

Environmental Science Nano

Antifouling Properties of Two Dimensional Molybdenum Disulfide and Graphene Oxide Nanomaterials

Journal:	Environmental Science: Nano
Manuscript ID	EN-ART-02-2018-000202.R1
Article Type:	Paper
Date Submitted by the Author:	26-Apr-2018
Complete List of Authors:	Alam, Iftaykhairul; Washington State University, Civil and Environmental Engineering Guiney, Linda; Northwestern University, Department of Materials Science and Engineering Hersam, Mark; Northwestern University, Department of Materials Science and Engineering Chowdhury, Indranil; Washington State University,

SCHOLARONE[™] Manuscripts

Environmental Significant Statement

Two-dimensional graphene-based nanomaterials including graphene oxide (GO) and reduced graphene oxide (rGO) have shown antibacterial properties, which could be useful for different environmental applications. Many studies also reported the potential application of GO/rGO for antifouling membrane preparation. While graphene-based materials have been extensively studied, recently molybdenum disulfide (MoS₂) nanosheets have gained lot of attentions. Most of the research that has focused on MoS₂ for application in electronics, catalysis, biomedical and energy related fields. However, its use as an antifouling material has not been extensively explored. MoS₂ has extremely low friction as well as low surface roughness and so MoS₂ has great potential for antifouling surface preparation. Overall MoS₂ showed superior antifouling properties compared to GO in this study. Results indicate that MoS₂ for the preparation of antifouling surfaces in environmental applications. Integration of MoS₂ for the preparation of antifouling surface could be applied in different industries such as water filters, ship hulls, biomedical devices, coatings, and paintings.

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
15 16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Antifouling Properties of Two Dimensional Molybdenum Disulfide and Graphene Oxide Iftaykhairul Alam¹, Linda M. Guiney², Mark C. Hersam², and Indranil Chowdhury^{1*} ¹ Department of Civil & Environmental Engineering, Washington State University, Pullman, WA 99164, USA ² Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, USA *Contacting author: indranil.chowdhury@wsu.edu; 509-335-3721

19 Abstract

Fouling remains one of the biggest challenges in a myriad of industries such as water filters, ship hulls, biomedical devices, coatings, and paintings. Fouling severely hampers the performance and increase the operation and maintenance costs in industries. There is a critical need to develop antifouling surfaces and two-dimensional (2D) materials, such as graphene oxide (GO) and molybdenum disulfide (MoS_2), have shown potential for antifouling surface preparation due to some unique properties. Here, the antifouling properties of these two materials were investigated by observing the deposition kinetics of bacteria and natural organic matter (NOM) using a quartz crystal microbalance with dissipation monitoring (QCM-D). Suwannee River humic acid (SRHA) and E. coli K-12 were used as model NOM and bacteria, respectively. Overall MoS₂ showed slightly better antifouling properties compared to GO. In most cases, the deposition of NOM and E. coli was significantly lower on MoS₂ than GO due to the presence of functional groups on GO that bind more easily with the foulants. Deposition of NOM was at least 1.5 times lower on MoS₂ surface than GO surface in the presence of both monovalent (Na⁺) and divalent (Mg^{2+}) cations. However, the presence of 0.5 mM divalent cations (Ca^{2+}, Mg^{2+}) with NOM reduced the antifouling properties of both MoS_2 and GO by a factor of ≥ 1.5 due to a salt bridging effect and reduced energy barrier.

1. Introduction

Two-dimensional graphene-based nanomaterials including graphene oxide (GO) and reduced graphene oxide (rGO) have shown great potential in different environmental applications such as photocatalytic oxidation, contaminant removal, membrane-based separation etc. ¹⁻³ Several studies have demonstrated the strong antimicrobial properties of GO against a wide variety of microorganisms, including gram-positive and gram-negative bacterial pathogens, phytopathogens, and biofilm-forming microorganisms.^{4, 5} Additionally, GO is hydrophilic, which could result in higher water permeation, making the membrane less susceptible to fouling during filtration.^{6, 7} While graphene-based materials have been extensively studied, recently molybdenum disulfide (MoS₂) nanosheets have gained lot of attentions. MoS₂, a member of the emerging 2D nanomaterial class of transition metal dichalcogenides, has unique electrical, physicochemical and mechanical properties.^{8,9} Despite the significant research that has focused on MoS₂ for application in electronics, catalysis, biomedical and energy related fields, its use as an antifouling material has not been extensively explored. MoS2 has extremely low friction and low surface roughness.^{10, 11} Foulants are less likely to adhere to the MoS₂ surfaces due to this property.^{12, 13} The advancement of membrane technology for water filtration is severely hampered by the long-standing problem of fouling, which is caused by the accumulation of foreign substances on the membrane surfaces or inside the membrane pores.^{14, 15} Fouling has been found to deteriorate membrane performance causing low water permeability, poor product water quality, high energy consumption, and short membrane life. ^{16, 17} Biofouling, colloidal fouling, organic fouling and scaling remain the most significant problems for efficient application of nano-filtration and reverse osmosis.^{18, 19} Beside fouling in water filtration membrane, fouling also causes serious problem in marine ship hulls due to the presence of more

 than 4000 species of marine organisms.²⁰⁻²² Fouling by different proteins and bacteria has also
 been reported in biomedical applications, including biosensors, bioanalytical devices, and
 implants.^{23, 24}

Before integrating MoS₂ for the preparation of antifouling surface into water filtration membranes or biomedical devices, it is important to understand the antifouling mechanisms of this nanomaterial. In this work, the antifouling performance of MoS₂ and GO has been compared in terms of maximum foulants deposition and foulants deposition rates on those material surfaces. A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to study the interactions of MoS₂ and GO with natural organic matter (NOM) and E. coli (K-12). NOM is mainly composed of humic substances and polysaccharides and is common in the aquatic environment.²⁵ E. coli K12 is also common in natural water and one of the most commonly used bacteria strains for fouling studies.^{26, 27} Interaction of these foulants with MoS₂ and GO will thus give a clear indication of the antifouling properties of the materials. The impact of ion presence and valence on the attachment of foulants with MoS₂ and GO is also investigated.

78 2. Materials and Methods

79 2.1 Preparation of materials

2D GO and MoS₂ were both synthesized using top-down approaches. A modified Hummers' method was used to synthesize graphene oxide.^{28, 29} Detailed synthesis process of GO is provided in the supporting information. The MoS₂ nanomaterial used in this study was synthesized using a lithiation process described elsewhere.³⁰ Briefly, Lithium intercalation was achieved by combining bulk MoS₂ powder and butyllithium in a low vapor and oxygen condition for 2 days with continuous stirring. The lithiated MoS₂ was rinsed extensively with hexane, filtered, and exfoliated by the addition of deionized water and bath sonication. The resulting dispersion was
centrifuged to remove any unexfoliated material. The supernatant was further dialyzed for 7 days
in a bath of deionized water to remove residual lithium and hexane.

2.2 Characterization of materials

AFM imaging was used to determine the surface roughness of the materials. X-ray photoelectron
spectroscopy (XPS) was done to determine the amount of functional groups present in GO and
MoS₂ materials. Hydrodynamic diameter (D_h) and zeta potential (ζ-potential) of the materials
and the *E. coli* were also measured for the calculation of DLVO theory (supporting information).
Contact angle measurement also done to determine the hydraphilicity of GO and MoS₂.

95 2.2.1 AFM and XPS analysis

The surface roughness of GO, MoS₂ and PLL were measured by atomic force microscopy (AFM) using a similar procedure on previously published work.^{28, 29} Si wafers with a 100 nm thick oxide surface were used as substrates. At first, Si wafers were washed by acetone and isopropanol, and then rinsed with deionized (DI) water. For preparing a self-assembled functionalized monolayer, the Si wafers were put in a 2.5 mM (3- amino propyl) triethoxysilane (APTES) solution for 30 minutes and then rinsed with DI water again. Then immediately after drying with N₂, a 5 mg/L GO/MoS₂/PLL drop was placed on the surface. After waiting for 10 min, the sample was rinsed with DI water and dried with N₂. The sample was further heat treated at 250°C for 30 min for removing the residual APTES. AFM images were taken using a Thermo Microscopes Auto probe CP-Research AFM in tapping mode with conical, symmetric probes (Budget Sensors, All-In-One, cantilever B). Images were taken at several random locations on each sample and showed little variation.

Samples for XPS analysis were prepared using a procedure similar to previously published work.
³¹ XPS samples (approximately 5 mg) were prepared by vacuum filtration of the material dispersions onto a PTFE membrane filter with a 0.1 µm pore size (Millipore). The film was allowed to settle for 15 minutes, rinsed with 30 mL DI water, and allowed to dry in air. XPS spectra were collected using a Thermo Scientific ESCALAB 250Xi. XPS spectra were then corrected for background and fitted for peaks manually.

