

Degradation of polyethylene glycols and polypropylene glycols in microcosms simulating a spill of produced water in shallow groundwater

Manuscript ID EM-ART-06-20 Article Type: Paper	018-000291.R1
Article Type: Paper	
Date Submitted by the Author: 31-Aug-2018	
Complete List of Authors: Rogers, Jessic Architectural E Thurman, E. M and Architectu Ferrer, Imma; Architectural E Rosenblum, Ja and Architectu Evans, Morgar Geodetic Engin Mouser, Paula Geodetic Engin Environmenta Ryan, Joseph; Architectural E	a; University of Colorado, Boulder, Civil, Environmental, and Engineering; S.S. Papadopulos & Associates, Inc., Aichael; University of Colorado Boulder, Civil, Environmental, aral Engineering University of Colorado Boulder, Civil, Environmental, and Engineering ames; University of Colorado Boulder, Civil, Environmental, aral Engineering b; The Ohio State University, Civil, Environmental, and neering ; The Ohio State University, Civil, Environmental, and neering; University of New Hampshire, Civil and I Engineering University of Colorado, Boulder, Civil, Environmental, and Engineering

SCHOLARONE[™] Manuscripts

1	
2	
3	Degradation of polyethylene glycols and polypropylene glycols in microcosms simulating a
4	snill of produced water in shallow groundwater
5	spin of produced water in shanow groundwater
6	Level D. D. Saml? F. Merkel Thomas I. Level Frankl. Level C. D. Sankland
7	Jessica D. Rogers ^{4,-} , E. Michael Inurman ² , Imma Ferrer ² , James S. Kosendium ² ,
8	Morgan V. Evans ³ , Paula J. Mouser ^{3,4} , and Joseph N. Kyan ¹
9	¹ Department of Civil, Environmental and Architectural Engineering
10	University of Colorado Boulder, Boulder, CO 80309
11	² S.S Papadopulos & Associates, Inc.; Boulder, CO 80303
12	³ Department of Civil, Environmental and Geodetic Engineering
13	The Ohio State University, Columbus, OH 43210
14	⁴ Department of Civil and Environmental Engineering
15	University of New Hampshire Durham NH 03824
10	University of New Hampsinic, Durnani, N11 03824
17	
19	* Corresponding author, phone: (303)492-0772; e-mail: joseph.ryan@colorado.edu
20	
21	
22	ENVIRONMENTAL SIGNIFICANCE STATEMENT
23	
24	Given the frequency of surface spills of produced fluids from unconventional oil and gas
25	
26	operations, there is a need to better characterize resulting groundwater contamination. Produced
27	operations, there is a need to better characterize resulting groundwater containmation. I rodaced
28	fluids are known have complex and variable chemical and microbial composition that could
29	nulus are known have complex and variable chemical and interoblat composition that could
30	
31	influence contaminant fate and transport in groundwater; however, studies on the behavior of
32	
33	compounds measured in produced water under environmentally-relevant conditions are limited.
34	
35	This study investigates degradation pathways and kinetics of the frequently-used ethoxylated
20 27	
38	surfactants polyethylene glycol and polypropylene glycol under conditions simulating a release
39	
40	to shallow groundwater of produced water from two hydraulically-fractured oil and gas wells at
41	to shahow groundwater of produced water from two hydraunearly fractured on and gas wens at
42	verying production times. These regults may be utilized to better characterize shallow
43	varying production times. These results may be utilized to better characterize shanow
44	
45	groundwater contamination following a release of produced water.
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
55 56	
57	
57	

Degradation of polyethylene glycols and polypropylene glycols in microcosms simulating a spill of produced water in shallow groundwater

Jessica D. Rogers^{1,2}, E. Michael Thurman¹, Imma Ferrer¹, James S. Rosenblum¹, Morgan V. Evans³, Paula J. Mouser^{3,4}, and Joseph N. Ryan^{1*}

> ¹ Department of Civil, Environmental and Architectural Engineering University of Colorado Boulder, Boulder, CO 80309

> > ² S.S. Papadopulos & Associates, Inc. Boulder, CO 80303

³ Department of Civil, Environmental and Geodetic Engineering The Ohio State University, Columbus, OH 43210

⁴ Department of Civil and Environmental Engineering University of New Hampshire, Durham, NH 03824

* Corresponding author, phone: (303)492-0772
e-mail: joseph.ryan@colorado.edu
address: 607 UCB, Boulder, CO 80303

	1	ABSTRACT
	2	Polyethylene glycols (PEG) and polypropylene glycols (PPG) are frequently used in
	3	hydraulic fracturing fluids and have been detected in water returning to the surface from
)	4	hydraulically-fractured oil and gas wells in multiple basins. We identified degradation pathways
<u>2</u> 3	5	and kinetics for PEGs and PPGs under conditions simulating a spill of produced water to shallow
4 5	6	groundwater. Sediment-groundwater microcosm experiments were conducted using four
ס 7 ג	7	produced water samples from two Denver-Julesburg Basin wells at early and late production.
))	8	High-resolution mass spectrometry was used to identify the formation of mono- and
1 2	9	di-carboxylated PEGs and mono-carboxylated PPGs, which are products of PEG and PPG
3 4 5	10	biodegradation, respectively. Under oxic conditions, first-order half-lives were more rapid for
5 7	11	PEG (<0.4-1.1 d) compared to PPG (2.5-14 d). PEG and PPG degradation corresponded to
3 Ə	12	increased relative abundance of primary alcohol dehydrogenase genes predicted from
) 	13	metagenome analysis of the 16S rRNA gene. Further degradation was not observed under
<u>2</u> 3 4	14	anoxic conditions. Our results provide insight to the differences between degradation rates and
5	15	pathways of PEGs and PPGs, which may be utilized to better characterize shallow groundwater
7 3 9	16	contamination following a release of produced water.

1	
2	
3	
4	
6	
7	
8	
9 10	
11	
12	
13	
14	
16	
17	
18	
19 20	
20	
22	
23	
24	
25	
27	
28	
29	
31	
32	
33	
34 35	
36	
37	
38	
39 40	
41	
42	
43	
44 45	
46	
47	
48	
49 50	
50	
52	
53	
54	
55 56	
57	
 0	

59 60 17

INTRODUCTION

The combined technologies of horizontal drilling and hydraulic fracturing have facilitated 18 rapid expansion of unconventional oil and gas development, raising a number of public concerns 19 including the introduction of chemicals used in hydraulic fracturing fluids to the environment.¹⁻³ 20 21 Hydraulic fracturing fluids are pumped into low-permeability hydrocarbon-bearing formations at 22 high pressures to enhance well production. A typical fracturing fluid is composed of about 90% water, 9% sand, and 0.5–3% chemical additives.⁴⁻⁶ Following well stimulation, the fracturing 23 fluids along with formation brines are co-produced with the hydrocarbons, referenced herein as 24 25 "produced water." Recent studies and advances in analytical methods have improved knowledge of the composition of produced water,⁷⁻⁹ which has been shown to vary between different wells, 26 formations, and production ages.⁸⁻¹¹ 27 28 Several studies have reported groundwater contamination linked to known or suspected

releases of oil- and gas-related fluids.¹²⁻¹⁴ In the Denver-Julesburg Basin in northeastern
Colorado, the number of reported surface spills that contaminated shallow groundwater with one
or more of benzene, toluene, ethylbenzene, and xylenes increased from about 60 to 100 spills
annually between 2007 and 2014.¹⁵ Produced water has been reported as one the most
frequently-released materials in most major United States unconventional resource plays.^{16, 17}
Given the frequency of accidental surface spills, there is a need to understand the natural
attenuation rates and pathways of organic constituents identified in the produced fluids.

Homologous series of polyethylene glycols (PEG) and polypropylene glycols (PPG) have
been detected in produced water from multiple basins.¹⁸⁻²² PEGs and PPGs are frequently
reported as constituents in fracturing fluid additives including surfactants, emulsifiers, and
crosslinkers.^{5, 6, 23} A recent study of the temporal evolution of produced water composition in the

2		
3 4	40	Denver-Julesburg Basin showed that PEGs and PPGs were present after 400 days of
5 6 7	41	production. ¹¹ PEGs and PPGs have been suggested as potential environmental tracers because
7 8 9	42	they have been frequently reported in produced water and are present from the injected fluids as
10 11	43	opposed to being natural constituents of the formation brines. ^{11, 19}
12 13	44	Recent studies have shown biodegradation to be an important removal mechanism for
14 15 16	45	some organic compounds identified in fracturing fluids and produced waters under
17 18	46	environmentally-relevant conditions. ²⁴⁻²⁸ PEGs have been reported as rapidly biodegraded under
19 20	47	aerobic conditions. ²⁸⁻³¹ While PPGs have also been found to be biodegradable under aerobic
21 22 23	48	conditions, ^{29, 31-33} they have been shown to be more persistent than PEGs. ^{29, 31} Under aerobic
23 24 25	49	conditions, both PEGs and PPGs are biotransformed through stepwise shortening of terminal
26 27	50	primary alcohol groups via alcohol and aldehyde dehydrogenase enzymatic pathways in
28 29 20	51	succession, producing carboxylated intermediates. ^{34, 35} Anaerobically, PEGs are biodegraded via
30 31 32	52	the diol dehydratase pathway, ³⁶ while PPGs have been shown to be more recalcitrant under
33 34	53	anoxic conditions. ³⁶⁻³⁸ Given their relatively hydrophilic nature, PEGs and PPGs are expected to
35 36	54	be fairly mobile in groundwater.
37 38 30	55	Our objective was to measure degradation pathways and kinetics for PEGs and PPGs
40 41	56	under conditions simulating a release of produced waters to shallow groundwater. Produced
42 43	57	water chemical and microbiological composition varies between different wells and production
44 45	58	ages; ^{10, 11} thus, sediment-groundwater microcosm experiments were conducted using four
46 47 48	59	produced water samples from two Denver-Julesburg Basin wells at early and late production.
49 50	60	High resolution mass spectrometry was complemented by analysis of microbial community
51 52	61	dynamics and predictive metagenomics analysis to investigate PEG and PPG degradation
53 54 55	62	pathways and kinetics.

