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Abstract 16 

Predicting adsorption of organic pollutants onto graphene nanomaterials is not 17 

only useful for exploring their potential adsorbent applications, but also helpful for 18 

better understanding their fate and risks in aquatic environments. Herein molecular 19 

dynamics (MD) simulations and theoretical linear solvation energy relationships 20 

(TLSERs) were employed to construct prediction models for adsorption of neutral 21 

organic pollutants onto graphene and graphene oxides. The MD simulations for 22 

adsorption of 43 aromatic compounds onto graphene and diverse models of graphene 23 

oxides with various functional groups (hydroxyl, epoxy and carbonyl) demonstrate 24 

that graphene has a stronger affinity for the aromatic compounds than graphene 25 

oxides. The hydroxyl and carbonyl groups of graphene oxides were found to form 26 

hydrogen bonds with the aromatic adsorbates, while epoxy groups did not. TLSER 27 

models were developed for predicting the adsorption equilibrium coefficients (K) onto 28 

graphene and graphene oxide nanosheets. In the graphene prediction model, 29 

H-donating ability (εα) and dispersion/hydrophobic interactions (V) have significant 30 

effects on logK values, while in the graphene oxide model, εα is the most influential 31 

factor on logK values. The models provide in silico approaches for predicting 32 

adsorption affinities onto graphenic nanomaterials.  33 

 34 

35 
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Environmental significance 36 

Graphene and its derivatives have an extraordinary propensity to accumulate adsorbed 37 

organic pollutants, which results in its potential applications as sorption materials in 38 

various fields. Meanwhile, the adsorption of organic pollutants on graphenic 39 

nanomaterials in aquatic environment can affect their environmental fate and brings 40 

potential ecotoxicological risks. Predicting the adsorption equilibrium coefficients and 41 

understanding the adsorption mechanisms towards graphenic nanomaterials is helpful 42 

for exploring the potential applications of graphene nanomaterials as well as 43 

evaluating their environmental risks. In this study, molecular dynamics (MD) 44 

simulations were carried out to systematically examine the adsorption behavior of 43 45 

uncharged aromatic pollutants onto graphene and graphene oxides with different 46 

functional groups (hydroxyl, epoxy and carbonyl) at an atomic level. The results 47 

indicated that the interactions between neutral aromatic compounds and graphene are 48 

stronger than those between aromatic compounds and graphene oxides. Moreover, 49 

theoretical linear solvation energy relationships (TLSERs) models were first 50 

established for predicting the adsorption equilibrium coefficients on graphene and 51 

graphene oxides. These prediction models offer promising tools to obtain adsorption 52 

affinities onto graphenic materials. 53 

  54 
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1. Introduction 55 

Owing to their unique physicochemical properties, graphene and its derivatives have 56 

drawn extensive interest since the discovery of graphene in 2004.1,2 They have shown 57 

potential for applications in various fields, e.g., material science, medicine and 58 

biology, among others.3-9 One interesting branch of these potential applications is the 59 

development of graphene-based sorption materials, which can be used for 60 

sample-preparation techniques, catalytic processes, wastewater treatment processes, 61 

etc.10-12 On the other hand, graphene nanomaterials that are unavoidably released into 62 

the aquatic environment during their life cycle can also adsorb organic pollutants, 63 

thereby altering their environmental behavior, fate and toxicity.13 Therefore, it is of 64 

great importance to investigate the adsorptions between organic pollutants and 65 

graphene nanomaterials, which is not only helpful for exploring their potential 66 

adsorbent applications, but also valuable for knowing more about their fate and risks 67 

in aquatic environment.  68 

The adsorption of organic compounds on graphene oxide (GO), has also attracted 69 

increasing attention in recent years.14-16 Like graphene, various interactions (i.e., van 70 

der Waals forces, hydrophobic interactions, electrostatic interactions, π-π stacking and 71 

hydrogen bonding interactions) may be involved in the adsorption processes onto 72 

graphene oxide.17 The oxygen-containing functional groups, namely hydroxyl, epoxy, 73 

carbonyl and carboxyl, attached to the basal plane of GO can affect the interactions 74 

between organic compounds and GO. They can also change the hydrophobicity of 75 

graphene nanosheets, which affects the interactions between graphene nanosheets and 76 

water molecules.18,19 For example, GO with moderate oxidation has the weakest 77 

adsorption capability for nitroaromatic chemicals among these adsorbents, viz., 78 

graphene, graphene oxide and reduced graphene oxide.14 However, there is still a lack 79 
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of a systematic investigation about the influences of different functional groups 80 

attached to GO on the adsorption of diverse sets of organic compounds.  81 

Recently, molecular dynamics (MD) simulations, which can provide an 82 

atomic-level view of adsorption, have been used for exploring the interactions 83 

between organic compounds and graphene nanomaterials. 20 - 23  Given numerous 84 

organic pollutants detected in the aquatic environment, it is not feasible to simulate 85 

the adsorption for compounds onto different graphene nanosheets one by one, even if 86 