115 2.2.2 Electrokinetic and Hydrodynamic Characterization

Hydrodynamic diameter (D_h) and zeta potential (ζ -potential) were measured using a Zeta Sizer Nano ZS (Malvern Instruments, Worcestershire, U.K.), following well-established techniques.²⁹ ^{30, 32} ZetaSizer Nano ZS was equipped with a monochromatic coherent He-Ne laser with a fixed wavelength of 633 nm. ZetaSizer Nano ZS uses the Stokes-Einstein equation to calculate the intensity averaged (average size) hydrodynamic diameter (D_h).³³ Zeta potentials (ζ -potential) of the GO, MoS₂ and *E. coli* were also measured using a ZetaSizer Nano ZS instrument, which employs phase analysis light scattering (PALS) to measure the electrophoretic mobility of charged particles.³⁴ ZetaSizer Nano ZS uses the Smoluchowski equation to calculate ζ-potential from electrophoretic mobility (EPM).³³

⁴ 125 **2.2.3**

2.2.3 Contact angle measurement

126 25 μ L of GO and MoS₂ dispersions at a concentration of 0.02 mg mL⁻¹ was drop cast onto a 127 clean SiO₂ wafer. A 5 μ L water droplet was placed onto the surface and the contact angle was 128 measured within 30 seconds using a Krüss DSA100 Drop Size Analyzer. Error bars represent 129 one standard deviation (n = 3).

2.3 Aquatic chemistry

Suwannee River humic acid (Standard II, International Humic Substances Society) was used to prepare the natural organic matter (NOM) suspension at a concentration of 10 mg/L. Escherichia coli (E. coli, MG1655, K-12) was supplied by the E. coli Genetic Resource Center of Yale University. GO or MoS₂ surfaces on gold crystals for QCM-D measurements were prepared by modifying the gold sensors with cationic Poly-L-lysine hydrobromide (PLL, molecular weight 70 000-150 000 Da by viscosity, P-1274, Sigma Aldrich, St. Louis, MO). PLL was dissolved in HEPES buffer (pH 7.4) made from 10 mM N-(2-hydroxyethyl) piperazine-N-2-ethanesulfonic acid (Sigma), 100 mM NaCl and deionized water and was stored at 4 °C. The final concentration of the stock PLL solution was 0.1 g L^{-1} . The gold substrate cells were exposed to the PLL stock solution for 15-20 min to create a homogeneous layer. Calcium chloride (CaCl₂.2H₂0, CAS 10035048), sodium chloride (NaCl, CAS 7647-14-5) and magnesium chloride (MgCl₂.6H₂0, CAS: 7791-18-6) were used to prepare salt solutions. 10 mM NaCl and 0.5 mM CaCl₂/MgCl₂ were used for the experiments. 10 mg/L GO and 50 mg/L MoS₂ were prepared from the stock sample solutions.

² 146 **2**

2.4 Bacterial Strains and Growth Studies

Escherichia coli MG1655 used in this study was pre-cultured, cultured and then harvested following the standard procedure.³⁵ First, a sterile tip was used to pick up bacteria from the petri dish, after which the tip with bacteria was stirred in 5 mL of lysogeny broth (LB-Miller). Then it was incubated overnight at 37 °C. To culture, 2 mL of pre-culture was added to 200 mL of fresh LB broth and incubated for 24 hr at 37 °C to reach the stationary phase of the bacterial cells. For

 harvesting, 40 mL of culture liquid was poured into a centrifuge tube and then centrifuged at 3689 g for 15 min at 4 °C. The supernatant was discarded and the pellet was resuspended by adding 10 mL of 10 mM NaCl and vortexing. Then it was again centrifuged at 3689 g for 15 min at 4 °C and the same procedure was followed to resuspend the pellet in 10 mM NaCl. The cell concentration used in this study was $\sim 10^6$ cells per mL. The final cell suspensions were made in the background solution (10 mM Na⁺ or 0.5mM Ca²⁺).

2.5 Fouling study

159 2.5.1 Foulant deposition with nanomaterial coated surface

Gold sensors were coated with the nanomaterial of interest using the same procedure from previous studies (Fig. S1).^{29, 36} Briefly, to achieve a stable baseline reading, the gold sensor surface was rinsed with milli-Q (MQ) water until the changes in frequency and dissipation were <0.3 Hz and <0.2*10⁻⁶ respectively for 10 min. (Stage I).³⁷ The QCM-D system was equilibrated with HEPES buffer in 100 mM NaCl solution for 30 min at a flow rate of 0.1 mL/min (Stage II). PLL in HEPES buffer solution was introduced at 0.1 mL/min (Stage III). The PLL layer was rinsed with HEPES for 20 min to remove the unadsorbed PLL (Stage IV). Finally, 1 mM NaCl solution (background electrolyte) was used to remove the buffer at a flow rate of 0.1 mL/min for 30 min (Stage V). 10 mg/L GO or 50 mg/L MoS₂ was deposited on the PLL coated surface by flowing at a rate of 0.1 mL/min for at least 30 min (Stage VI). Similar type of approach was used to deposit nanomaterials on QCM-D sensors in previous studies. ^{36, 37} MoS₂ showed slow deposition on PLL and thus a higher concentration of MoS₂ was employed to achieve a fully coated sensor in a reasonable time period. The sensors were exposed to the GO and MoS₂ solutions until maximum frequency was achieved and the frequency shift became stable indicating full coverage of both materials on the PLL surface. All the fouling experiments were

done on bare PLL surface also to compare the results with the GO/MoS₂ coated surface (Fig. S2). This was done to confirm that no PLL was exposed during the fouling study and the foulants only interacted with GO and MoS₂ surfaces. Any exposed PLL even after GO/MoS₂ coating would result into higher frequency shifts and dissipation changes like bare PLL surface experiment. To test the antifouling properties, NOM and E. coli were injected across the nanomaterial-coated surface at a flow rate of 0.1 mL/min until the QCM-D showed a stable frequency shift. QCM-D cells and sensors were cleaned following the Q-sense cleaning protocols before and after the experiment. Briefly, 5 mL of Hellmanex III (Fisherbrand TM, cleaning concentrate) was flowed through the tubes to the QCM-D cells followed by 20 mL of Milli-Q water to clean the cells. The gold sensors were soaked in a solution of 5:1:1 Milli-Q water, NH₄OH and H₂0₂ at 75 \pm 5 °C for 5 min. The sensors were air dried and placed in a UV chamber for 20 min. All the fouling study were replicated three times and results are summarized in table S1.

188 2.5.2 Deposition and release study using QCM-D

The deposition kinetics of NOM and *E. coli* were determined from the frequency shifts monitored by QCM-D from which the deposition rate and attachment efficiency can be calculated.³⁸ Shifts in frequency and dissipation were monitored at the third overtone. Initial deposition rates r_f and r_D are defined as rates of frequency and dissipation shift in a time period respectively (Eq. 1 and 2)^{36, 39}:

194
$$r_f = \left| \left(\frac{d\Delta f_{(3)}}{dt} \right)_{t \to 0} \right| \tag{1}$$

$$r_D = \left| \left(\frac{d\Delta D_{(3)}}{dt} \right)_{t \to 0} \right| \tag{2}$$

Page 11 of 38

Environmental Science: Nano

 Attachment efficiency gives information on how fast the foulants deposit on the material surface with respect to bare polymer surfaces (PLL). ^{36, 39} It is a good indicator for comparing the antifouling performance of GO and MoS₂. The deposition attachment efficiency (α_D) is calculated from deposition rates:

$$\alpha_{D} = \frac{r_{\rm f}}{(r_{\rm f}) \rm PLL} = \frac{\left| \left(\frac{d\Delta f_{(3)}}{dt} \right)_{t \to 0} \right|}{\left| \left(\frac{d\Delta f_{(3)}}{dt} \right)_{\rm PLL, t \to 0} \right|}$$
(3)

NOM and E. coli were directly deposited on PLL surfaces as a control to investigate the deposition behavior of foulants. In Eq. 3, the denominator represents the rate of frequency shift obtained with bare polymer surface conditions. An attachment efficiency of <1 indicates the slower foulant deposition rate on the surfaces functionalized with GO or MoS_2 when compared to a bare polymer surface, which is expected as PLL is positively charged and most likely to interact more with negatively charged foulants. Attachment efficiencies of foulants on GO and MoS₂ were calculated using Eq. 3 and then the antifouling performance of GO and MoS₂ was directly compared.