63	METHODS
64	Produced water samples
65	Four produced water samples were collected from two horizontal wells (referenced as
66	wells "A" and "B") targeting the Niobrara Formation in the Denver-Julesburg Basin in Weld
67	County, Colorado. Both wells were hydraulically fractured with gel-based treatments (Tables S1
68	and S2). Samples were collected from each well at early and late production times. Early time
69	samples were collected 22 d after production began from well A ("A-22") and 14 d after
70	production began from well B ("B-14"). Late time samples were collected 611 d after
71	production began from well A ("A-611") and 161 d after production began from well B
72	("B-161"). All samples were collected from the gas/oil/water separator in pre-baked 4 L amber
73	glass jugs with no headspace, and stored at 4°C.
74	
75	Aquifer material and groundwater composition
76	Sediments were collected via hand auger between the depths of 0.9 m (depth of the water
77	table) and 2.5 m from an alluvial aquifer adjacent to the South Platte River in the
78	Denver-Julesburg Basin. The formation is characterized as unconsolidated, coarse-grain sand
79	and gravel with interbedded clays in some areas. ³⁹ Collected sediments were homogenized,
80	sieved through a 2 mm mesh, and stored saturated with native groundwater at 4°C (details in
81	Supporting Information). Sieved sediments were composed of well-graded sand, with an organic
82	carbon content of 0.37% w/w (Table S3).
83	During a release, spilled fluids mix with shallow groundwater; thus, the produced water
84	was diluted with a synthetic groundwater representative of Denver-Julesburg Basin surficial
85	aquifers with respect to major ions and pH (details in SI). The synthetic groundwater was

dominated by sodium and sulfate with a pH of 7.5 (Table S3). Dilution factors ranged from $7-12 \times$ and were determined by normalizing the initial benzene concentration in the microcosms to 1 mg L^{-1} , which was representative of groundwater concentrations measured immediately following surface spills of produced water in the Denver-Julesburg Basin (details on spills analysis provided in SI). **Microcosm experiments** Microcosm experiments were conducted using sacrificial sampling. Individual microcosms were constructed by diluting the produced water with synthetic groundwater $(7-12\times)$ and adding 100 mL of the mixture to 125 mL pre-baked borosilicate glass serum bottles with 25 g of saturated sediments (1:5 solids-to-liquids ratio). Abiotic control microcosms were prepared for each produced water by adding 5.0 g L^{-1} sodium azide to the synthetic groundwater (NaN₃, ≥99%, Amresco). For each produced water treatment, triplicates (biotic) or duplicates (abiotic controls) were sacrificed at every time point. The serum bottles were sealed with PTFE-lined septa with a 10% v/v regular atmosphere headspace, which allowed the microcosms to progress from initially oxic to more reducing conditions. Bottles were mixed continuously on an orbital shaker (100 rpm) in the dark at $21\pm1^{\circ}$ C. Microcosm samples were collected using sterile needles and glass syringes. Dissolved oxygen (DO) and pH were measured immediately using a luminescent dissolved oxygen probe (LDO101, Hach) and a pH electrode (PHC301, Hach). DO was considered depleted at 1.5 mg L⁻¹ due to the sampling procedure; it was not possible to eliminate all opportunities for

107 re-oxygenation of the sample. Samples for major anions and cations analysis were syringe-

108 filtered (0.2 μm, polyethersulfone membrane, Pall Corporation). Cation samples were preserved

2		
3 4	109	with 1% nitric acid and analyzed using inductively coupled plasma-optical emission
5 6	110	spectroscopy (model 3410+, Applied Research Laboratories). Anions were analyzed by ion
7 8	111	chromatography (model 4500I, Dionex). Suspended and attached adenosine triphosphate (ATP)
9 10 11	112	was measured using a luminescence assay and luminometer (PhotonMaster, LuminUltra).
12 13	113	Method details for ion and ATP analysis are provided in the SI. Total dissolved solids (TDS)
14 15 16 17 18 19 20	114	were analyzed using Standard Method 2540C. ⁴⁰ Samples collected for PEG and PPG analysis
	115	were filtered through surfactant-free syringe filters ¹⁸ (0.2 μ m, PTFE membrane, Pall
	116	Corporation) and stored at 4°C in 2 mL amber glass vials. Sediment samples from a subset of the
21 22	117	A-22 and A-611 (d 0, 1, 3, 21, 49, 86) and B-14 (d 0, 1, 4, 20, 47, 90) microcosms in addition to
23 24 25	118	samples of the aquifer sediments prior to exposure to the produced water were collected and
26 27	119	stored in 15 mL sterile, RNase- and DNase-free centrifuge tubes at -80°C for microbial
28 29	120	community analysis.
30 31 32	121	
32 33 34	122	PEG and PPG identification and analysis
35 36	123	Identification of PEGs, PPGs, and degradation products was conducted by accurate mass
37 38	124	analysis using ultra high-performance liquid chromatography quadrupole time-of-flight mass
39 40 41	125	spectrometry (UHPLC/qTOF-MS). ¹⁹ Analytes were separated using an UHPLC system
42 43	126	(Series 1290, Agilent Technologies) equipped with a reversed-phase C ₈ analytical column
44 45 46 47	127	(150 mm x 4.6 mm, 3.5 µm particle size; Zorbax Eclipse XDB-C8, Agilent Technologies),
	128	sample volume of 20 μ L, and mobile phases A and B of 0.1% formic acid in water and
49 50	129	acetonitrile, respectively, at a flow rate of 0.6 mL min ⁻¹ . The initial mobile phase composition
51 52	130	(10% B) was held constant for 5 min, followed by a linear gradient to 100% B after 30 min. A
53 54 55 56 57 58	131	10 min post-run time was used after each analysis. The UHPLC system was connected to a

2		
3 4 5 6 7 8 9 10 11 12 13 14 15	132	qTOF-MS (Model 6545, Agilent Technologies) operating in positive ion mode. Accurate mass
	133	spectra were recorded across 50-1000 m/z at 2GHz in full-spectrum mode, and data were
	134	processed with MassHunter software. MS-MS was used to identify selected compounds
	135	(isolation width of ~4 m/z and collision energies of 10, 20, and 40 eV). Analytical standards are
	136	only available for mixtures of PEG and PPG homologous and not individual compounds, and
	137	ionization efficiencies may not be the same for all homologues. ^{8, 11} Thus, concentrations in
16 17 18	138	day 0 microcosm samples were estimated from 1 mg L ⁻¹ PEG-400 and PPG-425 standards
19 20	139	(polydispersal mixtures of PEG and PPG with average molecular weights of 400 and 425,
21 22	140	respectively; Sigma-Aldrich), using the total response of all homologues. PEGs, PPGs, and
23 24 25	141	identified products were semi-quantified by comparing the integrated response of each
23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	142	homologue detected in the microcosm samples to the corresponding homologues measured in the
	143	day 0 microcosm sample.
	144	Following identification of PEGs, PPGs, and products by accurate mass analysis, high-
	145	performance liquid chromatography mass spectrometry (HPLC/MS) was used to semi-quantify
	146	PEG and PPG concentrations to estimate removal kinetics. Analytes were separated at 25°C
	147	using an HPLC system (Series 1100, Agilent Technologies) equipped with an analytical column
	148	as described above. The mobile phase composition was identical to the UHPLC/qTOF-MS
	149	method with a flow rate of 0.4 mL min ⁻¹ and an increased sample injection volume of 40 μ L.
	150	The HPLC system was connected to an ion trap MS (LC-MSD Trap XCT Plus, Agilent
46 47 48	151	Technologies) using electrospray ionization (ESI) operating in full-scan, positive ion mode (m/z
49 50	152	scan range 50-1000). Pseudo-first-order removal rate coefficients were estimated by linear
51 52	153	regression using OriginPro 2016 for the period of observed rapid removal (e.g., within the linear
53 54 55	154	range).
56		

155 DNA extraction, sequencing, and bioinformatics analysis

Total nucleic acids were extracted in replicate from 0.25 g of homogenized sediment slurry using the DNeasy PowerSoil Kit (Qiagen). Triplicate replicates were extracted for all A-22, A-611, and B-14 microcosm sediment samples except day 0 (extracted in singlet) and aquifer sediment samples (extracted in duplicate). Sediment samples from the B-161 microcosms were not analyzed for microbial community analysis. DNA was quantified and quality checked using a NanoDrop 2000 (Thermo Fisher Scientific), and the polymerase chain reaction (PCR) amplification of the appropriate sized template was checked prior to sequencing. Library prep and amplification of the V4 region of the 16S rRNA gene was performed at Argonne National Lab according to previously established protocol⁴¹ using primers 515F-806R. The 16S rRNA iTag sequence data were obtained by an Illumina MiSeq at Argonne National Lab. Sequences were processed using the QIIME 1.9.1 pipeline and Ohio Supercomputer^{42, 43} using closed reference operational taxonomic unit (OTU) picking against the GreenGenes database (v.13.8)⁴⁴ with BLASTn and QIIME parameters set at 97% similarity.⁴² An OTU table was generated using taxonomic assignments from BLAST⁴⁵ for all statistical analyses. Rarefaction curves were generated to evaluate sequencing depth (Fig. S1 and S2) and alpha diversity indices were generated in QIIME. After removal of singlets, the OTU table was submitted to the Galaxy portal of the Langille Lab (v.1.1.1) for PICRUSt analysis for predictive metagenome analysis from the 16S rRNA gene.⁴⁶ Gene abundances of primary alcohol dehydrogenase genes (PA-DH, KEGG Orthology identifier K00114)⁴⁷ and anaerobic diol dehydratase genes (pduC, K01699)³⁶ were normalized to copies of a housekeeping gene, recA (K03553), to account for fluctuations in the number of predicted metagenomes through time and genomes present but lacking functional genes of interest (Fig. S3).^{36, 48} PICRUSt has been