MD simulation is more efficient than experimental determination. Thus, it is 87 

necessary to develop prediction models for estimating adsorption affinities of solutes 88 

on graphene and its derivatives. 89 

In our previous study, we developed poly-parameter linear free energy 90 

relationships (pp-LFERs), which are based on Abraham descriptors, for predicting the 91 

adsorption energies of organic compounds onto pristine graphene in gaseous and 92 

aqueous phases.24 However, these pp-LFERs are only applicable to the compounds 93 

having Abraham descriptor values, which are determined experimentally. Emerging 94 

pollutants lack these descriptor values, preventing the use of pp-LFERs. Theoretical 95 

linear solvation energy relationships (TLSERs),25 , 26  on the other hand, can be 96 

developed using theoretical descriptors from molecular structures, overcoming the 97 

limitations of experimental data. Up to now, a TLSER prediction model for graphene 98 

has not been established, nor has a model for graphene oxide with different functional 99 

groups.  100 

It is noteworthy that aromatic compounds, and particularly their halogenated 101 

derivatives, exhibit high affinities on the surfaces of graphenic materials,27-30 and, 102 

coincidently, also constitute major pollutants of concern in natural waters and soils, 103 

including organochlorine pesticides 31  and brominated flame retardants. 32 104 
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Considering that neutral chemicals generally show higher toxicity than their charged 105 

species,33,34 which indicates that they may have higher environmental risk than the 106 

charged ones, in this study, we chose 43 uncharged aromatic organic compounds as 107 

adsorbate models. Additionally, different graphene oxides with functional groups 108 

(hydroxyl, epoxy and carbonyl) were built as adsorbent models. We systematically 109 

explored the adsorption mechanisms of 43 neutral organic compounds onto graphene 110 

oxides by MD simulations. Furthermore, we developed theoretical prediction models 111 

for the adsorption equilibrium coefficients onto graphene and graphene oxide 112 

nanosheets. These simulations provide insight into the adsorption mechanisms onto 113 

graphene oxides. Moreover, the prediction models developed in the current work can 114 

serve as an efficient, novel approach to obtain adsorption data for various uncharged 115 

compounds toward graphene and graphene oxides. 116 

2. Computational details 117 

2.1. Organic compounds and graphene nanosheet models 118 

Herein, 43 neutral aromatic pollutants, including benzene and its derivatives 119 

(Table 1), were chosen as adsorbate models for their ubiquitous existence in natural 120 

waters and soils. Moreover, these 43 compounds have diverse functional groups, 121 

which is useful for probing the influence of functional groups on adsorption 122 

equilibrium coefficients. Their structures were downloaded from ChemSpider35 and 123 

ChemicalBook.36 These compounds were parameterized according to the CHARMM 124 

General Force Field (CGenFF),37 using the ParamChem Web interface.38,39 125 

A graphene sheet consisting of 160 carbons was built as an originally small 126 

periodic cell. In order to investigate the effects of functional groups attached to GO on 127 

adsorption, we built small periodic patches for graphene oxides sheets, i.e., graphene 128 

oxide with hydroxyl groups (GO_H), graphene oxide with epoxy groups (GO_E) and 129 
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graphene oxide with carbonyl groups (GO_C), having the same O/C ratio (0.125) 130 

which is comparable to the O/C ratio (0.12)14 in the synthesized GO. The chemical 131 

compositions are C32(OH)4 for GO_H, C32O4 for GO_E and C32O4 for GO_C. We also 132 

built a periodic patch for graphene oxide with a mixture of hydroxyl and epoxy 133 

groups (GO_M), with a chemical composition of C128O12(OH)24 and an O/C ratio 134 

(0.28), which is similar to the experimental O/C ratio (0.30).14 The size for GO_M is 135 

three times larger than that for other graphene oxide models. Subsequently, these 136 

patches were solvated by adding water molecules, creating an ~30-Å layer of water 137 

between periodic images of the graphene sheet. To relax the structures for these 138 

graphene nanomaterials and verify their chemical stability, we simulated each 139 

solvated structure in a reactive molecular dynamics framework (ReaxFF).40 For each 140 

structure, we performed energy minimization and 10 ps of equilibration at a 141 

temperature of 300 K and a pressure of 1 atm, using the ReaxFF implementation41 of 142 

LAMMPS.42 The parameters for the conventional molecular dynamics simulations 143 

were obtained by creating Kekulé representations (where aromatic bonds are 144 

represented by a consistent set of single and double bonds) of the structures produced 145 

by the ReaxFF energy minimization and submitting the results to the ParamChem web 146 

interface.38,39 Thereafter, we tiled the periodic structures in the plane of the sheet, and 147 

built a 2 × 2 × 1 supercell for GS, a 5 × 5 × 1 supercell for GO_H, a 5 × 5 148 

× 1 supercell for GO_E, a 5 × 5 × 1 supercell for GO_C and a 2 × 3 × 1 149 

supercell for GO_M with the original small patches correspondingly, so that they have 150 

similar supercell sizes and are large enough to accurately accommodate adsorption of 151 

the solutes.  152 

Subsequently, molecular dynamics simulations without imposing constraints on 153 

the supercells, were carried out using the software NAMD 2.12.43 The final size of 154 
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the simulation cell for system including graphene and compounds was 39.1 Å × 42.3 155 