3. Results and discussion

3.1 Characterization of GO and MoS₂

The average hydrodynamic diameters (Table 1) of GO and MoS₂ in deionized water were 385.3 \pm 7.58 nm and 153.5 \pm 1.67 nm, respectively. Zeta potentials (Table 1) of GO and MoS₂ in deionized water were -41.33 \pm 0.5 mV and -40.34 \pm 0.76 mV, respectively. The highly negative zeta potentials of MoS₂ and GO indicate that they are moderately stable in water. Additionally, this suggests that MoS₂ and GO functionalized surfaces could effectively repel foulants due to

the negative surface charge of most foulants.³⁷ Representative atomic force microscopy (AFM) images of GO and MoS_2 are shown in figure 1. The surface roughness of the GO and MoS_2 on PLL coated gold sensors were 2.5 ± 0.3 nm and 2.4 ± 0.3 nm, respectively. The surface roughness of a bare PLL surface was found to be 5.1 ± 1.2 nm. From these measurements it is clear that the deposition of the 2D materials reduced the roughness of the polymer surface. XPS spectra (Fig. 2) of GO C1s showed three convoluted peaks corresponding to C-C (~284.8 eV), C-O (~286.8 eV) and O-C=O (288.5 eV). For MoS₂ three characteristic peaks were seen in the Mo3d scan corresponding to the Mo3d 3/2 (~232.5 eV), Mo3d 5/2 (~229 eV) and S2s (~226.5 eV) and the characteristic doublet peak in the S2p spectrum. These XPS data confirm that there was no oxygen containing functional groups in MoS₂ structure. Contact angle measurement results (Fig. S3) confirms both GO and MoS2 used in this study were hydrophilic. GO had an contact angle of 25 ± 5.4 while the contact angle of MoS₂ was 42 ± 4.6 suggesting GO was slightly more hydrophilic than the MoS₂.

227 3.2 Deposition kinetics of natural organic matter (NOM) on GO and MoS₂ surfaces

The maximum frequency shift on QCM-D was used to determine the maximum deposition of NOM on both surfaces under experimental conditions. The maximum deposition, thus, is an indication of the fouling caused by NOM on GO and MoS2 surfaces. Following injection of NOM onto the nanomaterial functionalized surfaces, a slight frequency shift was observed on the GO surface (<1.5 Hz), and even less frequency shift was observed on the MoS₂ surface, indicating that MoS₂ will be less prone to fouling from NOM (Fig. 3A, S3, S4). In fact, the change in frequency shift during NOM deposition on MoS₂ is negligible (Fig. S4) as small frequency shift (~0.5 Hz) could be observed due to vibration on the gold sensor. Due to the high zeta potential of GO and MoS₂ and negative charge of NOM, the interaction of NOM with the

Page 13 of 38

Environmental Science: Nano

 material surfaces will be minimal due to electrostatic repulsion, and thus there is hardly anydeposition of NOM on the material surfaces.

NOM attaches to a GO and MoS₂ functionalized surfaces 70% and 80% more slowly on average than a bare polymer surface (favorable condition) respectively (Fig. 3B), suggesting NOM depsoits on both the surfaces at a similar rate. However, less NOM attachment makes MoS₂ preferable to GO as an antifouling surface. These results agree with previous studies which have shown that interactions between GO surfaces and NOM are electrostatically unfavorable³⁹ as NOM is negatively charged under environmentally relevant conditions.⁴⁰ No significant deposition of NOM was observed on the MoS₂ surface despite a zeta potential similar to GO. The difference in their interactions with NOM is most likely due to the presence of functional groups on GO that can interact with NOM. Previously it has been shown that GO deposits more readily on surfaces that have been coated with NOM due to the high amount of hydroxyl and carboxyl functional groups on GO that readily bind with functional groups of NOM.³⁹ Lack of functional groups on MoS₂ may be responsible for lower interactions with NOM.

3.3 Interactions of GO and MoS₂ with natural organic matter (NOM) in the presence of monovalent ions

The maximum shift observed was 1.65 Hz on the GO surface and 1.52 Hz on the MoS₂ surface (Fig. 4A, S6, S7). Though the frequency shifts were not significantly different, the initial deposition rate of NOM in the presence of Na⁺ was 0.98 Hz/min (Fig. S6) on a GO surface and 0.64 Hz/min (Fig. S7) on an MoS₂ surface. Using this deposition rate, the attachment efficiencies (Fig. 4B) of NOM were found to be 57% and 36% on GO and MoS₂ surfaces, respectively, indicating that NOM deposits on MoS₂ more slowly than on GO. The slower deposition rate of NOM on MoS₂ makes it a more advantageous material choice than GO for antifouling

properties. The increase in the overall deposition of NOM in this case is mainly due to reduced electrostatic repulsion and the effect of charge neutralization caused by the presence of Na⁺ ions. In particular, in the presence of Na⁺, the energy barrier between NOM and the material surfaces is reduced, allowing the functional groups of NOM to attach to the material surfaces. In the presence of NaCl, increased interactions between carbon-based nanomaterials with NOM were found in other studies.^{37, 41} The increased frequency shift and higher attachment efficiency of NOM in Na⁺ to the GO and MoS₂ surfaces clearly indicate that Na⁺ certainly plays a role in the deposition of NOM.

3.4 Interactions of GO and MoS₂ with natural organic matter (NOM) in the presence of divalent cations

From the values of maximum frequency shift, it is clear that the deposition of NOM on both material surfaces in the presence of divalent cations is higher than in the presence of monovalent ions (Fig. S8, S9). The average maximum shifts observed for NOM in Ca²⁺ were 5.97 Hz (Fig. S8) and 5.37 Hz (Fig. S9) on GO and MoS₂, respectively, and in Mg^{2+} the maximum frequency shifts were 4.60 Hz and 3.81 Hz on GO and MoS₂, respectively, (Fig. 5A). The average attachment efficiencies (Fig. 5B) of NOM in the presence of Ca²⁺ were 66% and 41% on GO and MoS_2 surfaces, respectively. The attachment efficiencies of NOM in Mg^{2+} were 73% and 39% on GO and MoS₂ surfaces, respectively indicating the superior antifouling properties of MoS₂ over GO (Fig. 5B). The difference in antifouling performance between GO and MoS₂ was more significant in case of NOM in Mg^{2+} . On the other hand, Ca^{2+} in NOM caused the fouling on both GO and MoS₂ surfaces at a similar rate. Moreover,, increased values of both maximum frequency shifts and attachment efficiencies suggest that electrostatic repulsion between the NOM and the GO or MoS₂ surface is reduced in the presence of Ca^{2+} or Mg²⁺. This decrease in

Page 15 of 38

the energy barrier between NOM and the surface allows the NOM to come into close contact with the material surfaces in the presence of divalent cations. This higher deposition of NOM can also be attributed to salt bridging caused by the divalent cations. This bridging effect is well documented in the literature.^{42, 43} Chen and Elimelech observed a slightly higher interaction of fullerenes and Suwannee River humic acid (SRHA) on bare silica in the presence of CaCl₂ due to SRHA macromolecules undergoing complex formation with Ca²⁺ that reduces electrostatic and steric effects.³⁷ Chowdhury et al. found a similar bridging effect of divalent cations during the interaction of GO and Suwannee River fulvic acid (SRFA) using QCM-D.³⁹ It is clear from this study that the antifouling ability of both GO and MoS₂ decreases significantly when NOM is present with divalent cations in solution. The bridging effect and decrease in the energy barrier help NOM to deposit onto the material surfaces in the presence of divalent cations. Overall, average deposition of NOM and attachment efficiecncy were slightly lower on MoS₂ than GO especially in the case of NOM in Mg^{2+} .

3.5 Interactions of GO and MoS₂ with E. coli

The maximum frequency shift during E. coli deposition in the presence of 10 mM NaCl is shown in figures 6A, S10 & S11. After 30 min of *E. coli* injection, *E. coli* in Na⁺ showed an average frequency shift of 7.39 Hz (Fig. S10) on GO surfaces while the average shift was 5.59 Hz (Fig. S11) on MoS₂ surfaces, indicating that overall deposition of *E. coli* was slightly lower on MoS₂ than GO in this case also. Figure 6B shows that the average attachment efficiencies of *E. coli* in Na⁺ were 71% and 62% on GO and MoS₂ surfaces, respectively. However, it has been found the the interaction of *E. coli* with GO and MoS₂ surfaces was not significantly different unlike the interaction of NOM. Nevertheless, low attachment efficiency for GO and MoS₂ indicates an improvement of the antifouling properties of both the surface. Poitras and Tufenkji reported that

OCM-D underestimates the mass adsorbed on the crystal surface for "soft mass" such as bacterial cells.⁴⁴ They reported that along with frequency shift, the dissipation shift also changed significantly during E. coli deposition. Though the interaction of E. coli is highly surface dependent, in this study, significant dissipation shit was also noticed. The changes in dissipation shift on GO and MoS₂ surfaces were 15.52*10⁻⁶ (Fig. S10) and 12.13*10⁻⁶ (Fig. S11) on average respectively. It is important to report that the increase in dissipation shift during the E. coli deposition was much higher than the NOM deposition which indicates that the E. coli creates a softer layer than NOM on 2D material surfaces.