	-		
4	r	٦	
	L		
		-	
		,	

1		
2 3 4	178	shown to yield accurate predictions based on small numbers of 16S rRNA gene sequences across
5 6	179	a breadth of environmental systems. ⁴⁶ Statistical testing was performed using R (v.3.4.3). The
7 8 9	180	16S rRNA gene sequences were submitted to the NCBI database and are available under
9 10 11	181	BioProject ID PRJNA445449.
12 13	182	
14 15 16	183	RESULTS AND DISCUSSION
10 17 18	184	Microcosm water chemistry
19 20	185	The microcosms were initially oxic and progressed to more reducing conditions. The
21 22 22	186	oxic/anoxic transition was rapid for the A-22 and B-14 microcosms (3 and 4 d, respectively), and
23 24 25	187	slower for the A-611 and B-161 microcosms (21 and 28 d, respectively; Fig. 1). In all
26 27	188	biologically-active microcosms, oxygen and nitrate were simultaneously depleted; thus, the oxic
28 29	189	period consisted of mixed oxygen- and nitrate-reducing conditions (Figs. S4-S7). Following the
30 31 32	190	oxic/anoxic transition, the different microcosms progressed to more reducing conditions, with
33 34	191	final conditions ranging from mixed manganese- and iron-reducing (A-611 and B-161
35 36	192	microcosms) to sulfate-reducing (A-22 and B-14). In the abiotic control microcosms, dissolved
37 38 30	193	oxygen remained approximately saturated throughout the experiment, and no significant changes
39 40 41	194	were observed in the concentrations of any redox-active species (Figs. S4-S7). TDS
42 43	195	concentrations in the microcosms were relatively low (1,920-3,260 mg L^{-1} , Table S7). In all
44 45	196	microcosms, the pH quickly dropped from approximately 7.5 to 7.0, and subsequently remained
46 47 48	197	steady throughout the experiment (Fig. S8).
49 50	198	In all biotic microcosms, ATP production rapidly increased during the oxic period
51 52	199	(Fig. S9). Under oxic conditions, a sharp increase to 10^{10} - 10^{11} pg total ATP (suspended and
53 54 55 56 57 58 59 60	200	attached) occurred within the first 2 d for all waters. Following the oxic/anoxic transition, total

1 ว		
2 3 4	201	ATP in the A-22 and B-14 microcosms rapidly declined by two orders of magnitude, after which
5 6	202	ATP concentrations remained steady throughout the remainder of the experiment. In both the
7 8 9 10 11	203	A-611 and B-161 microcosms, the initial ATP peak was followed by a steady decline to
	204	approximately 10 ⁷ pg total ATP. For all produced water treatments, ATP concentrations in the
12 13	205	abiotic control microcosms were at least two orders of magnitude lower than in the
14 15	206	corresponding biotic microcosms. Rapid ATP production which corresponded to distinct redox
16 17 18	207	transitions indicate significant microbial activity in the biotic microcosms.
19 20	208	
21 22	209	Identification and transformation products
23 24	210	Polyethylene glycols (PEGs). PEGs were identified by accurate mass analysis. The
25 26 27 28 29 30 31	211	average measured mass difference between PEG homologues was 44.0262 u, which represents
	212	the addition of one ethylene oxide unit (-CH ₂ CH ₂ -O-). ¹⁹ Series of PEG homologues with three
	213	to fourteen ethylene oxide units were detected in all four produced water samples (Fig. 2;
32 33 34	214	Table S8).
34 35 36 37 38	215	The relative abundance of shorter chain PEGs was greater in the initial distribution of the
	216	PEG series detected in the A-22 day 0 microcosm relative to the B-14 day 0 microcosm
39 40	217	(Fig. 2a,c). The initial distribution of PEGs was nearly identical in A-22 and A-611 (Fig. 2a,b);
41 42 43	218	however, there was a shift towards shorter chains in B-161 compared to B-14 (Fig 2c,d). The
44 45	219	estimated total concentration of all PEG homologues in the A-22 day 0 microcosm was in the
46 47	220	mg L ⁻¹ range and was approximately an order of magnitude greater than the B-14 day 0
48 49 50	221	microcosm. Differences in initial PEG distributions and concentrations between the two wells
51 52	222	were likely due to varying fracturing fluid composition. The FracFocus Chemical Disclosure
53 54	223	Registry ⁴⁹ report for well A listed PEG as an ingredient. Well B's FracFocus report listed a
55 56 57		

59 60

proprietary "surfactant blend" and did not specifically report the use of PEGs (Tables S1 and S2). Downhole reactions could explain the distribution differences between the two production ages in well B. Based on hydrophobicity, sorption to the hydrocarbon formation would not be a significant downhole removal mechanism for the relatively short-chained PEGs returning to the surface.¹⁸ ATP concentrations indicated biological activity in the produced water collected from B-14 (8,010 pg L⁻¹ suspended ATP), while ATP concentrations were approximately 3 orders of magnitude lower in the A-22 produced water sample (10 pg L^{-1} suspended ATP). Thus, downhole biodegradation could have occurred in well B, but low biomass activity suggests that downhole biodegradation was unlikely in well A. Shifts to smaller homologues have been reported during PEG biodegradation,^{29, 30} which could explain the distribution differences between B-14 and B-161. After day 1 of the microcosm experiment, chromatographic peaks separated by 44.0262 u (one ethylene oxide group) were observed eluting approximately 0.5 min later than the detected PEGs (Fig. 3). The peak at 11.4 min had a measured mass of 460.2396 with companion adducts at m/z 465.1947 and 443.2126 (Fig. S10). Based on mass differences, the ions were identified as the ammonium, sodium, and proton adducts, respectively. Figure S10 also shows ions at m/z 487.1764 and 509.1582, which are 21.9815 and 43.9635 greater than the single sodium adduct, respectively. The mass difference equates to the addition of a sodium ion minus a proton, indicating the presence of double (m/z 487.1764) and triple (m/z 509.1582) sodium adducts. Accurate mass putatively identified a formula of $C_{18}H_{34}O_{12}Na^+$ (single sodium adduct) with a calculated exact mass of m/z 465.1942, which is within 1.1 ppm of the measured mass. The compound was putatively identified as a di-carboxylated PEG (PEG-diCOOH). The double and triple sodium adducts occur when one or both carboxyl groups, respectively, are in the form

of a sodium salt. MS-MS was conducted (details in S2.1; Fig. S11); however, a standard of the putative PEG-diCOOH product was not available, thus the identification remains unconfirmed. Mono-carboxylated PEGs (PEG-COOH) were also identified by accurate mass analysis (e.g., peak at 11.1 min apparent in Fig. 3b). Single carboxylated PEGs have been previously reported in produced waters.¹⁹ The small increase in retention time for the carboxylated products (Fig. 3b) can be explained by the slightly greater hydrophobicity of protonated PEG-COOH and PEG-diCOOH compared to the parent PEG in the acidic mobile phase in addition to increasing molecular weights (+14 u) of the carboxylated products. Thurman et al.^{18, 19} demonstrated via the Kendrick mass scale that for homologous series of ethoxylates it is only necessary to identify the structure of one homologue in the series, and that the remaining compounds represent the addition of ethylene oxide units. Thus, accurate-mass analysis presented for the di-carboxylated product of example homologue PEG-9 (Fig. S10) and the MS-MS analysis conducted for the example homologue PEG-6-diCOOH (e.g., Fig. S11) apply to the identification of all PEG homologues in the series. Both PEG-COOH and PEG-diCOOH with four to fourteen ethylene oxide units were detected in all of the microcosms (Table S8). PEG-COOH was detected in the day 0 microcosm samples with an integrated response

that was 4-22% of the corresponding PEG; however, PEG-diCOOH was not observed until after day 1 of the microcosm experiments (Fig. 3c). Both compounds are known PEG biodegradation intermediates under aerobic conditions.³⁴ In the presence of oxygen, PEGs are enzymatically altered through oxidation of the terminal primary alcohol group (Fig. 3d), followed by cleavage of the terminal ether bonds to produce a shorter-chained PEG with two fewer ethylene oxide units.^{34, 35} The detection of PEG-COOH in the day 0 microcosm sample suggests it may be present initially as an impurity in the industrial surfactant mixture used in the fracturing fluid or

Page 15 of 37

2		
3 4 5 6 7 8 9 10 11 12 13 14 15	270	formed under downhole conditions. ¹⁹ Nevertheless, the increasing response of PEG-COOH with
	271	time and the emergence of PEG-diCOOH (not present at day 0) in conjunction with the removal
	272	of the corresponding PEG provides strong evidence of further formation of the carboxylated
	273	products in the microcosms (Fig. 3). Mass spectrometry analysis was not conducted for abiotic
	274	control samples due to high sodium azide concentrations used to inhibit microbial activity; thus,
	275	information needed to distinguish abiotic and biotic removal mechanisms was not obtained.
16 17	276	Significant abiotic removal of PEGs has not been reported; ²⁸ therefore, PEG transformation and
10 19 20	277	removal observed in the microcosms was almost surely a result of biodegradation.
21 22	278	
23 24	279	Polypropylene glycols (PPGs). PPGs were also identified by accurate mass analysis. The
25 26 27	280	average measured mass difference between PPG homologues was 58.0419 u, which represents
28 29	281	the addition of one propylene oxide unit (-CH ₂ CH(CH ₃)-O-). ¹⁹ Series of PPG homologues
30 31 32 33 34 35 36 37 38	282	ranging from two to ten propylene oxide units were detected in all four produced water samples
	283	(Fig. 4; Table S9).
	284	There was greater relative abundance of shorter chain PPGs in the initial distribution of
	285	the PPG series present the A-22 day 0 microcosm compared to the B-14 day 0 microcosm
39 40	286	(Fig. 4a,c). The initial PPG distribution was shifted towards shorter chains in the A-611 and
41 42 43	287	B-161 microcosms (Fig. 4b,d) compared to A-22 and B-14, respectively. The estimated total
44 45	288	PPG concentration was in the range of hundreds of $\mu g L^{-1}$ and was approximately an order of
46 47	289	magnitude lower in the A-22 day 0 microcosm compared to B-14. The differences in initial PPG
48 49 50	290	distributions and concentrations between the two wells and production times could be due to
50 51 52	291	both varying fracturing fluid composition and downhole reactions including shale interactions.
53 54 55	292	FracFocus reports from both wells cited proprietary "surfactant blends," but PPG or blends of
56		