Å × 39.3 Å. The sizes of supercells for systems including graphene oxides and 156 

chemicals were 49.3 Å × 42.6 Å × 41.6 Å (GO_H), 50.4 Å × 43.8 Å × 39.2 Å (GO_E), 157 

48.9 Å × 43.2 Å × 41.0 Å (GO_C) and 40.2 Å × 51.9 Å × 40.4 Å (GO_M). The lateral 158 

dimensions of the supercells, i.e., those of the graphene plane, were free to fluctuate 159 

but did not change by more than 1 Å due to the periodicity of the graphene/graphene 160 

oxide layer. More details about adsorbent models are provided in Fig. 1. 161 

 162 

Table 1. Organic Compounds and Logarithm Values of Calculated Adsorption 163 

Equilibrium Coefficients (logK) on Graphene and Graphene Oxides 164 

No. Compound Substituents 
logK_calculated 

GS GO_H GO_E GO_C GO_M 

1 benzene (PhH)  1.70 0.93 1.56 1.68 0.13 

2 chlorobenzene (PhCl) -Cl 2.92 1.56 2.49 2.54 0.82 

3 bromobenzene (PhBr) -Br 2.81 1.23 2.31 2.73 0.95 

4 iodobenzene (PhI) -I 3.26 1.56 2.49 2.84 0.79 

5 phenol (PhOH) -OH 2.65 1.37 2.04 2.33 0.89 

6 benzonitrile (PhCN) -CN 3.55 1.82 2.64 2.46 0.92 

7 nitrobenzene (PhNO2) -NO2 3.99 2.16 2.66 2.62 1.90 

8 toluene (PhMe) -CH3 2.67 1.10 1.97 2.13 0.21 

9 phenylmethanol (PhMl) -CH2OH 2.52 1.76 2.10 2.09 0.93 

10 ethylbenzene (PhEt) -CH2CH3 2.73 1.49 2.30 2.55 0.87 

11 propylbenzene (PhPr) -CH2CH2CH3 3.21 1.69 2.60 2.90 0.76 

12 acetophenone (BzMe) -C(O)CH3 3.91 1.38 2.49 2.68 1.52 

13 methylbenzoate (BzOMe) -C(O)OCH3 4.96 1.62 3.79 3.70 2.06 

14 2-phenylethanol (PhEl) -CH2CH2OH 2.97 1.47 2.53 2.67 1.04 

15 phenylacetate (PhOAc) -OC(O)CH3 3.08 1.69 2.22 2.55 0.92 

16 ethylbenzoate (BzOEt) -C(O)OCH2CH3 5.45 1.97 3.68 3.93 2.30 
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17 4-fluorophenol (FPl) -OH, -F 3.09 1.56 2.38 2.50 0.77 

18 3-chlorophenol (ClPl) -OH, -Cl 3.62 1.86 2.70 3.33 1.27 

19 3-bromophenol (BrPl) -OH, -Br 4.01 1.68 3.19 3.43 1.62 

20 m-cresol (mCr) -OH, -CH3 3.30 1.50 3.06 3.01 1.18 

21 p-cresol (PCRO) -CH3, -OH 3.63 1.41 2.85 3.21 1.42 

22 4-ethylphenol (EPHE) -OH, -CH2CH3 3.65 1.78 3.02 3.25 0.95 

23 p-xylene (PXYL) -CH3 3.66 1.47 2.83 2.97 1.35 

24 4-chlorotoluene (PCLT) -CH3, -Cl 3.58 1.70 3.18 3.09 1.61 

25 4-nitrotoluene (NoT) -NO2, -CH3 5.05 1.73 3.50 3.39 2.73 

26 (3-methylphenyl) methanol 

(MeBl) 

-CH3, -CH2OH 3.50 1.86 2.72 2.49 1.37 

27 4-chloroanisole (ClAn) -Cl, -OCH3 4.19 2.32 2.95 3.04 1.95 

28 4-chloroacetophenone (ClAh) -Cl, -C(O)CH3 4.79 1.99 3.48 3.18 2.05 

29 1,3-dinitrobenzene (DNIN) -NO2 5.76 2.28 3.04 2.75 3.02 

30 methyl 2-methyl benzoate 

(MMBa) 

-CH3, 

-C(O)OCH3 

5.13 1.52 3.84 3.64 2.22 

31 4-chloroaniline (PhAm) -Cl, -NH2 3.12 1.60 2.32 2.72 1.50 

32 3,5-dimethylphenol (dMPl) -OH, -CH3 4.50 1.14 3.65 3.23 2.13 

33 hexabromobenzene (HBB) -Br 9.52 1.82 5.85 4.68 4.24 

34 pentabromotoluene (PBT) -Br, -CH3 9.55 1.95 6.37 4.62 4.92 

35 1,2-dibromo-4-(1,2-dibromoet

hyl)-cyclohexane (TBE) 

-Br, 

-CHBrCH2Br 

5.87 2.66 3.95 3.68 2.05 

36 tetrabromo-o-chlorotoluene 

(TBCT) 