E. coli, which are gram negative bacteria, have an outer covering of lipopolysaccharides that impart a strongly negative charge to the surface of the gram negative bacterial cells.⁴⁵ We hypothesize that any attachment of E. coli to the material surfaces that did occur might be due to extracellular polymeric substances (EPSs).^{46, 47} Previously it has been observed that stationary phase cells cultivated in LB media have less negative charge than the exponential phase cells and tend to aggregate more,⁴⁸ which may also contribute to the cell attachment on the material surfaces. In another study, it has been reported that E. coli MG1655 aggregates more in the stationary phase due to high protein content on free EPS.⁴⁹ Overall, MoS₂ performed as good as GO in terms of average deposition and attachment efficiency against E. coli.

4. Mechanisms involved in the interaction of foulants on GO and MoS_2 surfaces

324 4.1 Influence of surface charge and salt bridging

Figures 7 and S13 represent the overall mechanisms in interactions of MoS_2 and GO with NOM and bacteria, respectively. Interaction energy between *E. coli* and GO and MoS_2 in the presence of monovalent ions was calculated using DLVO theory (Supporting Information). The zeta

potential and hydrodynamic size of E. coli in 10mM NaCl were -44.2 mV and 2 µm, respectively, under experimental conditions. Result from DLVO theory (Figure S12) suggest that the energy barrier between the E. coli and the 2D material surfaces was very high (2000 KT). The high negative surface charge of the 2D materials creates unfavorable conditions for NOM deposition also. However, there was still deposition of the foulants on the material surfaces particularly on GO due to salt bridging. The presence of divalent cations (Ca^{2+}, Mg^{2+}) contributes to the NOM-NOM interaction^{50, 51} and may also causes deposition of foulants as Ca²⁺ or Mg²⁺ could work as a linker between NOM and GO or MoS₂. Furthermore, divalent cations can reduce electrostatic and steric effects and influence the interaction of foulants on the material surfaces. ^{37, 39, 42} Due to the large amount of functional groups, GO is more prone to salt bridging. On the other hand, lack of functional groups on MoS₂ makes the surface unfavorable for salt bridging, which results in sligtly lower attachment of foulants on MoS₂ than GO. Furthermore, the energy barriers between foulants and material surfaces fall at a separation distance of 20-22 nm (secondary minimum) and the interaction energy is not repulsive after that point (Fig S12). In the case of *E. coli*, the secondary minimum starts at 23 nm with the maximum attraction energy of 1.32 KT at 29 nm (Fig. S12). This indicates that the higher energy barrier is not effective beyond that range and other interactions, such as the presence of functional groups and surface roughness, may play the dominant role.

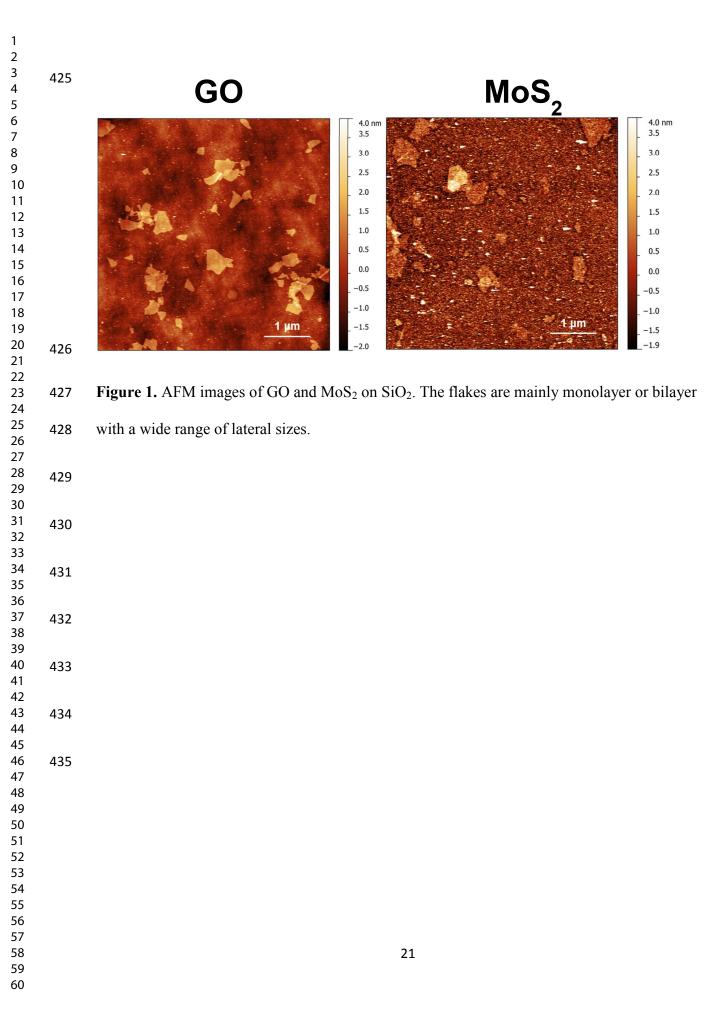
Most of the foulants in nature are negatively charged and thus negatively charged membranes can create electrostatic repulsion between foulants co ions and membranes surface.⁵² However, the electrostatic repulsion could be overcome by the foulants due to secondary minimum where hydrogen bond, van dar Waals force dominate. Few recent studies have reported that sometimes charge neutral surfaces perform better as antifouling surfaces.^{53, 54}

4.2 Influence of functional groups and surface roughness

NOM contains carboxyl, hydroxyl, and amino functional groups ⁵⁵⁻⁵⁷ and GO contains primarily epoxy, hydroxyl, and carboxyl functional groups (Fig. 2 and S13). ^{58, 59} NOM molecules have been reported to adsorb on GO via hydrogen bonds, Lewis acid-base, and π - π interactions (Fig. S13).⁵⁶ Hydroxyl functional groups of NOM can form hydrogen bonds with oxygen-containing functional groups of GO. ^{56, 60} On the other hand, lack of functional groups (Fig. 2) on MoS₂ will reduce the interactions of NOM, which was confirmed by the lower attachment of NOM with MoS₂ than GO. However, hydrophobic interactions between the foulants and the MoS₂ may be responsible for foulant deposition on MoS₂ surfaces (Fig. 7). ⁶¹ NOM has both hydrophilic and hydrophobic fractions and the hydrophobic humic substances constitute the major NOM fraction. 62 MoS₂ is hydrophobic in nature and can interact with the hydrophobic parts of the foulants. *E*. *coli* mainly attach to the material surfaces due to the extracellular polymeric substances (EPSs) from their outer surface. EPSs consisting of polysaccharides, proteins and other biopolymers also have functional groups like carboxyl, hydroxyl, amino functional groups on their structures (Fig. 7 & S13). Presence of these functional group help E. coli to bind with GO and MoS₂ functionalized surfaces (Fig. 7 & S13). Presence of functional groups in GO forms hydrogen bond with the lipopolysaccharides (LPS) of Gram-negative (E. coli) bacteria. 63, 64 Also, physisorbed bulk water on MoS₂ surfaces may form hydrogen bond with the -OH functional groups of polysaccharides.⁶⁴ Constituents of EPSs have different patches or domains that can be hydrophobic, hydrophilic, positively or negatively charged nature.^{65, 66} Complex structure of those proteins and polysaccharides favor the E. coli deposition on both material surfaces. However, deposition of *E. coli* on MoS₂ surface was significantly lower due to lack of functional groups.

Page 19 of 38

Environmental Science: Nano


In most cases, the foulants showed slightly less attachment to MoS₂ surfaces than to GO surfaces. However, additional mechanisms may also play a role in this difference in antifouling behavior. In particular, surface roughness is an important parameter to consider in any fouling study. The surface roughness of the PLL, GO on PLL and MoS₂ on PLL surfaces used in this study were measured to be 5.1 ± 1.2 nm, 2.5 ± 0.3 nm and 2.4 ± 0.3 nm, respectively. This indicates that the addition of GO and MoS₂ creates a smoother surface than the bare polymer surface. This higher roughness value may contribute to the higher fouling occurring on the bare polymer surface in addition to the contribution of the positive charges on polymer surface. Rough surfaces are more susceptible to fouling as foulants deposit in valleys, making it difficult to remove the foulants by hydrodynamic force. ^{67, 68} Both the GO and MoS₂ surfaces showed negligible differences in roughness, and thus the functional groups of GO are likely responsible for lower antifouling properties compared to MoS₂.