2		
3 4 5 6 7 8 9	293	ethoxylated surfactants were not specifically identified on either report. PPGs are more
	294	hydrophobic than PEGs; ¹¹ thus, sorption of longer-chained PPGs to the hydrocarbon formation
	295	or partitioning to the oil phase could contribute to the shift towards shorter-chained homologues
9 10 11	296	observed at later production times. Sorption of longer-chained PPGs could explain the similar
12 13	297	initial distributions observed in both the A-611 and B-161 day 0 microcosms.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 20	298	After day 1 of the microcosm experiment, chromatographic peaks separated by 58.0419 u
	299	(one propylene oxide group) were observed approximately 0.2 min after the detected PPGs.
	300	With the same approach used to identify PEG-diCOOH, sodium (m/z 403.2302), proton
	301	(m/z 381.2483), and ammonium (m/z 398.2749) adducts were measured for the peak from
	302	16.0-16.6 min (Fig. S12). Accurate mass putatively identified a formula of $C_{18}H_{36}O_8Na^+$
	303	(sodium adduct) with a calculated exact mass of m/z 403.2302, which was an exact match to the
	304	measured mass. The compound was putatively identified as a mono-carboxylated PPG
	305	(PPG-COOH). Analogous to the PEG carboxylates, a double sodium adduct indicated that the
	306	sodium salt of the carboxyl group was present, albeit at trace levels (m/z 425.2129; Fig. S12).
	307	MS-MS was conducted using PPG-7-COOH as an example homologue (details in S2.2;
	308	Fig. S13). The chromatograph of PPG-4 is shown in Figure 5 because numerous isomers are
39 40 41	309	discernable for relatively short-chained PPGs (see discussion below). PPG-COOH with three to
42 43	310	ten propylene oxide units were identified (Table S9).
44 45	311	PPG-COOH was not detected in the day 0 microcosms (Fig. 5). A similar aerobic
46 47 48	312	metabolic pathway as PEG has been reported for PPG: oxidation of a terminal alcohol (Fig. 5d)
49 50	313	followed by cleavage of the terminal ether bond to produce PPG with one fewer propylene oxide
51 52	314	unit. ³²⁻³⁴ The emergence of PPG-COOH corresponding with the removal of PPG demonstrates
53 54 55 56 57 58	315	that PPG-COOH was formed in the microcosms (Fig. 5). Significant abiotic removal of PPG has

Page 17 of 37

1

2		
3 4	316	not been reported; ^{33, 36} thus, the transformation and removal observed in the microcosms was
5 6	317	likely a result of biodegradation.
7 8	318	Multiple isomers were apparent for the PPG-COOH product. The number of isomers in
9 10 11	319	the parent PPG increases exponentially for each additional propylene oxide unit due to
12 13	320	non-symmetric hydroxyl groups on the monomer. ^{19, 33} For short-chained PPGs, individual
14 15	321	isomers are apparent in the chromatography as distinct peaks with varying intensities. For
16 17 18	322	instance, at least nine PPG-4 isomers can be discerned within the four readily-apparent peaks,
19 20	323	and at least five isomers were observed for the corresponding PPG-4-COOH (Fig. 5b). The
21 22 23	324	PPG-4-COOH isomer peaks had slightly different relative intensities compared to PPG-4, which
23 24	325	indicates that different isomers were transformed to varying extents. Variable transformation for
25 26 27 28 29 30 31 32 33 34 35 36 37 38	326	PPG isomers has been previously suggested. ^{33, 34}
	327	In contrast to PEG, only a singly-carboxylated PPG product was identified. This is likely
	328	caused by the presence of both primary and secondary terminal alcohols in PPG isomers
	329	resulting from the non-symmetric monomer. PEGs are symmetric homopolymers with two
	330	terminal primary alcohol groups, both of which can be oxidized to form PEG-diCOOH. For
	331	PPG, oxidation of the terminal secondary alcohol to a carboxyl is not expected. ⁵⁰ Thus, only
39 40 41	332	PPG isomers with a terminal primary hydroxyl can be degraded to PPG-COOH. The formation
42 43	333	of a ketone product from the terminal secondary hydroxyl has been reported; ³² however, we did
44 45	334	not observe a PPG-ketone product in our microcosm experiments.
46 47	335	
48 49 50	336	Degradation kinetics
51 52	337	Semi-quantitative analysis of PEG and PPG degradation was conducted using the
53 54	338	HPLC/MS method. PEG-9 and PPG-6 were selected as an example PEG and PPG homologues,
55 56 57		
57		
59		
60		

respectively, based on relative abundance in the microcosms (Figs. 2 and 4). Figure 6 shows the

י ר
2
3
4
5
6
7
8
0
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
20
24
25
26
27
28
29
30
31
27
32
33
34
35
36
37
38
30
10
40
41
42
43
44
45
46
Δ7
-T/ /0
40 40
49
50
51
52
53
54
55
55
50
57
58
59
60

1

339

340 relative response of PEG-9 and PPG-6 during the microcosm experiments, including both the 341 oxic (filled symbols) and anoxic (open symbols) periods. 342 Under mixed oxygen- and nitrate-reducing conditions, PEG-9 was rapidly removed in all 343 microcosms (Fig. 6a). First-order half-lives were similar between the four microcosms 344 (Table 1). In the A-22 and B-14 microcosms, the half-lives were 0.4 and 1.1 d, respectively. In 345 the A-611 and B-161 microcosms, PEG-9 was not detected by the day 1.5 sample; thus, the 346 half-life was reported as <0.4 d. Under oxic conditions, PPG-6 degradation was faster for water 347 collected at late production times ($t_{1/2} = 2.7$ and 2.5 d in A-611 and B-161 microcosms, 348 respectively) compared to early production times ($t_{1/2} = 7.5$ and 14 d in A-22 and B-14 349 microcosms; Table 1, Fig. 6b). Our measured rates were consistent with PEG and PPG 350 biodegradation rates reported under oxic conditions for similar initial concentrations and average molecular weights, by inoculum sources ranging from river water²⁹ to activated sludge.³⁰⁻³² 351 352 Notably, the produced water mixture did not significantly inhibit or enhance PEG and PPG 353 biodegradation compared to studies where these compounds were the only substrate. 354 Biodegradation inhibition in mixtures of fracturing fluid organic constituents at high concentrations representative of the injected fluids has been previously reported.^{26, 28} 355 356 Under oxic conditions, PPG degradation was both slower and more variable compared to

the degradation of PEG (Fig. 6). While the occurrence of PEG-diCOOH demonstrates that PEGs
can be degraded from both sides of the molecule, the mono-carboxylated PPG was the only PPG
product identified in the microcosms. Thus, PPG was only degraded where a terminal primary
hydroxyl was present and degradation was effectively blocked for isomers with terminal
secondary hydroxyls. This likely contributed to slower degradation kinetics of PPG compared to

Page 19 of 37

1		
2 3 4	362	that of PEG. Differences in initial PPG concentrations may have contributed to the variable PPG
5 6	363	degradation kinetics observed between microcosms because B-14 had both the highest estimated
7 8 9	364	initial PPG concentration and the slowest degradation. A recent study under anoxic conditions
10 11	365	suggested a concentration inhibitory effect on PPG biodegradation kinetics. ³⁶ In our study,
12 13	366	PPG-6 degradation was overall slower than PEG-9, but the relative succession of half-lives for
14 15 16	367	the different microcosms was the same for both compounds (B-14 >A-22 >A-611 \approx B-161),
17 18	368	which suggests that produced water composition also may have influenced degradation kinetics.
19 20	369	Similar ATP concentrations in all microcosms during the period corresponding to PEG and PPG
21 22 23	370	oxic degradation (10 ¹⁰ -10 ¹¹ pg total ATP, Fig. S9) suggest comparable levels of overall biomass
24 25	371	activity, and that a non-specific inhibitor such as a biocide likely did not affect the degradation
26 27	372	kinetics. Competitive inhibition from a more labile or preferred carbon source present in the
28 29 30	373	early-time produced water could have slowed the rate of PEG and PPG degradation relative to
31 32	374	the waters from later production times. This is consistent with the rapid depletion of dissolved
33 34	375	oxygen observed in the A-22 and B-14 microcosms compared to the A-611 and B-161
35 36 37	376	microcosms (Fig. 1), which could indicate more competition for available electron acceptors.
38 39	377	TDS concentrations greater than 10,000 mg L ⁻¹ can inhibit biological activity; ⁷ however, TDS
40 41	378	concentrations in the microcosms were below this threshold (1,920-3,260 mg L^{-1} , Table S7) and
42 43 44	379	likely did not inhibit degradation.
45 46	380	There was no evidence of further PEG or PPG degradation under anoxic conditions. In
47 48	381	the A-22 and B-14 microcosms, low levels of PEG-9 remained at the oxic/anoxic transition
49 50	382	(Fig. 6a), but no additional removal was observed. In the A-611 and B-161 microcosms, PEG-9

384 more complete removal. Anaerobic biodegradation of PEGs has been reported at temperatures

was not detected at the oxic/anoxic transition, likely because the longer oxic period allowed for

2		
3 4	385	\geq 35°C, ^{51, 52} so it is possible that either the anaerobic microbial community in the microcosms
5 6 7	386	was unable to degrade PEG, or the kinetics were slow enough under ambient temperatures that
7 8 9	387	no degradation was observed over the 84-86 d anoxic periods. Due to both different degradation
10 11	388	rates and lengths of the oxic period for the four microcosms, varying levels of PPG-6 remained
12 13	389	at the oxic/anoxic transition (Fig. 6b); however, no further removal was observed under anoxic
14 15 16	390	conditions in any microcosm. Our observations are in agreement with studies that have reported
17 18	391	PPG as recalcitrant under anaerobic conditions, particularly in the presence of microbial
19 20	392	communities which have not been previously exposed to glycols. ³⁶⁻³⁸
21 22 22	393	
23 24 25	394	Microbial community dynamics and abundance of primary alcohol dehydrogenase genes
26 27 28 29	395	Analysis of microbial community dynamics and function based on metagenomes
	396	predicted from the 16S rRNA gene provide further insight into the PEG and PPG biodegradation
30 31 32	397	pathway. After quality filtering and processing, 14,640-77,563 sequences per sample were
33 34	398	obtained (Table S10). One triplicate sample of B-14 day 4 yielded very low sequence counts
35 36	399	(3,010) and was not used in any analysis; therefore, the error bars associated with this sample
37 38 39	400	represent a range of duplicate values. Exposure to produced water greatly decreased the diversity
40 41	401	of sediment microbial communities: Shannon's diversity index was 10 in the aquifer sediments
42 43	402	prior to exposure to the produced water and dropped to 5-7 by day 3-4 of the microcosm
44 45 46	403	experiments. Similarly, microbial community richness decreased from over 3,500 OTUs in the
40 47 48	404	aquifer sediments to 1,300-2,700 OTUs in microcosm sediment samples in 1-4 days.
49 50	405	Using a bioinformatics approach (PICRUSt), we searched for genes known to catalyze
51 52	406	polyglycol chain shortening in metagenomes predicted from 16S rRNA gene sequences. While
53 54 55 56	407	specific PEG- and PPG-degrading enzymes have been proposed, ^{35, 53} they remain poorly
57		
58 59		
60		