-Cl, -Br, -CH3 9.08 1.96 5.85 4.10 5.05 

37 naphthalene (NAFT)  4.26 1.33 4.14 4.20 2.22 

38 biphenyl (PhPh)  5.09 2.11 4.67 4.68 2.71 

39 1-methylnaphthalene (MeNh) -CH3 5.21 1.73 4.92 4.41 2.60 

40 BDE209 (B209) -O-, -Br 9.65 2.32 5.85 5.27 2.59 

41 BDE47 (B47) -O-, -Br 5.85 3.83 4.13 4.41 2.63 

42 BDE99 (B99) -O-, -Br 6.06 3.92 5.00 5.21 4.22 
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43 BDE207 (B207) -O-, -Br 9.39 4.06 5.63 4.28 5.12 

GS: graphene sheet; GO_H: graphene oxide with hydroxyl groups; GO_E: graphene oxide with epoxy 165 

groups; GO_C: graphene oxide with carbonyl groups; GO_M: graphene oxide with mixed hydroxyl 166 

and epoxy groups. 167 

 168 

 169 

Fig. 1 The structures for graphene and graphene oxides. (a) graphene (GS); (b) 170 

graphene oxide with hydroxyl groups (GO_H); (c) graphene oxide with epoxy groups 171 

(GO_E); (d) graphene oxide with carbonyl groups (GO_C); (e) graphene oxide with a 172 

mix of hydroxyl and epoxy groups (GO_M). 173 

 174 

2.2. Parameterization of graphene nanosheets 175 

Note that these graphene and graphene oxides models were not directly 176 

parameterized according to CGenFF; although simulations representing graphene by 177 

the standard aromatic carbon type of CGenFF (namely CG2R61) yielded excellent 178 

correlation with experiments, our previous studies found that the adsorption 179 

equilibrium constants were underestimated by a factor of about 8.28 To improve 180 
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agreement with the equilibrium constants, we made modifications to the specific 181 

Lennard-Jones size parameter (called NBFIX in the CHARMM framework) between 182 

sp
2 graphenic carbon atoms and water oxygen atoms. The parameter σ (Cgraph and 183 

Owater) was shifted from its original value (0.1031843 kcal/mol) by j∆σ, where j was 184 

an integer −8 ≤ j ≤ 8 and ∆σ = 0.005, producing 16 force field variants. The 185 

logarithms of the adsorption equilibrium constants (logK) were calculated for four 186 

compounds (BzOMe, PhEt, NoT, and PrBn) for each force field variant as described 187 

by Comer et al.28 Here, “log” denotes a base-10 logarithm and K has units of mL/g. 188 

The variants with j = −2 and −3 gave mean logK values for the four compounds in the 189 

closest agreement with experiment; thus, the calculations for these two variants were 190 

extended to 29 aromatic compounds with various physicochemical properties,28,44 for 191 

which experimental logK values were available and in a range of 1.96 ~ 5.68. The 192 

variant j = −3 yielded the best agreement with experiment, having a mean logK of 193 

3.69 over all 29 compounds, similar to the mean of the experimental values, 3.66. In 194 

addition to the reduced mean deviation from experiment in comparison to the standard 195 

CGenFF parameters, this force field variant also yielded improved correlation with 196 

experiment: r = 0.920. Hence, all simulations were performed with σ (Cgraph and Owater) 197 

= 0.0881843 kcal/mol. Since this special Lennard-Jones parameter was parameterized 198 

to represent graphene-like carbon, it applied only to sp
2 carbon atoms in the graphene 199 

oxide structures (sp
3 atoms retained standard parameters). 200 

2.3. Molecular dynamics simulations 201 

All the molecular dynamics simulations for the systems including graphene 202 

nanomaterials and each aromatic compound were performed with NAMD 2.12. The 203 

TIP3P water model,45 an all-atom explicit-solvent model typically used with the 204 

CHARMM force field, was used for simulating the aqueous environment. The 205 
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temperature and pressure were set 300 K and 1 atm, by using Langevin thermostat 206 

and Langevin piston methods,46 respectively. A timestep of 2 fs was set for bonded 207 

interactions and short-range non-bonded interactions. The cut-off was set at 9 Å; the 208 

particle-mesh Ewald algorithm47 was employed to treat the long-range electrostatic 209 

interactions every other time step. Analyses were performed with VMD 1.9.3.48 210 

2.4. Calculation of adsorption equilibrium coefficients (K) 211 

Every system underwent 1000 steps of energy minimization and 0.5 ns of 212 

equilibration before the calculation of free energies, which were obtained with the 213 

adaptive biasing force (ABF)49,50 method. The Colvars module51 of NAMD 2.12 was 214 

used to implement ABF along the z component of the vector between the center of 215 

mass for the organic compounds and the center of mass for the graphene or graphene 216 

oxide nanosheets. All the calculations were performed using a window with an 217 

interval 3 ≤ z ≤ 15 Å, and the forces were sampled in bins with a width of 0.05 Å. 218 