5. Conclusions

GO has been a research interest for preparing antifouling membranes and surface for long time. Overall, from this study, it was found that MoS₂ performs significantly better than GO under most of the fouling conditions investigated in this study. MoS₂ shows more potential for antifouling applications than GO due to lower interactions with foulants on MoS₂. Better antifouling property of MoS₂ could certainly take over GO for preparation of antifouling surfaces in near future. Ca²⁺ and Mg²⁺ can play a significant role in bridging with foulant molecules and GO and MoS₂ functionalized surfaces. Higher frequency shifts observed in QCM-D suggest that the presence of Ca²⁺ and Mg²⁺ in natural water results in higher deposition of foulants that may impede high water flux and thus the efficiency of the membrane during water filtration. Monovalent ions have less effect on the accumulation of foulants on the material surfaces.

2		
3 4	Additionally, E. coli showed deposition on both GO and MoS ₂ surfaces. E. coli also creates a	
5 6	398	softer layer on the material surfaces than NOM confirmed by the higher dissipation shift change
7 8	399	on QCM-D during <i>E. coli</i> deposition on GO and MoS ₂ surfaces. Results indicate that MoS ₂ may
9 10 11	400	be more suitable for antifouling surfaces and membrane applications.
12 13	401	Conflicts of interest
14 15	402	There are no conflicts to declare.
16 17	403	Acknowledgments
18 19	404	This work was supported by a New Faculty Award from Washington State University. This work
20 21 22	405	was also supported by the National Science Foundation and the Environmental Protection
23 24	406	Agency under Cooperative Agreement Number DBI-1266377.
25 26	407	Supporting Information Available
27 28	408	Additional figures and tables are available free of charge via the Internet at http://pubs.acs.org
29		
30		
31 32		
33		
34		
35		
36		
37		
38		
39 40		
41		
42		
43		
44		
45		
46		
47 48	409	
49		
50		
51	410	
52		
53	411	
54	411	
55		
56		
57		
58		19
59 60		
00		

13 disj	persions.				
		Average Zeta	Average	Average	PdI
	Sample name	Potential (mV)	Mobility	Size	
			(µmcm/Vs)	(d.nm)	
	GO in MQ water	-41.33±0.5	-3.24±0.04	385.3±7.58	0.49±0.05
	MoS ₂ in MQ	-40.34±0.76	-3.16±0.06	153.5±1.67	0.22±0.01
	water				
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					

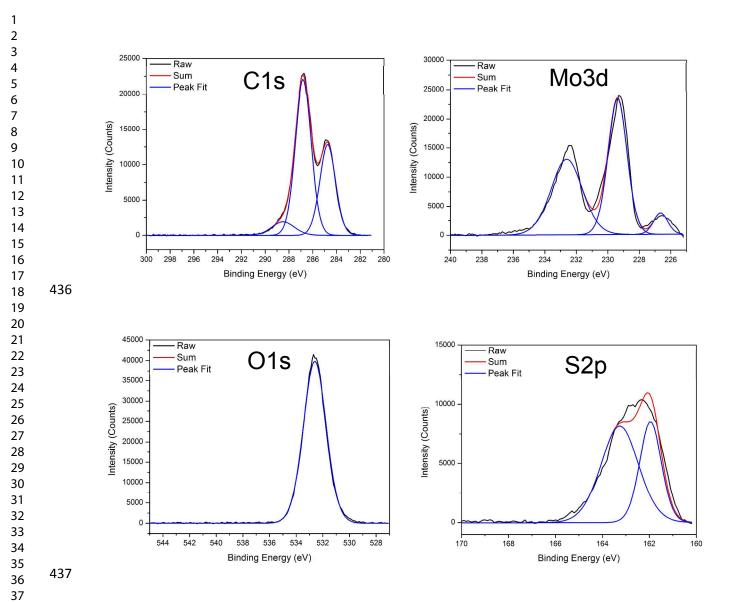


Figure 2: XPS spectra of GO and MoS₂. Three convoluted peaks corresponding to C-C (~284.8
eV), C-O (~286.8 eV) and O-C=O (288.5 eV) in GO C1s spectra confirms presence of oxygen
containing functional groups on GO structure. XPS spectra of MoS₂ did not show any indication
of oxidation. The characteristic 3 peaks in the Mo3d scan corresponding to the Mo3d 3/2 (~232.5
eV), Mo3d 5/2 (~229 eV) and S2s (~226.5 eV) and the characteristic doublet peak in the S2p
spectrum were found on XPS of MoS₂.

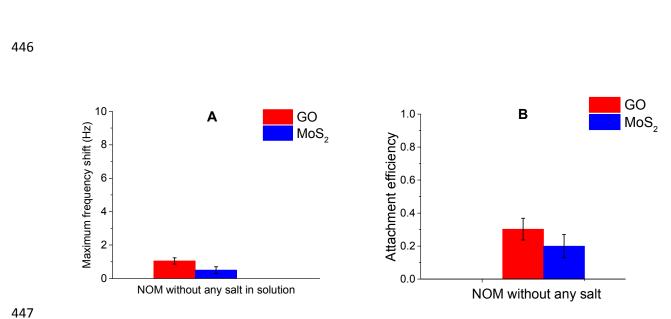


Figure 3. (A) Maximum frequency shift of GO and MoS₂ surfaces against NOM without any salts on QCM-D. MoS₂ showed the least NOM attachment on its surface. Error bars represent the standard deviation of the experimental results (98% confidence interval). (B) Attachment efficiency of NOM on both of the surfaces (93% confidence interval).

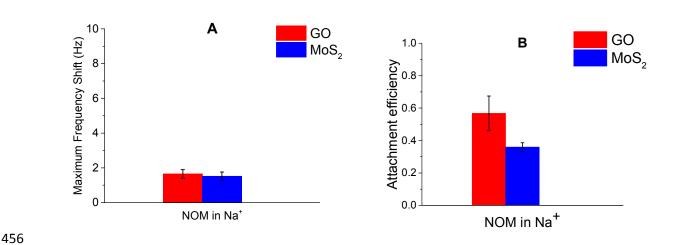


Figure 4. (A) Maximum frequency shift of GO and MoS₂ surfaces against NOM in presence of
10 mM NaCl on QCM-D. NOM in 10 mM NaCl showing slightly higher frequency shifts on
both the material surfaces indicated higher deposition compared to NOM with any salts. Error
bars represent the standard deviation of the experimental results conducted on different cells of
QCM-D (<90% confidence interval). (B) Attachment efficiency of NOM in 10 mM NaCl on GO
and MoS₂ (99% confidence interval).

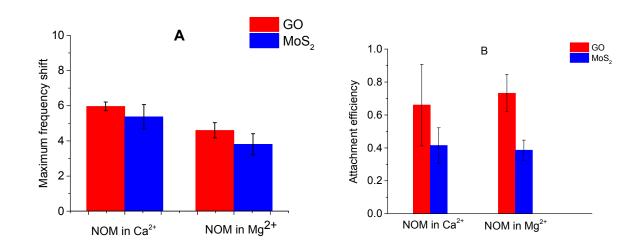


Figure 5. (A) Maximum frequency shift of GO and MoS₂ surfaces against NOM with the presence of 0.5 mM divalent cations on QCM-D (93% confidence interval for CaCl₂ & 99% confidence interval for MgCl₂). (B) Attachment efficiency of NOM in 0.5 mM CaCl₂ (<90% confidence interval) and 0.5 mM MgCl₂ (100% confidence interval)on both GO and MoS₂ surfaces. Higher frequency shift and attachment efficiency indicate higher and faster accumulation of NOM on the material surfaces in the presence of divalent ions.