Page 21 of 37

1		
2 3	408	characterized. Thus, primary alcohol dehydrogenase genes (PA-DH) were used as a proxy for
4 5		
6	409	polyglycol biotransformation under oxic conditions via terminal alcohol oxidation. PA-DH is
7 8 9	410	found in several taxonomic groups, including Pseudomonas, when grown on a wide variety of
10 11	411	alcohols and acts by oxidation of terminal primary hydroxyl groups. ⁵⁴
12 13	412	A sharp increase in the abundance of the PA-DH gene relative to the housekeeping gene
14 15 16	413	recA (PA-DH/recA) was observed during the first 1-3 days of the A-22, A-611, and B-14
17 18	414	microcosms (Fig. 7), which coincided with the period of rapid PEG and PPG removal (Fig. 6).
19 20	415	In the A-22 and B-14 microcosms, the relative abundance of PA-DH/recA initially spiked to
21 22 23	416	approximately 0.40 normalized gene copies, followed by a decrease to <0.25 . The relative
24 25	417	abundance of PA-DH/recA in the A-611 microcosms initially increased to 0.52 and remained
26 27	418	elevated for the duration of the microcosm experiment, which is consistent with faster removal
28 29 20	419	observed in the late-time compared to the early-time produced waters. The prolonged presence
30 31 32	420	of dissolved oxygen in A-611 microcosms compared to A-22 and B-14 (Fig. 1) also may have
33 34	421	enabled the persistence of microbial taxa capable of encoding PA-DH genes, which are repressed
35 36 27	422	under reducing conditions. Trace levels of the diol dehydratase gene <i>pduC</i> , associated with
37 38 39	423	polyglycol chain shortening under anaerobic conditions, ³⁶ were predicted in the microcosm
40 41	424	samples; however, <i>pduC</i> abundance was at least three orders of magnitude less than that of
42 43	425	PA-DH, which is consistent with the limited PEG and PPG removal observed after the
44 45 46	426	microcosms changed from oxic to anoxic conditions.
47 48	427	Pseudomonas became highly enriched in all of the microcosms through time, increasing
49 50	428	from 0.01% of the aquifer sediment community to 50-65% by day 3 and remaining between 20
51 52	429	and 50% of the terminal community in microcosm sediments (Fig. S14). Pseudomonas has been

- 430 identified in produced fluids as an important member of hydraulically-fractured shale

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	

1

communities⁵⁵⁻⁵⁷ and was enriched during biodegradation of synthetic hydraulic fracturing fluid 431 432 in soil-groundwater microcosms.²⁴ Many species of *Pseudomonas* have the enzymatic capacity to degrade PEGs; therefore, this taxa may contribute to PEG degradation in the microcosms.⁵⁸⁻⁶¹ 433 The genus Syntrophobotulus was also detected, a taxa notable for fermenting glyoxylate,⁶² a 434 proposed product of aerobic PEG chain shortening.³⁴ Genes participating in oxic and anoxic 435 436 transformations of glyoxylate were also predicted in the samples (K01638/EC2.3.3.9, 437 K00015/EC1.1.1.26), suggesting that mineralization of these products may have occurred in the 438 microcosms. 439 **Implications of PEG and PPG degradation in groundwater** 440 Collectively, the predicted presence of genes associated with enzymatic pathways for the 441 442 aerobic degradation of PEGs, PPGs, and their metabolites combined with the identification of mono- and di-carboxylated intermediate polyglycol products support the inference that PEG and

mono- and di-carboxylated intermediate polyglycol products support the inference that PEG and
PPG removal during the oxic phase was largely due to biodegradation. These results
demonstrate the role that aerobic sediment microorganisms are likely to play in degrading PEG
and PPG polymers, with implications for disruption of the natural microbial community (i.e.,
lower diversity and/or enrichment of key taxa) in the event of a release of produced water to
shallow groundwater.

Given the persistence observed in our microcosms under anoxic conditions, PEGs and
PPGs are more likely to be detected at sites where anoxic conditions prevail. The degradation
products identified in our microcosms could help characterize releases of produced water to
shallow groundwater even when the parent compounds have been largely transformed. The
PPG-COOH product was persistent under both oxic and anoxic conditions (Figs. 5c and S15).
Both carboxylated PEG products appeared to be persistent under anoxic conditions; however,

PEG-COOH and PEG-diCOOH emerged and were both subsequently degraded during the longer oxic periods in the A-611 and B-161 microcosms (Figs. 3c and S16). Thus, the PEG products may not be detected at sites with stable or prolonged oxic conditions. Produced water composition is heterogeneous between different wells, formations, and production ages,⁸⁻¹¹ which could result in variable detection or degradation kinetics of PEGs and PPGs. While the detection of PEGs and PPGs in the A-611 and B-161 samples demonstrates that these compounds may be present long after well stimulation, the lower concentrations require sensitive analytical methods to detect. We found that PPGs were more persistent in produced waters with higher initial concentrations. We observed rapid PEG removal at the low concentrations present in the produced water microcosms; however, half-lives reported for high PEG concentrations, representative of initial hydraulic fracturing fluid composition, were an order of magnitude longer.²⁸ Rosenblum et al.¹¹ showed that concentrations of PEGs and PPGs in Denver-Julesburg Basin produced water decreased approximately 50% within the first two weeks of production. Thus, PEGs and PPGs are more likely to be detected at sites with a release shortly after production begins due to both higher initial concentrations and potentially slower degradation rates. Given the frequency of accidental surface spills associated with unconventional oil and

Given the frequency of accidental surface spills associated with unconventional oil and
gas activities, there is a need to understand the natural attenuation rates and pathways of organic
constituents in the produced fluids. Our results demonstrate the differences between PEG and
PPG degradation rates and pathways. These insights may be utilized to better characterize
shallow groundwater contamination following a release of produced water.

52 476

1 2		
2 3 4	478	ASSOCIATED CONTENT
5 6	479	Supporting Information: Additional detail on methods; MS-MS for PEG-diCOOH and
7 8 9	480	PPG-COOH products; 10 tables and 16 figures detailing compound identification, redox and
10 11	481	ATP results, and microbial community analysis.
12 13	482	
14 15 16	483	AUTHOR INFORMATION
10 17 18	484	Corresponding Author: *E-mail: joseph.ryan@colorado.edu. Phone: (303)492-0772.
19 20	485	
21 22 23	486	CONFLICTS OF INTEREST
23 24 25	487	There are no conflicts of interest to declare.
26 27	488	
28 29 20	489	ACKNOWLEDGEMENTS
30 31 32	490	This research is supported by the AirWaterGas Sustainability Research Network funded by the
33 34	491	National Science Foundation (CBET-1240584) and the University of Colorado CEAE
35 36	492	Department Doctoral Assistantship for Completion of Dissertation. P.J.M. and M.V.E. were
37 38 39	493	partially supported by NSF CBET award no. 1823069. We thank Katherine Armstrong for
40 41	494	assistance with sampling, Dr. Fred Luiszer for assistance with ICP-OES and IC analysis, and
42 43	495	Dr. Jerry Zweigenbaum (Agilent Technologies) for support of our UHPLC/qTOF-MS
44 45 46	496	instrumentation. We also thank our industry collaborator for proving access and assistance with
47 48	497	produced water collection.
49 50	498	
51 52	499	
55 56 57 58 59 60	500	