Each simulation was run for 50 ns. To verify convergence of the free energy, a few 219 

systems were run for an additional 50 ns and no significant change was observed. The 220 

potentials of mean force from the 50-ns simulations were normalized so that the mean 221 

value on 14< z < 15 Å was zero.  222 

The adsorption equilibrium coefficients can be estimated with the method defined 223 

by Comer et al.:28                    224 

( )
∫

−=
c

0

calc
calc

ed
zβW

z 
M

K
σ

                     (1) 225 

where β = (kBT)-1 represents the reciprocal thermal energy, and Wcalc(z) is the potential 226 

of mean force calculated by ABF. σ/M denotes the specific surface areas of the 227 

graphene nanomaterials. Here, the experimentally measured K values by the 228 

Brunauer-Emmett-Teller method,14 298.8 m2/g for GS, GO_H, GO_E and GO_C, and 229 

7.707 m2/g for GO_M, are used to compare with our simulation results. 230 
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2.5. Theoretical descriptors for prediction models 231 

All the molecules were optimized at the M06-2X/6-31G(d, p)52 level using the 232 

GAUSSIAN 09 program unless stated otherwise.53 The LANL2DZ basis set54 was 233 

used for Br and I atoms. All the optimized structures were confirmed to be local 234 

minima by vibrational frequency analyses. Quantum chemical descriptors, including 235 

molecular polarizability, atomic charges, the highest occupied molecular orbital 236 

energy level (EHOMO) and the lowest unoccupied molecular orbital energy level 237 

(ELUMO) values, were extracted from the Gaussian output files. McGowan volumes 238 

were generated by using Dragon software55 with the optimized structures. According 239 

to theoretical linear solvation energy relationships, 56 , 57  we used six theoretical 240 

descriptors for developing prediction models, which can be expressed as follows: 241 

logK = aεα + bεβ + fq+ + eq
− + vV + pπ + g               (2) 242 

where logK represents logarithm of the experimentally determined adsorption 243 

equilibrium constant; εα (ELUMO − EHOMO(water)), in an energy unit of electron volt (eV), 244 

is defined as covalent acidity; εβ (ELUMO(water) − EHOMO) in eV, is covalent basicity; q+, 245 

the most positive formal charge on a hydrogen atom in the molecule in atomic charge 246 

unit (acu), is taken as electrostatic acidity; likewise, q− (acu), the absolute value of the 247 

most negative formal charge in the molecule, represents the electrostatic basicity; V is 248 

obtained by dividing the molecular volume (Vx, in mL/mol) by 100; π, a unitless 249 

quantity, is calculated by dividing the polarizability by V. a, b, f, e, v and p are fitting 250 

coefficients, and g is a regression constant. aεα, bεβ, eq
− and fq+ describe the hydrogen 251 

bonding terms; vV characterizes bulk/cavity term; and pπ is the 252 

dipolarity/polarizability term. By convention, the logarithm in equation (2) is base-10 253 

and the K has units of mL/g. 254 

2.6. Models development and characterization 255 
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The calculated logK values for 43 organic compounds were used for establishing 256 

and validating models. We randomly split the 43 organic compounds into a training 257 

set of 35 aromatic compounds and a validation set of 8 aromatic compounds with a 258 

ratio of 4:1 (Table S1 of the Supplementary Information, SI). These parameters, 259 

namely, the determination coefficient (R2), root mean square error (RMSE), Q2 from 260 

bootstrap resampling (Q2
BOOT) (1/5, 5000 iterations) and external explained variance 261 

Q
2

V were used to evaluate the goodness of fit, robustness and predictive ability. 262 

Additionally, the application domain (AD) of the prediction models was characterized 263 

with a Williams plot, which is based on standardized residuals (δ*) and leverage 264 

values (hi).  265 

3. Results and discussion  266 

3.1. logK values for organic compounds on graphene and graphene oxides 267 

Experimental logK values are available for three of the compounds examined in 268 

this study, namely 1,3-dinitrobenzene (DNIN), 4-nitrotoluene (NoT) and nitrobenzene 269 

(PhNO2).14 Table 2 compares our calculated logK values with the experimental ones. 270 

The mean absolute errors are 0.51 and 0.24 for GS and GO_M, respectively, 271 

indicating that molecular dynamics simulation is a viable alternative method for 272 

getting logK values for adsorption onto graphene nanomaterials. 273 

 274 

Table 2. The Experimental and Calculated logK Values for DNIN, NoT and 275 

PhNO2 on GS and GO_M 276 

Compound 
logK on GS  logK on GO_M 

Experimental*  Calculated  Experimental*  Calculated 

DNIN 5.82 5.76  2.59 3.02 

NoT 4.91 5.05  2.79 2.73 

PhNO2 5.31 3.99  2.14 1.90 
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* The experimental logK values are obtained from Chen et al.’s studies.14  277 

 278 

Table 1 lists the categories of functional groups for 43 organic compounds and 279 

the calculated logK values on graphene and graphene oxides. The logK values (Fig. 2a) 280 

in simulations on unmodified graphene are in the range of 1.70 to 9.65, which is wider 281 

than the ranges for each graphene oxides, i.e., 0.93 to 4.06 (GO_H), 1.56 to 6.37 282 