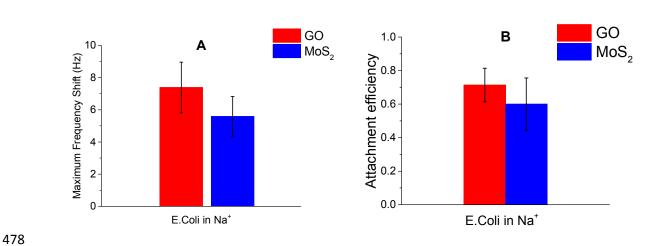
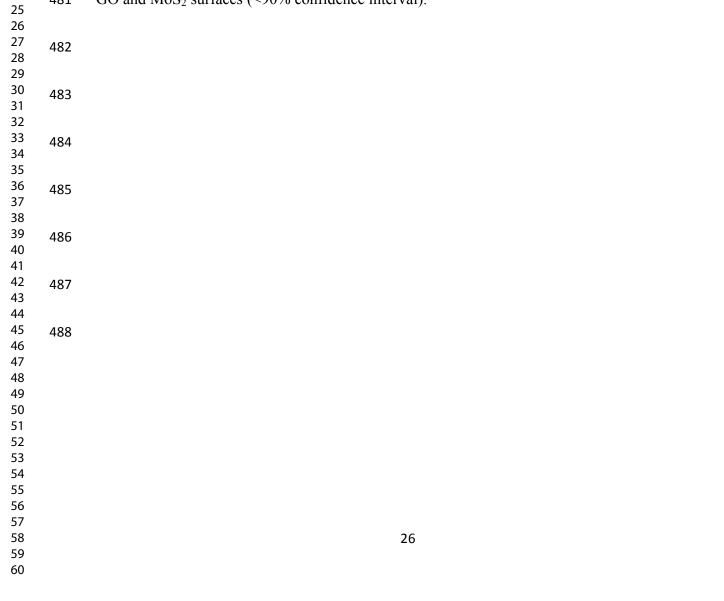
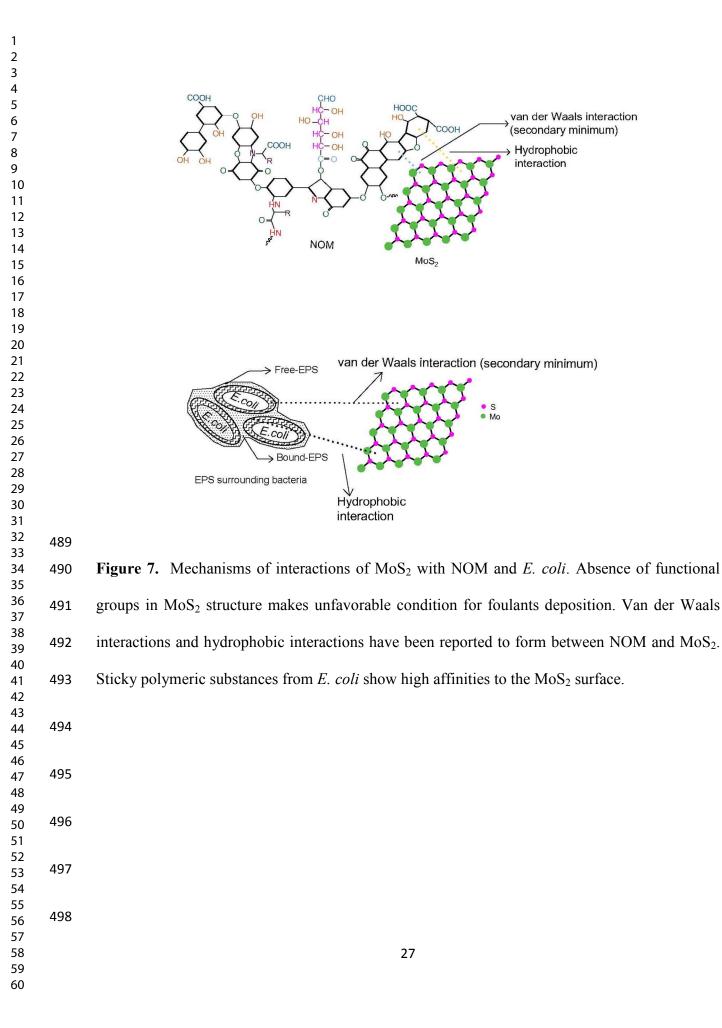




Figure 6. (A) Maximum frequency shift of *E. coli* in 10 mM NaCl on both GO and MoS₂
surfaces (90% confidence interval). (B) Attachment efficiency of *E. coli* in 10 mM NaCl on both
GO and MoS₂ surfaces (<90% confidence interval).

Y. Wu, M. Xu, X. Chen, S. Yang, H. Wu, J. Pan and X. Xiong, CTAB-assisted synthesis

of novel ultrathin MoSe 2 nanosheets perpendicular to graphene for the adsorption and

1			
2 3 4	499	Refe	erences
5 6 7	500	1.	Y.V
8 9	501		of n
10 11 12	502		phot
13 14	503	2.	M. I
15 16	504		Envi
17 18 19	505	3.	Z. C
20 21	506		and
22 23	507		com
24 25 26	508		2018
20 27 28	509	4.	J. C
29 30	510		broa
31 32 33	511		coni
33 34 35	512	5.	0. <i>I</i>
36 37	513		Aga
38 39	514	6.	S. K
40 41 42	515		surfa
43 44	516	7.	J. Le
45 46	517		Grap
47 48 49	518		prop
50 51	519	8.	D. 1
52 53	520		chen
54 55 56			
56 57			
58 59			

60

photodegradation of organic dyes under visible light, *Nanoscale*, 2016, **8**, 440-450. M. Hu and B. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environmental science & technology, 2013, 47, 3715-3723. Z. Cai, A. D. Dwivedi, W.-N. Lee, X. Zhao, W. Liu, M. Sillanpää, D. Zhao, C.-H. Huang and J. Fu, Application of nanotechnologies for removing pharmaceutically active compounds from water: development and future trends, Environmental Science: Nano, 2018, 5, 27-47. J. Chen, H. Peng, X. Wang, F. Shao, Z. Yuan and H. Han, Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation, Nanoscale, 2014, 6, 1879-1889. O. Akhavan and E. Ghaderi, Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria, ACS Nano, 2010, 4, 5731-5736. S. Krishnan, C. J. Weinman and C. K. Ober, Advances in polymers for anti-biofouling surfaces, Journal of Materials Chemistry, 2008, 18, 3405-3413. J. Lee, H.-R. Chae, Y. J. Won, K. Lee, C.-H. Lee, H. H. Lee, I.-C. Kim and J.-m. Lee, Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling

- ⁴⁷₄₈ 518 properties for wastewater treatment, *Journal of Membrane Science*, 2013, **448**, 223-230.
 - 519 8. D. Lembke, S. Bertolazzi and A. Kis, Single-layer MoS2 electronics, Accounts of chemical research, 2015, 48, 100-110.
 - 28

Environmental Science: Nano

2			
3 4	521	9.	Z. Wang and B. Mi, Environmental Applications of 2D Molybdenum Disulfide (MoS2)
5 6	522		Nanosheets, Environmental Science & Technology, 2017, 51, 8229-8244.
7 8 9 10 11 12 13	523	10.	T. I. Kim, B. Kwon, J. Yoon, IJ. Park, G. S. Bang, Y. Park, YS. Seo and SY. Choi,
	524		Antibacterial Activities of Graphene Oxide-Molybdenum Disulfide Nanocomposite
	525		Films, ACS Applied Materials & Interfaces, 2017, 9, 7908-7917.
14 15	526	11.	M. Chhowalla and G. A. J. Amaratunga, Thin films of fullerene-like MoS2 nanoparticles
16 17 18	527		with ultra-low friction and wear, Nature, 2000, 407, 164-167.
19 20	528	12.	Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nat.
21 22	529		Nanotechnol., 2012, 7, 699.
23 24 25	530	13.	M. Heiranian, A. B. Farimani and N. R. Aluru, Water desalination with a single-layer
25 26 27	531		MoS2 nanopore, Nat Commun, 2015, 6.
28 29 30 31 32 33 34	532	14.	K. R. Zodrow, E. Bar-Zeev, M. J. Giannetto and M. Elimelech, Biofouling and Microbial
	533		Communities in Membrane Distillation and Reverse Osmosis, Environmental Science &
	534		<i>Technology</i> , 2014, 48 , 13155-13164.
35 36	535	15.	Q. Li and M. Elimelech, Organic Fouling and Chemical Cleaning of Nanofiltration
37 38	536		Membranes: Measurements and Mechanisms, Environmental Science & Technology,
39 40 41	537		2004, 38 , 4683-4693.
41 42 43	538	16.	X. Zhu and M. Elimelech, Colloidal Fouling of Reverse Osmosis Membranes:
44 45 46 47 48 49 50	539		Measurements and Fouling Mechanisms, Environmental Science & Technology, 1997,
	540		31 , 3654-3662.
	541	17.	K. Listiarini, W. Chun, D. D. Sun and J. O. Leckie, Fouling mechanism and resistance
51 52	542		analyses of systems containing sodium alginate, calcium, alum and their combination in
53 54			
55 56 57			
58 59			29