\mathbf{a}	\mathbf{r}
1	ب
_	~

1		
2		
3 ⊿	501	REFERENCES
5		
6	502	(1) J. L. Adgate, B. D. Goldstein and L. M. McKenzie, Potential public health hazards,
7	503	exposures and health effects from unconventional natural gas development, Environmental
8	504	Science & Technology, 2014, 48 , 8307-8320.
9	505	(2) A. Vengosh, R. B. Jackson, N. Warner, T. H. Darrah and A. Kondash, A critical review of
10	506	the risks to water resources from unconventional shale gas development and hydraulic
11	507	fracturing in the United States, Environmental Science & Technology, 2014, 48, 8334-8348.
12	508	(3) R. D. Vidic, S. L. Brantley, J. M. Vandenbossche, D. Yoxtheimer and J. D. Abad, Impact of
14	509	shale gas development on regional water quality, Science, 2013, 340.
15	510	(4) W. T. Stringfellow, J. K. Domen, M. K. Camarillo, W. L. Sandelin and S. Borglin, Physical,
16	511	chemical, and biological characteristics of compounds used in hydraulic fracturing, Journal
17	512	of Hazardous Materials, 2014, 275 , 37-54.
18	513	(5) I. Ferrer and E. M. Thurman, Chemical constituents and analytical approaches for hydraulic
19 20	514	fracturing waters, Trends in Environmental Analytical Chemistry, 2015, 5, 18-25.
20 21	515	(6) M. Elsner and K. Hoelzer, Quantitative survey and structural classification of hydraulic
21	516	fracturing chemicals reported in unconventional gas production, Environmental Science &
23	517	Technology, 2016, 50 , 3290-3314.
24	518	(7) A. Butkovskyi, H. Bruning, S. A. E. Kools, H. H. M. Rijnaarts and A. P. Van Wezel, Organic
25	519	pollutants in shale gas flowback and produced waters: Identification, potential ecological
26	520	impact, and implications for treatment strategies, Environmental Science & Technology,
27	521	2017, 51 , 4740-4754.
28 20	522	(8) K. Oetjen, C. Danforth, M. C. McLaughlin, M. Nell, J. Blotevogel, D. E. Helbling, D.
29 30	523	Mueller and C. P. Higgins, Emerging analytical methods for the characterization and
31	524	quantification of organic contaminants in flowback and produced water, Trends in
32	525	Environmental Analytical Chemistry, 2017.
33	526	(9) J. L. Luek and M. Gonsior, Organic compounds in hydraulic fracturing fluids and
34	527	wastewaters: A review, Water Research, 2017, 123, 536-548.
35	528	(10) W. Orem, C. Tatu, M. Varonka, H. Lerch, A. Bates, M. Engle, L. Crosby and J. McIntosh,
30 37	529	Organic substances in produced and formation water from unconventional natural gas
38	530	extraction in coal and shale, International Journal of Coal Geology, 2014, 126 , 20-31.
39	531	(11) J. Rosenblum, E. M. Thurman, I. Ferrer, G. Aiken and K. G. Linden, Organic chemical
40	532	characterization and mass balance of a hydraulically fractured well: From fracturing fluid to
41	533	produced water over 405 days, Environmental Science & Technology, 2017, 51, 14006-
42	534	14015.
43	535	(12) B. D. Drollette, K. Hoelzer, N. R. Warner, T. H. Darrah, O. Karatum, M. P. O'Connor, R. K.
44 45	536	Nelson, L. A. Fernandez, C. M. Reddy, A. Vengosh, R. B. Jackson, M. Elsner and D. L.
46	537	Plata, Elevated levels of diesel range organic compounds in groundwater near Marcellus gas
47	538	operations are derived from surface activities, <i>Proceedings of the National Academy of</i>
48	539	Sciences of the United States of America, 2015, 112 , 13184-13189.
49	540	(13) S. A. Gross, H. J. Avens, A. M. Banducci, J. Sahmel, J. M. Panko and B. E. Tvermoes,
50	541	Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic
51	542	fracturing operations. Journal of the Air & Waste Management Association, 2013, 63, 424-
52 53	543	432.
54	544	
55		
56		
57		
58		
59		

2		
3	545	(14) G. T. Llewellyn, F. Dorman, J. L. Westland, D. Yoxtheimer, P. Grieve, T. Sowers, E.
4	546	Humston-Fulmer and S. L. Brantley, Evaluating a groundwater supply contamination
5	547	incident attributed to Marcellus Shale gas development, <i>Proceedings of the National</i>
0 7	548	Academy of Sciences of the United States of America, 2015, 112 , 6325-6330.
, 8	549	(15) K I Armstrong I D Rogers T L Burke and I N Ryan Characterization of accidental
9	550	spills and releases affecting groundwater in the Greater Wattenburg Area of the Denver.
10	550	Julashurg Dasin in northaastern Colorado. In SDE Health, Safety, Security, Environment, f
11	221	Social Bosnowsibility Conference, North America, Society of Detroloum Engineers, New
12	552	Orleans Lewisians, 18, 20 April 2017, 2017
13	553	Orieans, Louisiana, 18-20 April 2017, 2017.
14	554	(16) K. O. Maloney, S. Baruch-Mordo, L. A. Patterson, J. P. Nicot, S. A. Entrekin, J. E.
15	555	Fargione, J. M. Kiesecker, K. E. Konschnik, J. N. Ryan, A. M. Trainor, J. E. Saiers and H. J.
16	556	Wiseman, Unconventional oil and gas spills: Materials, volumes, and risks to surface waters
17	557	in four states of the US, Science of the Total Environment, 2017, 581, 369-377.
18	558	(17) S. Burden, M. A. Cluff, L. E. DeHaven, C. Roberts, S. L. Sharkley and A. Singer, Review of
19	559	State and Industry Spill Data: Characterization of Hydraulic Fracturing-Related Spills,
20 21	560	EPA/601/R-14/001, U.S. Environmental Protection Agency Office of Research and
27	561	Development: Washington, D.C., 2015.
23	562	(18) E. M. Thurman, I. Ferrer, J. Blotevogel and T. Borch, Analysis of hydraulic fracturing
24	563	flowback and produced waters using accurate mass: Identification of ethoxylated surfactants,
25	564	Analytical Chemistry, 2014, 86, 9653-9661.
26	565	(19) E. M. Thurman, I. Ferrer, J. Rosenblum, K. Linden and J. N. Ryan, Identification of
27	566	nolypropylene glycols and polyethylene glycol carboxylates in flowback and produced water
28	567	from hydraulic fracturing <i>Journal of Hazardous Materials</i> 2017 323 11-17
29	568	(20) V H He S I Flynn F I Folkerts V F Zhang D I Ruan D S Alessi I W Martin
30	500	(20) 1. II. He, S. L. Flylli, E. J. Folkerts, T. F. Zhang, D. L. Kuali, D. S. Alessi, J. W. Maltin and G. G. Goss, Chemical and toxicological characterizations of hydraulic fracturing
31 22	509	flowbook on d module d water. Water Deservel, 2017, 114 , 78, 97
52 33	570	Howback and produced water, water Research, 2017, 114, 78-87.
34	5/1	(21) K. Oetjen, K. E. Chan, K. Gulmark, J. H. Christensen, J. Blotevogel, I. Borch, J. R. Spear,
35	5/2	T. Y. Cath and C. P. Higgins, Temporal characterization and statistical analysis of flowback
36	573	and produced waters and their potential for reuse, <i>Science of the Total Environment</i> , 2018,
37	574	619-620 , 654-664.
38	575	(22) M. Nell and D. E. Helbling, Exploring matrix effects and quantifying organic additives in
39	576	hydraulic fracturing associated fluids using liquid chromatography electrospray ionization
40	577	mass spectrometry, Environmental Science: Processes & Impacts, 2018, DOI:
41	578	10.1039/C8EM00135A.
42	579	(23) J. D. Rogers, T. L. Burke, S. G. Osborn and J. N. Ryan, A framework for identifying
43 11	580	organic compounds of concern in hydraulic fracturing fluids based on their mobility and
44 45	581	persistence in groundwater, Environmental Science & Technology Letters, 2015, 2, 158-164.
46	582	(24) P. J. Mouser, S. Liu, M. A. Cluff, M. McHugh, J. J. Lenhart and J. D. MacRae, Redox
47	583	conditions alter biodegradation rates and microbial community dynamics of hydraulic
48	584	fracturing fluid organic additives in soil-groundwater microcosms. <i>Environmental</i>
49	585	Fngineering Science 2016 33
50	586	(25) D Kekacs B D Drollette M Brooker D L Plata and P I Mouser Aerobic
51	500	hisdogradation of organic compounds in hydroulis fracturing fluids. <i>Biodegradation</i> 2015
52	201	76 271 287
53	200	20, 2/1-20/.
54 55	282	
55 56		
57		
58		
59		