(GO_E), 1.68 to 5.27 (GO_C) and 0.13 to 5.12 (GO_M). The logK values for organic 283 

compounds on graphene are larger than those on each graphene oxides, namely, 284 

GO_H, GO_E and GO_C. Similarly, the lowest free energies for these organic 285 

compounds on graphene during the 50-ns simulations are also lower than those on 286 

each graphene oxides (Fig. 2b), which implies that graphene has the strongest 287 

adsorption capability among these graphene nanomaterials.  288 

    289 

 290 

Fig. 2 Whisker and box plot representation of (a) logK values and (b) the lowest free 291 

energies during the 50-ns simulations on GS, GO_H, GO_E, GO_C and GO_M. The 292 

blue lines above and below the rectangles in the plot represent the maximum and 293 

minimum logK values or free energies on each graphene nanosheet; the top and the 294 

bottom of the rectangles represent the 75th and 25th percentiles, respectively; the 295 

lines within the rectangles represent 50th percentiles. 296 
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 297 

3.2. The influence of hydroxyl, epoxy and carbonyl groups for adsorption on 298 

graphene oxides 299 

The calculated free energy varies with changing the distance (r) between the 300 

center of mass for organic compounds and the surface for graphene and its oxides (Fig. 301 

3 and Fig. S1). Moreover, similar trends were observed in the changes of free energy 302 

for 43 compounds on different graphene nanomaterials. In order to explore the effect 303 

of hydroxyl, epoxy and carbonyl groups on the adsorption, we focus the discussion on 304 

the free energies for the systems including six most representative aromatic 305 

compounds, namely, PhH, PhMe, PhOH, PhCN, PhCl and PhNO2 (Fig. 3). For GS, 306 

the free energies for organic compounds at the bottom of each valley are −4.58 307 

kcal/mol (PhH), −5.91 kcal/mol (PhMe), −5.93 kcal/mol (PhOH), −7.20 kcal/mol 308 

(PhCN), −6.29 kcal/mol (PhCl), and −7.78 kcal/mol (PhNO2). All these values are 309 

lower than those on graphene oxides. This further demonstrates that the graphene has 310 

the strongest adsorption affinity for these model adsorbates. For GO_H, the free 311 

energies for these adsorbates at the bottom of each valley are –3.31 kcal/mol (PhH), 312 

−3.53 kcal/mol (PhMe), −3.98 kcal/mol (PhOH), −4.67 kcal/mol (PhCN), −4.28 313 

kcal/mol (PhCl), and −5.12 kcal/mol (PhNO2), and these values are less favorable 314 

than those on the other GO models. Thus, graphene oxide with hydroxyl groups has 315 

weaker adsorption affinity than the graphene oxides with other functional groups. 316 

Note that the bottom of each valley for free energies on GO_H in Fig. 3 locates at ca. 317 

3.8 Å, while it locates at ca. 3.5 Å for the free energies on GS, which may be 318 

understood by the fact that steric effects for hydroxyl groups on GO_H hinder the 319 

adsorbates from approaching GO_H.  320 

 321 
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 322 

Fig. 3 Calculated free energy versus distance (r) between the center-of-mass for six 323 

organic compounds and the surface of graphene or graphene oxide nanosheets.  324 

 325 

Furthermore, we calculated radial distribution functions (RDFs) for 326 

electron-withdrawing atoms (i.e., N, O, F, Cl, Br, I) in a compound relative to the 327 

hydrogen atom in hydroxyl groups on GO_H (Fig. 4). The electron-withdrawing 328 

atoms in these compounds, namely chlorobenzene (PhCl), bromobenzene (PhBr), 329 

iodobenzene (PhI), phenol (PhOH) and benzonitrile (PhCN), tend to distribute closer 330 

to the H atoms on GO_H, as compared to the compound, indicating that there exists 331 

electrostatic interactions between these electron-withdrawing atoms and H atoms. 332 

Especially for N and O atoms, g(r) has a peak at ca. 2 Å, which is within the range of 333 

hydrogen bonding interactions. Thus, electrostatic interactions play important roles in 334 

adsorption of organic compounds with electron-withdrawing atoms on GO_H, while 335 

for compounds with N or O atoms, hydrogen bonding interactions also contribute to 336 

the adsorption onto GO_H.  337 

In addition, we also calculated g(r) for H atoms in the substituent of a compound 338 

relative to the O atoms in hydroxyl groups of GO_H. The RDFs (Fig. 4) for toluene 339 
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(PhMe), ethylbenzene (PhEt), and propylbenzene (PhPr) indicate that there are no 340 

hydrogen bonding interactions between the H atoms of –CH3, –CH2CH3 and –341 

CH2CH2CH3 functional groups and the O atoms of GO_H. The g(r) values for PhOH, 342 

4-fluorophenol (FPl), 3-chlorophenol (ClPl) and phenylmethanol (PhMl), however, 343 

have a peak at around 2 Å, implying that hydrogen bonds exist between the hydrogen 344 

atom in –OH groups of these four compounds and the O atoms of GO_H. Note that 345 

ClPl acts as a hydrogen bond donor and acceptor to –OH group on the GO_H, while 346 

3-bromophenol (BrPl) acts only as a hydrogen bond acceptor. Likewise, m-cresol 347 

(mCr) and p-cresol (PCRO) act as hydrogen bond acceptors, though the hydroxyl 348 

group in PhOH tends to be a hydrogen bond donor. Therefore, the substituent in a 349 

phenol can affect the formation of hydrogen bonds between the –OH and the GO_H. 350 