60

1 2			
2 3 4	543		dead-end fouling of nanofiltration membranes, Journal of Membrane Science, 2009, 344,
5 6 7 8	544		244-251.
	545	18.	T. Nguyen, F. A. Roddick and L. Fan, Biofouling of water treatment membranes: a
9 10 11	546		review of the underlying causes, monitoring techniques and control measures,
12 13	547		Membranes, 2012, 2 , 804-840.
14 15	548	19.	A. Ruiz-García, N. Melián-Martel and I. Nuez, A Critical Review on Predicting Fouling
16 17 18	549		in RO Desalination, 2017.
19 20	550	20.	E. Almeida, T. C. Diamantino and O. de Sousa, Marine paints: the particular case of
21 22	551		antifouling paints, Progress in Organic Coatings, 2007, 59, 2-20.
23 24 25	552	21.	D. Crisp, The role of the biologist in antifouling research, RF Acker et al., Proc. of the
26 27	553		Third ICMCF, Northwestern University Press, Evanston, IL, 1973, 88.
28 29	554	22.	M. E. Callow and J. A. Callow, Marine biofouling: a sticky problem, <i>Biologist</i> , 2002, 49,
30 31 32	555		1-5.
33 34	556	23.	H. Zhang and M. Chiao, Anti-fouling Coatings of Poly(dimethylsiloxane) Devices for
35 36	557		Biological and Biomedical Applications, Journal of Medical and Biological Engineering,
37 38 39	558		2015, 35 , 143-155.
39 40 41	559	24.	J. Bohnert, T. Horbett, B. a. Ratner and F. Royce, Adsorption of proteins from artificial
42 43	560		tear solutions to contact lens materials, Investigative ophthalmology & visual science,
44 45	561		1988, 29 , 362-373.
46 47 48	562	25.	J. C. Crittenden, R. R. Trussell, D. W. Hand, K. J. Howe and G. Tchobanoglous, MWH's
49 50	563		Water Treatment: Principles and Design, Wiley, 2012.
51 52	564	26.	W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang and C. Fan, Graphene-Based
53 54 55 56	565		Antibacterial Paper, ACS Nano, 2010, 4, 4317-4323.
57 58			30

2			
3 4	566	27.	A. Adout, S. Kang, A. Asatekin, A. M. Mayes and M. Elimelech, Ultrafiltration
5 6	567		Membranes Incorporating Amphiphilic Comb Copolymer Additives Prevent Irreversible
7 8	568		Adhesion of Bacteria, Environmental Science & Technology, 2010, 44, 2406-2411.
9 10 11	569	28.	M. C. Duch, G. R. S. Budinger, Y. T. Liang, S. Soberanes, D. Urich, S. E. Chiarella, L.
12 13	570		A. Campochiaro, A. Gonzalez, N. S. Chandel, M. C. Hersam and G. M. Mutlu,
14 15	571		Minimizing Oxidation and Stable Nanoscale Dispersion Improves the Biocompatibility
16 17 18	572		of Graphene in the Lung, Nano Letters, 2011, 11, 5201-5207.
19 20	573	29.	I. Chowdhury, M. C. Duch, N. D. Mansukhani, M. C. Hersam and D. Bouchard,
21 22	574		Colloidal Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic
23 24 25	575		Environment, Environmental Science & Technology, 2013, 47, 6288-6296.
25 26 27	576	30.	J. D. Lanphere, C. J. Luth, L. M. Guiney, N. D. Mansukhani, M. C. Hersam and S. L.
28 29	577		Walker, Fate and Transport of Molybdenum Disulfide Nanomaterials in Sand Columns,
30 31 32	578		Environmental Engineering Science, 2015, 32, 163-173.
33 34	579	31.	WC. Hou, I. Chowdhury, D. G. Goodwin, W. M. Henderson, D. H. Fairbrother, D.
35 36	580		Bouchard and R. G. Zepp, Photochemical Transformation of Graphene Oxide in
37 38 30	581		Sunlight, Environmental Science & Technology, 2015, 49, 3435-3443.
39 40 41	582	32.	M. R. Esfahani, E. M. Languri and M. R. Nunna, Effect of particle size and viscosity on
42 43	583		thermal conductivity enhancement of graphene oxide nanofluid, International
44 45	584		Communications in Heat and Mass Transfer, 2016, 76, 308-315.
46 47 48	585	33.	M. Elimelech, J. Gregory, X. Jia and R. A. F. Williams, Particle Deposition and
49 50 51 52 53 54 55	586		Aggregation: Measurement, Modelling and Simulation, Elsevier Science, 2013.
56 57 58			31
55			JI JI

Page 33 of 38

1

2	
3 4	ļ
4 5	
6 7	ļ
8	ļ
9 10	I
11	
12	ļ
5 6 7 8 9 10 11 12 13 14 15 16 17	ļ
16 17	1
18 19	:
19 20	ļ
21 22	ļ
23	
24 25	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	ļ
28 20	ļ
30	
31 32	ļ
33 34	(
35	(
36 37 38	
38 39	(
40 41	(
42	(
43 44	
45 46	(
47	(
48 49	(
50 51	
52	(
53 54	(
55 56	
57 58	

59 60

- 587 34. D. Bouchard, X. Ma and C. Isaacson, Colloidal Properties of Aqueous Fullerenes:
 588 Isoelectric Points and Aggregation Kinetics of C60 and C60 Derivatives, *Environmental*589 *Science & Technology*, 2009, 43, 6597-6603.
- A. A. Taylor, I. Chowdhury, A. S. Gong, D. M. Cwiertny and S. L. Walker, Deposition
 and disinfection of Escherichia coli O157:H7 on naturally occurring photoactive
 materials in a parallel plate chamber, *Environmental Science: Processes & Impacts*,
 2014, 16, 194-202.
- 594 36. I. Chowdhury, M. C. Duch, N. D. Mansukhani, M. C. Hersam and D. Bouchard,
 595 Deposition and Release of Graphene Oxide Nanomaterials Using a Quartz Crystal
 596 Microbalance, *Environmental Science & Technology*, 2014, 48, 961-969.
- 597 37. K. L. Chen and M. Elimelech, Interaction of Fullerene (C60) Nanoparticles with Humic
 598 Acid and Alginate Coated Silica Surfaces: Measurements, Mechanisms, and
 599 Environmental Implications, *Environ. Sci. Technol.*, 2008, 42, 7607.
- ³³ 600 38. K. L. Chen and M. Elimelech, Aggregation and deposition kinetics of fullerene (C60)
 ³⁵ 601 nanoparticles, *Langmuir*, 2006, 22, 10994.
- GO2 39. I. Chowdhury, M. C. Duch, N. D. Mansukhani, M. C. Hersam and D. Bouchard,
 Interactions of Graphene Oxide Nanomaterials with Natural Organic Matter and Metal
 Oxide Surfaces, *Environmental Science & Technology*, 2014, 48, 9382-9390.
- 605 40. J. Buffle, K. J. Wilkinson, S. Stoll, M. Filella and J. Zhang, A generalized description of
 aquatic colloidal interactions: the three-colloidal component approach, *Environmental* 606 *Science & Technology*, 1998, **32**, 2887-2899.
 - 608 41. X. Chang and D. C. Bouchard, Multiwalled Carbon Nanotube Deposition on Model
 609 Environmental Surfaces, *Environmental Science & Technology*, 2013, 47, 10372-10380.

2			
3 4	610	42.	W. S. Ang and M. Elimelech, Protein (BSA) fouling of reverse osmosis membranes:
5 6	611		Implications for wastewater reclamation, Journal of Membrane Science, 2007, 296, 83-
7 8	612		92.
9 10 11	613	43.	A. C. Ribou, J. Vigo, P. Viallet and J. M. Salmon, Interaction of a protein, BSA, and a
12 13	614		fluorescent probe, Mag-Indo-1, influence of EDTA and calcium on the equilibrium,
14 15	615		Biophysical Chemistry, 1999, 81, 179-189.
16 17 18	616	44.	C. Poitras and N. Tufenkji, A QCM-D-based biosensor for E. coli O157:H7 highlighting
19 20	617		the relevance of the dissipation slope as a transduction signal, Biosens. Bioelectron.,
21 22	618		2009, 24 , 2137.
23 24 25	619	45.	T. J. Silhavy, D. Kahne and S. Walker, The Bacterial Cell Envelope, Cold Spring Harbor
25 26 27	620		Perspectives in Biology, 2010, 2, a000414.
28 29	621	46.	L. V. Evans, Biofilms: Recent Advances in their Study and Control, Taylor & Francis,
30 31 32	622		2003.
32 33 34	623	47.	GP. Sheng, HQ. Yu and XY. Li, Extracellular polymeric substances (EPS) of
35 36	624		microbial aggregates in biological wastewater treatment systems: A review,
37 38	625		Biotechnology Advances, 2010, 28, 882-894.
39 40 41	626	48.	K. Eboigbodin, J. Newton, A. Routh and C. Biggs, Bacterial quorum sensing and cell
42 43	627		surface electrokinetic properties, Applied microbiology and biotechnology, 2006, 73,
44 45	628		669-675.
46 47	629	49.	K. E. Eboigbodin and C. A. Biggs, Characterization of the Extracellular Polymeric
48 49 50	630		Substances Produced by Escherichia coli Using Infrared Spectroscopic, Proteomic, and
51 52	631		Aggregation Studies, Biomacromolecules, 2008, 9, 686-695.
53 54			
55 56			
57 58 59			33
60			