 (26) J. D. Rogers, I. Ferrer, S. S. Tummings, A. Bielefeldt and J. N. Ryan. Inhibition of biodegradation of hydraulic fracturing compounds by glutaraldehyde: Groundwater column and microcosm experiments, <i>Environmental Science and Technology</i>, 2017, 51, 10251- 10261. (27) L. C. Strong, T. Gould, L. Kasinkas, M. J. Sadowsky, A. Aksan and L. P. Wackett, Biodegradation in waters from hydraulic fracturing: Chemistry, microbiology, and engineering. <i>Journal of Environmental Engineering</i>, 2014, 140. (28) M. C. McLaughlin, T. Borch and J. Blotevogel, Spills of hydraulic fracturing chemicals on agricultural topsoil: Biodegradation, sorption, and co-contaminant interactions, <i>Environmental Science & Technology</i>, 2016, 50, 6071-6078. (29) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska and Z. Lukaszewski, Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s, <i>Chemosphere</i>, 2006, 64, 803-809. (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water Research</i>, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger. The relationship between the chemical structure of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water Research</i>, 2008, 44, 4791-4801. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) J. F. Kawaj, Microbia	1		
 (26) J. D. Rogers, I. Ferrer, S. S. Tummings, A. Bielefeldt and J. N. Ryan, Inhibition of biodegradation of hydraulic fracturing compounds by glutaraldehyde: Groundwater column and microcosm experiments, <i>Environmental Science and Technology</i>, 2017, 51, 10251- 10261. (27) L. C. Strong, T. Gould, L. Kasinkas, M. J. Sadowsky, A. Aksan and L. P. Wackett, Biodegradation in waters from hydraulic fracturing: Chemistry, microbiology, and engineering. <i>Journal of Environmental Engineering</i>, 2014, 140. (28) M. C. McLaughlin, T. Borch and J. Blotevogel, Spills of hydraulic fracturing chemicals on agricultural topsoil. Biodegradation, sorption, and co-contaminant interactions, <i>Environmental Science & Technology</i>, 2016, 50, 6071-6078. (29) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska and Z. Lukaszewski, Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s, <i>Chemosphere</i>, 2006, 64, 803-809. (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water Research</i>, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal of Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. L Banton and C. Graham, Biodegradability relationships among propyleng glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial de	1 2		
 (26) I. D. Rögers, I. Perfer, S. Z. Jimmings, A. Bieteleful and J. N. Kyan, Immond of biodegradation of hydraulic fracturing compounds by glutaraldehyde: Groundwater column and microcosm experiments, <i>Environmental Science and Technology</i>, 2017, 51, 10251-10261. (27) L. C. Strong, T. Gould, L. Kasinkas, M. J. Sadowsky, A. Aksan and L. P. Wackett, Biodegradation in waters from hydraulic fracturing: Chemistry, microbiology, and engineering. <i>Journal of Environmental Engineering</i>, 2014, 140. (28) M. C. McLaughlin, T. Borch and J. Blotevogel, Spills of hydraulic fracturing chemicals on agricultural topsoil: Biodegradation, sorption, and co-contaminant interactions, <i>Environmental Lopsoil</i>. Biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s, <i>Chemosphere</i>, 2006, 64, 803-809. (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of poly(ethylene glycol)s of different molecular weights in wastewater and seawater, <i>Water Research</i>, 2008, 64, 803-809. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal of Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradability clasts, <i>Environmental Science & Technology</i>, 2017, 51, 1	2	F00	(26) I. D. Dogara, J. Former, S. S. Turnenings, A. Dielefeldt and I. N. Duon, Inhibition of
 biologeradation of hydraulic fracturing compounds by gutaradehyde: Grounowater Column and microsom experiments, <i>Environmental Science and Technology</i>, 2017, S1, 10251- 10261. (27) L. C. Strong, T. Gould, L. Kasinkas, M. J. Sadowsky, A. Aksan and L. P. Wackett, Biodegradation in waters from hydraulic fracturing: Chemistry, microbiology, and engineering, <i>Journal of Environmental Engineering</i>, 2014, 140. (28) M. C. McLaughlin, T. Borch and J. Bloetvogel, Spills of hydraulic fracturing chemicals on agricultural topsoil: Biodegradation, sorption, and co-contaminant interactions, <i>Environmental Science & Technology</i>, 2016, 50, 6071-6078. (29) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzusk and Z. Lukaszewski, Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s, <i>Chemosphere</i>, 2006, 64, 803-809. (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water Research</i>, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycols and their aerobic biodegradation for poly(ethylene glycols) and their acrobic biodegradatibility in an aqueous environment, <i>Journal of Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol))s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 802-871. (34) F. Kawai, Microbial degr	4	590	(20) J. D. Rogers, I. Ferrer, S. S. Tummings, A. Bieleieldt and J. N. Ryan, innibition of
 and microcosm experiments, <i>Environmental Science and Technology</i>, 2017, 51, 10251-10261. C. Strong, T. Gould, L. Kasinkas, M. J. Sadowsky, A. Aksan and L. P. Wackett, Biodegradation in waters from hydraulic fracturing: Chemistry, microbiology, and engineering, <i>Journal of Environmental Engineering</i>, 2014, 140. (28) M. C. McLaughlin, T. Borch and J. Blotevogel, Spills of hydraulic fracturing chemicals on agricultural topsoil: Biodegradation, sorption, and co-contaminant interactions, <i>Environmental Science & Technology</i>, 2016, 50, 6071-6078. (29) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska and Z. Lukaszewski, Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s, <i>Chemosphere</i>, 2006, 64, 803-809. (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water Research</i>, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal of Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, I. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. V. Evans, J. J. Lenhart, J. Wrigh, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2010, 29, 84-100. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental <i>Microbiology</i>, 1988, 54, 561-565. (36) K. M. Heyoh, J. Blotevogel,	5	591	biodegradation of hydraulic fracturing compounds by glutaraldenyde: Groundwater column
 7 593 [1021]. 7 593 [7] L. C. Strong, T. Gould, L. Kasinkas, M. J. Sadowsky, A. Aksan and L. P. Wackett, Biodegradation in waters from hydraulic fracturing: Chemistry, microbiology, and engineering, Journal of Environmental Engineering, 2014, 140. 7 693 [20] M. C. McLaughlin, T. Borch and J. Blotevogel, Spills of hydraulic fracturing chemicals on agricultural topsoli: Biodegradation, sorption, and co-contaminant interactions, Environmental Science & Technology, 2016, 50, 6071-6078. 7 99 [20] A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska and Z. Lukaszewski, Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s, <i>Chemosphere</i>, 2006, 64, 803-809. 7 000 [30] M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water Research</i>, 2008, 42, 4791-4801. 7 11 E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal of Polymers and the Environment</i>, 2013, 21, 172-180. 7 (20) [20] A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. 7 (3) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. 7 (3) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. 7 F. Kawai, Microbial degradation of polyethylene glycol by anaerobic bacteria, <i>Desulpatialial on of Biolyethyleng gl</i>	6	592	and microcosm experiments, <i>Environmental Science and Technology</i> , 2017, 51 , 10251-
 594 (2) L. C. Strong, T. Gould, L. Kasınkas, M. J. Sadowsky, A. Aksan and L. P. Wackett, Biodegradation in waters from hydraulic fracturing: Chemistry, microbiology, and engineering, <i>Journal of Environmental Engineering</i>, 2014, 140. (28) M. C. McLaughin, T. Borch and J. Blotevogel, Spills of hydraulic fracturing chemicals on agricultural topsoil: Biodegradation, sorption, and co-contaminant interactions, <i>Environmental Science & Technology</i>, 2016, 50, 6071-6078. (29) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska and Z. Lukaszewski, Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s, <i>Chemosphere</i>, 2006, 64, 803-809. (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water Research</i>, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycols) and their aerobic biodegradability in an aqueous environment, <i>Journal of Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, and Seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of sy	7	593	
 Biodegradation in waters from hydraulic fracturing: Chemistry, microbiology, and engineering. <i>Journal of Environmental Engineering</i>, 2014, 140. (28) M. C. McLaughlin, T. Borch and J. Blotevogel, Spills of hydraulic fracturing chemicals on agricultural topsoil: Biodegradation, sorption, and co-contaminant interactions, <i>Environmental Science & Technology</i>, 2016, 50, 6071-6078. (29) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska and Z. Lukaszewski, Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s, <i>Chemosphere</i>, 2006, 64, 803-809. (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water Research</i>, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal of Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(ropylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, <i>26</i>, 862-871. (34) F. Kawai, Microbial degradation of polytemy groups. <i>Trends in Analytical Chemistry</i>, 2010, <i>29</i>, 84-100. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. <i>Trends in Analytical Chemistry</i>, 2010, <i>29</i>, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Bro	8	594	(27) L. C. Strong, T. Gould, L. Kasinkas, M. J. Sadowsky, A. Aksan and L. P. Wackett,
 engineering. Journal of Environmental Engineering, 2014, 140. (28) M. C. McLanghlin, T. Borch and J. Blotevogel, Spills of hydraulic fracturing chemicals on agricultural topsoil: Biodegradation, sorption, and co-contaminant interactions, <i>Environmental Science & Technology</i>, 2016, 50, 6071-6078. (29) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska and Z. Lukaszewski, Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s, <i>Chemosphere</i>, 2006, 64, 803-809. (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water Research</i>, 2008, 42, 4791-4801. (31) E. Berna, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal of Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECC screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polythers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2007, 201, 51, 3985-13994. (35) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J.	9	595	Biodegradation in waters from hydraulic fracturing: Chemistry, microbiology, and
 (28) M. C. McLaughlin, T. Borch and J. Blotevogel, Spills of hydraulic fracturing chemicals on agricultural topsoil: Biodegradation, sorption, and co-contaminant interactions, <i>Environmental Science & Technology</i>, 2016, 50, 6071-6078. (29) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska and Z. Lukaszewski, Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s, <i>Chemosphere</i>, 2006, 64, 803-809. (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water Research</i>, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycols) and their aerobic biodegradability in an aqueous environment, <i>Journal of Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polytertres, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2007, 26, 375-3794. (36) K. M. Heyoh, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendelha, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydr	10 11	596	engineering, Journal of Environmental Engineering, 2014, 140.
 agricultural topsoli: Biodegradation, sorption, and co-contaminant interactions, <i>Environmental Science & Technology</i>, 2016, 50, 6071-6078. (29) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska and Z. Lukaszewski, Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s, <i>Chemosphere</i>, 2006, 64, 803-809. (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water Research</i>, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal of Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation and by pure cultures of homoacetogenic and prolyethylene-glyc	17	597	(28) M. C. McLaughlin, T. Borch and J. Blotevogel, Spills of hydraulic fracturing chemicals on
 Environmental Science & Technology, 2016, 50, 6071-6078. (29) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska and Z. Lukaszewski, Comparison of biodegradation of polyethylene glycol)s and poly(propylene glycol)s, Chemosphere, 2006, 64, 803-809. (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, Water Research, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, Journal of Polymers and the Environment, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(orpoylene glycol)s under the conditions of the OECD screening test, Chemosphere, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, Environmental Toxicology and Chemistry, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, Appled Microbiology and Biotechnology, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, Trends in Analytical Chemistry, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, Environmental Science & Technology, 2017, 51, 13985-13994. (37) S. Wagener and J. M. Tiedje, Metabolism of polyethylene glycol by	13	598	agricultural topsoil: Biodegradation, sorption, and co-contaminant interactions,
 (29) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska and Z. Lukaszewski, Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s, <i>Chemosphere</i>, 2006, 64, 803-809. (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water Research</i>, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal of Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of polytopylene glycol)s under the conditions of the OECD screening test. <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- substances in the organization for conomic 30, 30, 38. (34) F. Kawai, Microbial degradation of polytheryptened <i>Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of noninic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of noninic surfactants and polyethylene-glycot by enrichment cultures and by pure cultures of homoacce	14	599	Environmental Science & Technology, 2016, 50, 6071-6078.
 of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s, <i>Chemosphere</i>, 2006, 64, 803-809. (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water Research</i>, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal of Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyoh, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacter	15	600	(29) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska and Z. Lukaszewski, Comparison
 2006, 64, 803-809. (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water</i> <i>Research</i>, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal</i> <i>of Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, <i>67</i>, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Biotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (37)	16	601	of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s, Chemosphere,
 (30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water</i> <i>Research</i>, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal</i> of <i>Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental</i> <i>Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental</i> <i>Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-555. (37) S. S. Paschke, ed, <i>Groundwat</i>	17	602	2006, 64 , 803-809.
 polyethylene glycols of different molecular weights in wastewater and seawater, <i>Water</i> <i>Research</i>, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal</i> of <i>Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental</i> <i>Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoaccetogenic and professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wa</i>	18	603	(30) M. Bernhard, J. P. Eubeler, S. Zok and T. P. Knepper, Aerobic biodegradation of
 Research, 2008, 42, 4791-4801. (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal</i> of Polymers and the Environment, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental</i> <i>Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyeinylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (37) S. Nagener and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1986, 52, 852-856. (39) S	19	604	polyethylene glycols of different molecular weights in wastewater and seawater, Water
 (31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal</i> <i>of Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental</i> <i>Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental</i> <i>Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental</i> <i>Microbiology</i>, 1986, 52, 822-856. (35) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer S</i>	20	605	Research, 2008, 42 , 4791-4801.
 for poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, <i>Journal of Polymers and the Environment</i>, 2013, 21, 172-180. (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (39) S. P. Bxulfovibrio Desulfuricans and a Bacteroides sp. Applied and Environmental <i>Microbiology</i>, 1986, 52, 852-856. (31) S. Paschke, ed, Groumdwater Availability of the Denver Basin Aquifer System, Colorado, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water	21 22	606	(31) E. Beran, S. Hull and M. Steininger, The relationship between the chemical structure of
 608 of Polymers and the Environment, 2013, 21, 172-180. 609 (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. 612 (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental</i> <i>Toxicology and Chemistry</i>, 2007, 26, 862-871. 614 (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. 615 (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. 621 (36) K. M. Heyoh, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. 632 (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. 633 (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. 640 American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	23	607	poly(alkylene glycol)s and their aerobic biodegradability in an aqueous environment, Journal
 (32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental</i> <i>Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp. Applied and Environmental Microbiology</i>, 1986, 52, 852-856. (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System</i>, <i>Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wast</i>	24	608	of Polymers and the Environment, 2013, 21, 172-180.
 and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1986, 52, 852-856. (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	25	609	(32) A. Zgola-Grzeskowiak, T. Grzeskowiak, J. Zembrzuska, M. Franska, R. Franski, T. Kozik
 GECD screening test, <i>Chemosphere</i>, 2007, 67, 928-933. (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	26	610	and Z. Lukaszewski, Biodegradation of poly(propylene glycol)s under the conditions of the
 (33) R. J. West, J. W. Davis, L. H. Pottenger, M. I. Banton and C. Graham, Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests, <i>Environmental</i> <i>Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1986, 52, 852-856. (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System</i>, <i>Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	27	611	OECD screening test. <i>Chemosphere</i> 2007 67 , 928-933
 ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	28	612	(33) R I West I W Davis I. H Pottenger M I Banton and C Graham Biodegradability
 fold cooperation and development ready- and seawater biodegradability tests, <i>Environmental Toxicology and Chemistry</i>, 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	29	613	relationships among propylene glycol substances in the organization for economic
 cooperation and overoprime reary and sectivate order gradientity tests, Entribution and the reary 2007, 26, 862-871. (34) F. Kawai, Microbial degradation of polyethers, Appled Microbiology and Biotechnology, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1986, 52, 852-856. (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	30 31	614	cooperation and development ready- and seawater biodegradability tests. <i>Environmental</i>
 (34) F. Kawai, Microbial degradation of polyethers, <i>Appled Microbiology and Biotechnology</i>, 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1986, 52, 852-856. (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	32	615	Toxicology and Chemistry 2007 26 862-871
 616 (19) 1. Rawa, Microbial degradation of poryelicity, <i>Appled Interbolology and Diotechnology</i>, 2002, 58, 30-38. 617 2002, 58, 30-38. (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a Bacteroides sp, Applied and Environmental <i>Microbiology</i>, 1986, 52, 852-856. (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	33	616	(34) E. Kawai. Microbial degradation of polyethers. Appled Microbiology and Biotechnology
 617 2002, 36, 50-55. 618 (35) J. P. Eubeler, M. Bernhard and T. P. Knepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. 620 (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. 621 (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. 623 Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. 625 (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. 628 (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1986, 52, 852-856. 631 (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. 633 (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	34	617	2002 58 30 38
 6178 (3) S. T. Ebbelel, M. Bernhald and T. T. Khepper, Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. 620 (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. 621 (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. 628 (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1986, 52, 852-856. 631 (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	35	619	(35) I. P. Eubaler, M. Bernhard and T. P. Knapper. Environmental biodegradation of synthetic
 polymets II. Biodegradation of different polymet groups, <i>Trends in Analytical Chemistry</i>, 2010, 29, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1986, 52, 852-856. (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	36	610	(55) J. T. Euberer, M. Berlinard and T. T. Knepper, Environmental biodegradation of synthetic polymore II. Biodogradation of different polymor groups. <i>Trends in Analytical Chemistry</i>
 (36) (20) (27, 84-100. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. (36) K. M. Heyob, J. Blotevogel, M. Brooker, M. V. Evans, J. J. Lenhart, J. Wright, R. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and (37) S. Wagener and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, (40) American Public Health Association, American Water Works Association, Water (41) American Public Health Association, American Water Works Association, Water (42) American Public Health Association, American Water Works Association, Water (43) Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	37	620	2010 20 84 100
 (30) K. M. Heyob, J. Biolevogel, M. Brooker, M. V. Evans, J. J. Lehnart, J. Wright, K. Lamendella, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental</i> <i>Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1986, 52, 852-856. (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	38	620	2010, 29, 04-100. (26) K. M. Hayah, I. Diatawagal, M. Draakar, M. V. Eyang, I. I. Lanhart, I. Wright, D.
 Lamendena, T. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1986, 52, 852-856. (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	39 40	621	(50) K. M. Heyoo, J. Diolevogei, M. Diooker, M. V. Evans, J. J. Lennari, J. Wright, K.
 hydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental</i> <i>Science & Technology</i>, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental</i> <i>Microbiology</i>, 1986, 52, 852-856. (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	40 41	622	Lamendella, I. Borch and P. J. Mouser, Natural attenuation of nonionic surfactants used in hadrealis for starting flacted Decard define matter and have been and machine to the
 Science & Technology, 2017, 51, 13985-13994. (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1986, 52, 852-856. (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	42	623	nydraulic fracturing fluids: Degradation rates, pathways, and mechanisms, <i>Environmental</i>
 625 (37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. 628 (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1986, 52, 852-856. 631 (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. 633 (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	43	624	Science & Technology, 2017, 51 , 13985-13994.
 ⁴⁵ 626 polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. ⁴⁷ 628 (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1986, 52, 852-856. ⁴⁹ 630 <i>Microbiology</i>, 1986, 52, 852-856. ⁵⁰ 631 (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. ⁴⁰⁰ American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	44	625	(37) S. Wagener and B. Schink, Fermentative degradation of nonionic surfactants and
 ⁴⁶ 627 propronate-forming bacteria, <i>Applied and Environmental Microbiology</i>, 1988, 54, 561-565. ⁴⁷ 628 (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental Microbiology</i>, 1986, 52, 852-856. ⁴⁸ 630 <i>Microbiology</i>, 1986, 52, 852-856. ⁴⁹ 630 <i>Microbiology</i>, 1986, 52, 852-856. ⁴⁰ 631 (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. ⁴⁰ 634 Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	45	626	polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and
 (38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic bacteria, <i>Desulfovibrio Desulfuricans</i> and a <i>Bacteroides sp</i>, <i>Applied and Environmental</i> <i>Microbiology</i>, 1986, 52, 852-856. (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	46	627	propionate-forming bacteria, Applied and Environmental Microbiology, 1988, 54, 561-565.
 bacteria, Desulfovibrio Desulfuricans and a Bacteroides sp, Applied and Environmental Microbiology, 1986, 52, 852-856. Microbiology, 1986, 52, 852-856. S. S. Paschke, ed, Groundwater Availability of the Denver Basin Aquifer System, Colorado, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	47	628	(38) D. F. Dwyer and J. M. Tiedje, Metabolism of polyethylene glycol by two anaerobic
 Microbiology, 1986, 52, 852-856. Microbiology, 1986, 52, 852-856. (39) S. S. Paschke, ed, Groundwater Availability of the Denver Basin Aquifer System, Colorado, Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. (40) American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	48 40	629	bacteria, Desulfovibrio Desulfuricans and a Bacteroides sp, Applied and Environmental
 631 (39) S. S. Paschke, ed, <i>Groundwater Availability of the Denver Basin Aquifer System, Colorado</i>, 752 632 Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. 633 (40) American Public Health Association, American Water Works Association, Water 634 Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, 635 United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	49 50	630	<i>Microbiology</i> , 1986, 52 , 852-856.
 632 Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011. 633 (40) American Public Health Association, American Water Works Association, Water 634 Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, 635 United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	51	631	(39) S. S. Paschke, ed, Groundwater Availability of the Denver Basin Aquifer System, Colorado,
 633 (40) American Public Health Association, American Water Works Association, Water 634 Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, 635 United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 	52	632	Professional Paper 1770, U.S. Geological Survey: Reston, Va., 2011.
 634 Environment Federation, <i>Standard Methods for the Examination of Water and Wastewater</i>, 635 United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 56 57 58 	53	633	(40) American Public Health Association, American Water Works Association, Water
 635 United Book Press, Inc, Baltimore, MD, 20th edn., 1998. 57 58 	54	634	Environment Federation, Standard Methods for the Examination of Water and Wastewater,
56 57 58	55	635	United Book Press, Inc, Baltimore, MD, 20th edn., 1998.
57	56 57		
	57 58		
59	59		