Moreover, RDFs for methylbenzoate (BzOMe) and phenylacetate (PhOAc) in Fig. 4 351 

show that BzOMe has a greater propensity to form hydrogen bonds than PhOAc, even 352 

though their structures are similar. The reason may be that the oxygen atom in C=O 353 

for BzOMe maintaining the conjugation is richer in electrons than the oxygen atom in 354 

C=O for PhOAc, and prefers to act as a hydrogen bond acceptor. 355 

  356 

Page 18 of 36Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19 
 

 357 

Fig. 4 RDFs for compounds relative to GO_H. C…C: RDFs for all carbon atoms in a 358 

compound relative to the graphene nanosheet; H…O: RDFs for H in the substituent of 359 

a compound relative to O in the hydroxyl group on GO_H; N…H: RDFs for N in the 360 

substituent of a compound relative to H in the hydroxyl group; O…H, F…H, Cl…H, 361 

Br…H and I…H were defined similarly. 362 

 363 

For graphene oxide with epoxy groups (GO_E), we also examined the RDFs for 364 

different atoms, i.e., H atoms in the functional groups –OH, –CH3, –CH2CH3 and –365 

CH2CH2CH3 as well as N atoms in –CN, relative to the O atom in epoxy functional 366 

groups (see Fig. S2). None of the RDFs exhibit a peak at ca. 2 Å, indicating that no 367 
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hydrogen bonds exist between the inspected organic chemicals and the GO_E 368 

nanosheet. Similarly, as for graphene oxide with carbonyl groups (GO_C), the RDFs 369 

(Fig. S3) for H atoms in the –OH groups of compounds relative to the O atom on 370 

GO_C exhibit a peak at around 2 Å, which reveals that the hydrogen bonding 371 

interactions play roles in the adsorption for those compounds having –OH onto 372 

GO_C. 373 

As noted above, steric effects result in considerably weaker adsorption for the 374 

organic compounds on graphene oxide with hydroxyl groups compared to pristine 375 

graphene nanosheets. Graphene oxides with hydroxyl or carbonyl groups can form 376 

hydrogen bonds with the –OH group(s) in a compound. The hydroxyl groups in 377 

GO_H can also interact with the functional groups, namely, –CH2OH, –C(O)CH3, –378 

C(O)OCH3, –CH2CH2OH, –OC(O)CH3, –C(O)OCH2CH3 and –CN via hydrogen 379 

bonding. Moreover, the functional group in phenol can affect its hydrogen bonding 380 

between its –OH and GO_H. 381 

3.3. Prediction models for adsorption on GS and on GO_M 382 

The optimal models for predicting logK values of organic compounds onto GS 383 

and GO_M are as follows. 384 

For GS: 385 

logK = −1.83εα − 1.21εβ + 1.35q
+ − 1.59q

− + 1.04V − 1.61π + 42.06  (3) 386 

nT = 35, R2 = 0.88, RMSET = 0.74, Q
2
BOOT = 0.71, nV = 8, Q2

V = 0.87, RMSEV = 387 

0.54 388 

For GO_M: 389 

logK = −1.19εα − 0.57εβ + 5.11q
+ − 1.97q

− + 0.49V + 0.40π + 17.77   (4) 390 

nT = 35, R2 = 0.77, RMSET = 0.62, Q
2
BOOT = 0.71, nV = 8, Q2

V = 0.65, RMSEV = 391 

0.53 392 
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where nT and nV are the number of compounds in the training set and validation set. 393 

Fig. 5(a) shows that the predicted logK values on graphene nanosheets agree well 394 

with those determined by MD simulations. Similarly, the predicted logK values on 395 

GO_M are in good agreement with those from simulations (Fig. 5(b)). The values for 396 

R
2
 (R2 > 0.60), Q2

BOOT and Q2
V (Q2 > 0.50),58 RMSET and RMSEV indicate that these 397 

two models have satisfactory goodness-of-fit, robustness and predictive ability. 398 

 399 

 400 

Fig. 5 Predicted logK values (logK_pre) versus MD calculated ones (logK_cal) on (a) 401 

GS and (b) GO_M. 402 

 403 

Applicability domains of the prediction models (Eq. 3 and Eq. 4) are visualized in 404 

Fig. 6. All the compounds have |δ*| < 3, which shows that there are no outliers. Eq. 3 405 

can be used for predicting logK values onto graphene nanosheets for various aromatic 406 

compounds including benzene, benzyl alcohol, phenol, aniline, nitrobenzene, nitrile, 407 
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halogenated benzene, ketone, ester, biphenyl and their derivatives, polycyclic 408 

aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs). Eq. 4, 409 

with the same applicability domain as Eq. 3, can predict adsorption onto graphene 410 

oxide. Note that these are the first theoretical linear solvation energy relationship 411 

models for adsorption onto graphene and graphene oxide.  412 

  413 

 414 

Fig. 6 Williams plot of standardized residuals (δ*) versus leverages (h) on (a) GS and 415 

