visual depiction of the assignments is
provided in the top panel Fig. 5a, where the probabilities of each
basis state are color coded and shown as a function of the energy.
The basis states run from number 1 at the top row to number 42
at the bottom row; they are identified in the first three columns
of Table S6. We note that the spectrum based on harmonic oscil-
lators would have only three lines; these would be at 1780 cm−1

(v20, off-scale), 3097 cm−1 (v22), and 3326 cm−1 (v24, off-scale).
Thus, the calculated spectrum is a very significant improvement
over that predicted by the basis model.

In order to see if the fitting procedure provided proper rela-
tive intensities for different spectral regions, we also used the
same procedure to fit the room-temperature spectrum.40 Fig-
ure 4b shows the result for a FWHM broadening of 20 cm−1. Of
course, the lower resolution of this spectrum, and perhaps com-
plications from rotational structure and hot bands, result in a less
accurate assignment. Nonetheless, the relative amplitudes of the
eigenstates near 1750 cm−1 and those in the region 2500-3500
cm−1 are correctly reproduced. In addition, there is considerable
overlap between the positions and assignments for the spectra
in Figs. 4a and 4b. The eigenvalues for the two are nearly the
same, with a correlation R2 value of 0.987; a correlation plot is
shown in Fig. S3. Comparison for each eigenstate between the
group of components with the largest three magnitudes showed
a 48% match between the two fits. Table S7 provides the assign-
ments for the room-temperature spectrum. In addition, Figs. S4
and S5 show array plots of the eigenvectors for the jet-cooled and
room-temperature fits, respectively; Tables S8 and S9 provide the
probability amplitude components for each bright state in every
eigenvector for the jet-cooled and room-temperature fits, respec-
tively; and Fig. S6 shows an array plot of the Hamiltonian matrix
for the fit to the jet-cooled FAD spectrum shown in Fig. 4a.

It is interesting to note to what extent the bright state prob-
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Fig. 5 Array plots giving the probability of basis state contributions to
different spectral regions. a) MCD results. b) MM results. The probability
is given by the color code provided by the bar at the right. In each panel,
basis state numbers run from 1 (top) to 42 (bottom). The experimental
spectrum 31 is in white. c) OH stretching (squares) and CH stretching
(circles) probabilities for each eigenvector in the spectrum of FAD plotted
as a function of eigenvalue. The solid data is from the MM calculation,
whereas the open data is from the MCD calculation. The experimental
spectrum 31 is in red.

Journal Name, [year], [vol.],1–10 | 7

Page 7 of 10 Faraday Discussions



abilities are distributed into the many dark states. Fig. 5c plots
as a function of the the energy the probabilities for the OH and
CH stretching modes (v24 and v22) as open squares and circles,
respectively. (The filled squares and circles will be discussed be-
low.) The probability for these bright states is almost completely
diffused into the dark states. With the exception of a few eigen-
states, the probability of the bright states is quite small, even
though they carry all of the intensity. Note that the position and
intensity of the peaks at eigenvalue 42 and the position of eigen-
value 41 (v24), both of which are off the scale of the figure, are
an artifact of the limited size of the basis set.

5 Discussion
To our knowledge, this assignment for the spectrum of the FAD in
the 2500-3300 cm−1 region is the first one that so successfully re-
produces the positions and amplitudes of the peaks observed from
the jet-cooled and room-temperature spectra (Figs. 4a and 4b).
Although the two spectra give assignments that do not coincide
exactly, it is to be expected that the assignments from the lower-
resolution room-temperature spectrum will not be as accurate as
those from the jet-cooled spectrum, which has a much higher in-
formation content. It is interesting to note from the jet-cooled
fit that the mixing between the dark states is mostly limited to
a very few basis functions whose energies in each direction are
closest to the state under consideration. This results in a pre-
dominantly diagonal array plot for the eigenvector component
magnitudes, as can be seen in Fig. S4. Another interesting point
from the fit is how the oscillator strength for each of the v24, v22

and v20 basis states becomes diluted into the dark states. The
data, shown in tables S3-S4 and in Fig. 5c, give the probability
amplitudes and probabilities, respectively, of these bright states
for each eigenstate or spectral region. From this data it is clear
that the zero-order states v24 and v22 are, with the exception of a
few eigenstates, a minor contributor in terms of this amplitude,
yet the major contributor to the intensity.

Generalizing and thinking about further applications of the
method, one might ask about the accuracy of the assignments.
We provide three answers to this question, each involving a par-
ticular test. The first test was to repeat the Monte Carlo analysis to
determine the consistency of the results. Of four fits to the spec-
trum we find excellent agreement on the eigenvalues, as expected
since we train on these, and quite satisfactory agreement on the
eigenvectors. The correlation between any two sets of eigenval-
ues is characterized by an R2 of at least 0.9996. When comparing
any pair of calculations, there is generally a 62% match when de-
termining the most important 1, 2, or 3 basis states; comparing
only the most important component gave a 70% match. Similarly,
for any pair of calculations a correlation plot for the complete set
of vector component magnitudes has an average R2 of 0.63.