2	
3	632
4	
5	633
6 7	
7 8	634
9	034
10	635
11	055
12	626
13	636
14	
15	637
16	
17	638
18 10	
19 20	639
20 21	
22	640
23	
24	641
25	
26	642
27	0.12
28	643
29	045
30	C A A
31	644
32 33	-
34	645
35	
36	646
37	
38	647
39	
40	648
41	
42	649
43 44	
44	650
46	
47	651
48	
49	652
50	002
51	653
52	555
53 54	654
54 55	054
55 56	
50 57	
58	
59	

60

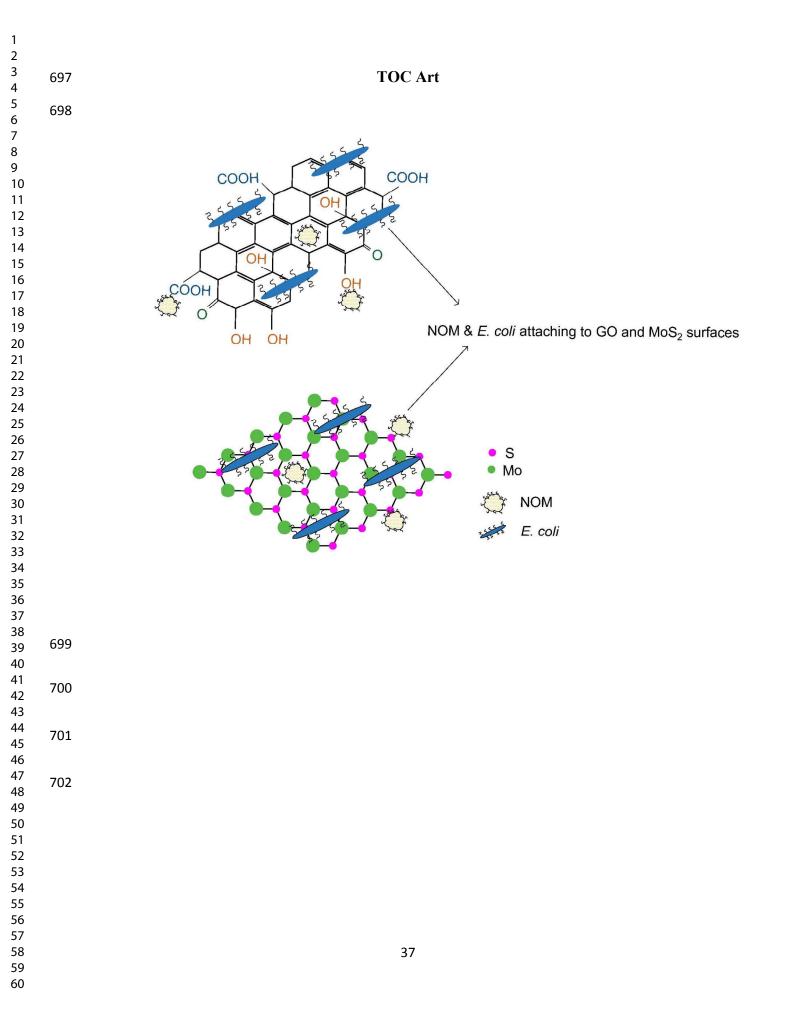
632 50. S. Hong and M. Elimelech, Chemical and physical aspects of natural organic matter
633 (NOM) fouling of nanofiltration membranes, *Journal of Membrane Science*, 1997, 132,
634 159-181.

- 635 51. M. Baalousha, M. Motelica-Heino and P. L. Coustumer, Conformation and size of humic
 636 substances: Effects of major cation concentration and type, pH, salinity, and residence
 637 time, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2006, 272, 48 638 55.
- 639 52. A. Ahmadi, O. Qanati, M. S. Seyed Dorraji, M. H. Rasoulifard and V. Vatanpour,
 640 Investigation of antifouling performance a novel nanofibrous S-PVDF/PVDF and S 641 PVDF/PVDF/GO membranes against negatively charged oily foulants, *Journal of Membrane Science*, 2017, **536**, 86-97.
- 643 53. D. H. Seo, S. Pineda, Y. C. Woo, M. Xie, A. T. Murdock, E. Y. M. Ang, Y. Jiao, M. J.
 644 Park, S. I. Lim, M. Lawn, F. F. Borghi, Z. J. Han, S. Gray, G. Millar, A. Du, H. K. Shon,
 645 T. Y. Ng and K. Ostrikov, Anti-fouling graphene-based membranes for effective water
 646 desalination, *Nature Communications*, 2018, 9, 683.
- 647 54. H. Yamamura, K. Kimura, T. Okajima, H. Tokumoto and Y. Watanabe, Affinity of
 648 Functional Groups for Membrane Surfaces: Implications for Physically Irreversible
 649 Fouling, *Environmental Science & Technology*, 2008, 42, 5310-5315.
- 650 55. R. Sutton and G. Sposito, Molecular Structure in Soil Humic Substances: The New
 View, *Environmental Science & Technology*, 2005, **39**, 9009-9015.
 - 56. T. Hartono, S. Wang, Q. Ma and Z. Zhu, Layer structured graphite oxide as a novel
 adsorbent for humic acid removal from aqueous solution, *Journal of Colloid and Interface Science*, 2009, 333, 114-119.
 - 34

Environmental Science: Nano

2	
2	
3	
4	
-T	
5	
6	
6 7	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
12 13 14 15 16 17	
18	
10	
19	
20	
20 21 22	
23	
24	
25	
25	
26	
27	
27	
28	
29	
30	
31	
31	
22	
33	
33	
34	
35	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59 60


1

- 57. M. Baalousha, M. Motelica-Heino and P. L. Coustumer, Conformation and size of humic
 substances: Effects of major cation concentration and type, pH, salinity, and residence
 time, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2006, 272, 4855.
- 659 58. W. Gao, L. B. Alemany, L. Ci and P. M. Ajayan, New insights into the structure and
 reduction of graphite oxide, *Nat Chem*, 2009, 1, 403-408.
- 661 59. D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, The chemistry of graphene
 662 oxide, *Chemical Society Reviews*, 2010, **39**, 228-240.
- 663 60. D. Chen, H. Feng and J. Li, Graphene Oxide: Preparation, Functionalization, and
 Electrochemical Applications, *Chemical Reviews*, 2012, **112**, 6027-6053.
- 665 61. X. Gao, X. Wang, X. Ouyang and C. Wen, Flexible superhydrophobic and
 666 superoleophilic MoS2 sponge for highly efficient oil-water separation, *Scientific reports*,
 30
 31 667 2016, 6, 27207.
- 668 62. Y. Penru, F. X. Simon, A. R. Guastalli, S. Esplugas, J. Llorens and S. Baig,
 669 Characterization of natural organic matter from Mediterranean coastal seawater, *Journal* 670 of water supply: Research and Technology-AQUA, 2013, 62, 42-51.
- 671 63. B. A. Jucker, H. Harms and A. J. B. Zehnder, Polymer interactions between five gram672 negative bacteria and glass investigated using LPS micelles and vesicles as model
 673 systems, *Colloids and Surfaces B: Biointerfaces*, 1998, 11, 33-45.
- 674 64. B. A. Jucker, H. Harms, S. J. Hug and A. J. B. Zehnder, Adsorption of bacterial surface
 675 polysaccharides on mineral oxides is mediated by hydrogen bonds, *Colloids and Surfaces*51 676 *B: Biointerfaces*, 1997, 9, 331-343.

Page 37 of 38

1 2	
2 3 4	677
5 6	678
7 8 9	679
9 10 11	680
12 13	681
14 15 16	682
16 17 18	683
19 20	684
21 22	685
23 24 25	686
26 27 28	687
29 30 31	688
32 33 34	689
35 36 37	690
38 39 40	691
41 42 43	692
44 45 46	693
47 48 49	694
50 51 52	695
53 54 55	696
56 57	
58 59 60	

7	65.	D. Asthagiri and A. M. Lenhoff, Influence of Structural Details in Modeling
3		Electrostatically Driven Protein Adsorption, Langmuir, 1997, 13, 6761-6768.
)	66.	A. Wittemann and M. Ballauff, Interaction of proteins with linear polyelectrolytes and
)		spherical polyelectrolyte brushes in aqueous solution, Physical Chemistry Chemical
L		<i>Physics</i> , 2006, 8 , 5269-5275.
2	67.	N. Shahkaramipour, T. N. Tran, S. Ramanan and H. Lin, Membranes with Surface-
3		Enhanced Antifouling Properties for Water Purification, Membranes, 2017, 7, 13.
ļ	68.	E. M. Vrijenhoek, S. Hong and M. Elimelech, Influence of membrane surface properties
5		on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes,
5		Journal of Membrane Science, 2001, 188 , 115-128.
7		
5		
)		
)		
1		
-		
2		
3		
ļ		
-		
)		
5		