(b) GO_M. 416 

 417 

3.4. Adsorption mechanisms on GS and GO_M 418 

As given in the two prediction models Eq. 3 and Eq. 4, the six terms aεα, bεβ, eq
−, 419 

fq
+, vV and pπ have different contributions to the logK values. This difference 420 

indicates that hydrogen bonding, dispersion, hydrophobic and electrostatic 421 
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interactions play diverse roles in the adsorption of organic compounds onto graphene 422 

and graphene oxide. 423 

For adsorption on graphene (Eq. 3), the covalent acidity (εα) of the examined 424 

organic compounds has a negative contribution to the logK values, indicating that 425 

compounds with strong H-donating abilities prefer to form hydrogen bonds with the 426 

oxygen atoms in water molecules, leading to a decrease in logK. Similarly, the logK 427 

values increase with decreasing covalent basicity (εβ), as compounds with strong 428 

H-accepting abilities can interact with the hydrogen atoms in the water molecules as 429 

H-acceptors. Electrostatic acidity (q+) has a positive fitting coefficient, which implies 430 

that the increase of q+ can result in the increase of logK values. It is known that the 431 

hydrogen atom with the most positive formal charge can interact with π electrons 432 

around graphene, which may promote adsorption of organic compounds onto 433 

graphene. On the contrary, the electrostatic basicity (q−) of a molecule correlates 434 

negatively with the logK values. 435 

The term vV, which represents the dispersion and hydrophobic interactions, has a 436 

positive contribution to the logK values. In previous prediction models for 437 

multiwalled carbon nanotubes,27 , 59 which are based on experimental adsorption data, 438 

vV plays an analogous role. Note that the dipolarity/polarizability term (pπ) has a 439 

negative fitting coefficient, indicating that compounds possessing larger polarizability 440 

tend to interact with water molecules rather than with graphene.  441 

For adsorption onto graphene oxide (Eq. 4), the terms aεα, bεβ and eq
− contribute 442 

negatively, while the electrostatic acidity (fq+) and bulk/cavity (vV) terms are 443 

positively correlated with the logK values, similar to those in the graphene prediction 444 

model. However, the dipolarity/polarizability (pπ) term makes a positive contribution 445 

to the adsorption for organic compounds on graphene oxide, in contrast to graphene. 446 
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The reason may be that the hydroxyl and epoxy groups in graphene oxide result in 447 

polar surface, which promotes stronger interactions with polarizable compounds. To 448 

confirm the above reasoning, we computed the electrostatic potential for graphene and 449 

graphene oxide with density functional theory, as detailed in the SI. The electrostatic 450 

potential around hydroxyl and epoxy groups are negative (Fig. 7), which differs 451 

significantly from that on a graphene nanosheet. This demonstrates that the hydroxyl 452 

and epoxy groups on graphene oxide increase the polarity of graphene oxide.  453 

 454 

 455 

Fig. 7 Electrostatic potential distribution of (a) graphene and (b) GO_M. 456 

 457 

Furthermore, we made comparisons among these standardized coefficients for εα, 458 

εβ, q
+, q−, V and π (Table 3). As shown in Table 3, for the graphene prediction model, 459 

H-donating ability (εα) and dispersion/hydrophobic interactions (V) are the most 460 

influential factors on logK values, while for the graphene oxide model, H-donating 461 

ability (εα) has the most significant effects on logK values. 462 

 463 

Table 3. Descriptors and Their standardized coefficients 464 

Descriptors 
Standardized coefficients 

GS GO_M 

εα −0.84 −0.90 

εβ −0.35 −0.28 

q
+ 0.06 0.36 
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q− −0.10 −0.21 

V 0.46 0.35 

π −0.16 0.07 

 465 

4. Conclusions 466 

By combining MD simulations and TLSERs, we investigated the adsorption of 467 

43 aromatic solutes on graphene and graphene oxides with the functional groups 468 

hydroxyl, epoxy and carbonyl. MD simulations provided us an atomic-level view of 469 

the adsorption process and an in-depth understanding of how different functional 470 

groups attached to the graphene nanosheet influence adsorption from aqueous solution. 471 

The results illustrate that the hydroxyl and carbonyl groups on graphene oxides can 472 

form hydrogen bonds with a solute’s –OH group, while the epoxy group does not 473 

form hydrogen bonds with the same compound. The newly established TLSER 474 

models can enable us to obtain the adsorption equilibrium coefficients for a much 475 

wider range of uncharged compounds onto graphene nanomaterials than the 43 tested 476 

ones in this work. This study provides us promising tools to rapidly predict adsorption 477 

affinities onto graphene and graphene oxides using only theoretical molecular 478 

structure descriptors, which can overcome the lack of molecular structure descriptors 479 

from experimental determination.  480 

 481 

Supplementary information  482 

Electronic supplementary information (ESI) is available: (1) 35 compounds in the 483 

training set and 8 compounds in the validation set (Table S1); (2) Calculated free 484 

energy versus distance (r) between the center-of-mass for 37 organic compounds and 485 

the surface of graphene or graphene oxide nanosheets (Fig. S1); (3) Radial 486 
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distribution functions on GO_E (Fig. S2); (4) Radial distribution functions on GO_C 487 

(Fig. S3); (5) Details for computing the electrostatic potential distribution with density 488 

functional theory (DFT) method (SI1). 489 

 490 
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