As a second test, we start from a (red, see Fig. 1a) Hamilto-
nian that is physically reasonable in the sense that it can repro-
duce the experimental jet-cooled spectrum. We then change every
off-diagonal element by a random amount, up to 150%, 100%
or 50% of the original value. In each case, we diagonalize the
Hamiltonian and make a spectrum, keeping track of the (red)
eigenvalues and eigenvectors. We then perform the algorithm de-

scribed in Fig. 1b on each of the three spectra, producing (blue)
eigenvalues and eigenvectors, and we finally compare these to the
(red) set produced from the modified Hamiltonian. For the 150%,
100% and 50% variations we find, respectively, that the R2 values
for the correlation of the (eigenvalues, eigenvector component
magnitudes) are (0.9982, 0.578), (0.9997, 0.766), and (0.9994,
0.773). Perhaps more importantly, for 150%, 100% and 50% vari-
ations, comparisons of the most important 1, 2, or 3 eigenvector
components give match rates of (63.1, 68.5, and 70.8)% . Hav-
ing an automated method for assigning an unknown spectrum at
even ca. 60-70% accuracy with little more than the harmonic ba-
sis functions as inputs should be a useful tool for all those trying
to understand vibrational spectroscopy in molecules with many
vibrational modes.

The third test is to compare the MCD results calculated here
to more traditional results performed using a calculated poten-
tial energy surface46 and MULTIMODE (MM) with a large basis
set.45 This comparison should be made with some caution, since
the MCD calculation used a basis set of 42 states, whereas the MM
calculation used one of 20660 states. The number of eigenstates
per cm−1 in the 2500-3300 cm−1 region is about 0.05 in the MCD
calculation, whereas it is about 1.6 in the MM calculation. In ad-
dition, the decomposition of MM eigenstates into the harmonic
oscillator states is only approximately achieved, whereas it is di-
rectly achieved in the MCD calculation. With these caveats, one
can compare the panels of Fig. 5a and 5b, both of which show
the energies to which the basis states used the MCD calculation
contribute. Not surprisingly, there is a bit more mixing and split-
ting of these states in the MM calculation, but the general trend of
the data shows an overall similarity. In both cases, the basis states
that mix to give contributions at a particular energy are those that
are close to that energy. Generally, for both calculations there are
only a few basis states that have large contributions to any en-
ergy bin. A second comparison can be made using Fig. 5c, which
shows the dispersion of the v24 and v22 probabilities into differ-
ent transition energy regions. There is some disagreement on the
largest peaks due to the differences in basis set, but both calcula-
tions agree that the probability for both modes is spread out over
a wide range of energies. Interestingly, although the probabilities
at most of these energies are small, these small probabilities are
responsible for the entire intensity of the spectrum.

The general conclusion from these tests is that the MCD gives
a very good qualitative picture of what basis states are associated
with each spectral feature. The quantitative agreement that can
be expected for individual assignments or groups of assignments
is somewhere between 40 and 70 %.

There are certainly some general properties of the potential
that we might learn from analysis of the spectrum, even if de-
termining the full potential from the spectrum (the blue path in
Fig. a) is illusive. The principal components of the eigenvectors
can be examined for resonances. For example, nearly symmet-
rical 2× 2 or 3× 3 blocks in array plots such as that in Fig. S4
may indicate a resonance, Fermi or otherwise. In this figure, for
example, and from Table S6 we see that basis states 38 and 39
are nearly symmetrically mixed, suggesting a Fermi resonance.
Indeed, the energy of the two basis states is nearly the same be-
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cause there is a resonance between ν19 at 1715 cm−1 and ν6+ν17

at 1723 cm−1. If we assume that this resonance is the only fac-
tor that splits the two eigenstates, then we can deduce something
about the coefficient of the cross anharmonicity in the potential
that causes the mixing. As this example shows, even if we cannot
generally go from the spectrum to the potential along the blue
path, we can nonetheless obtain some insight about the potential
from an assignment of the spectrum.

6 Conclusions
It is nearly certain that additional research along the lines sug-
gested here could further improve the assignment method. In-
deed, this problem seems to be one that might be amenable to
machine learning. Knowledge of the relationships between the
basis energies and the eigenvalues and eigenvectors controlling
the spectrum learned from successful assignments might be ana-
lyzed and used for unknown assignments. Additionally, the pro-
cedures here could help to understand which terms in spectro-
scopic Hamiltonians might be most important, perhaps enabling
that technique to extend to larger systems than, for examples, the
very successful applications to HCCH, HCP, CH3O, CSCl2, CDBr-
ClF, HO2, etc.11,13,15,17–19 The important message of the research
presented here is that the (red) path from potential to spectrum
is not the only method for spectral assignment. A new paradigm,
the blue path, might equally well be exploited.
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