- ³ 636 (41) Earth Microbiome Project, 16S Illumina Amplicon Protocol,
 - 637 http://press.igsb.anl.gov/earthmicrobiome/protocols-and-standards/16s/, (accessed Aug
 638 2017).
- 638 2017).
 639 (42) J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, et al., QIIME
 640 allows analysis of high-throughput community sequencing data, *Nature Methods*, 2010, 7,
 641 335-336.
- ¹⁰ 642 (43) Ohio Supercomputer Center, 1987.
- 643 (44) T. Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber, D.
 644 (44) T. Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber, D.
 645 Dalevi, P. Hu and G. L. Andersen, Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB, *Applied and Environmental Microbiology*, 2006, 72, 5069-5072.
 - 647 (45) S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman, Basic local alignment
 648 search tool, *Journal of Molecular Biology*, 1990, 215, 403-410.
 - 649 (46) M. G. Langille, J. Zaneveld, J. G. Caporaso, D. McDonald, D. Knights, et al., Predictive
 650 functional profiling of microbial communities using 16S rRNA marker gene sequences,
 651 *Nature Biotechnology*, 2013, **31**, 814-821.
 - (47) R. Caspi, R. Billington, L. Ferrer, H. Foerster, C. A. Fulcher, et al., The MetaCyc database
 of metabolic pathways and enzymes and the BioCyc collection of pathway/genome
 databases. *Nucleic Acids Research*, 2016, 44, D471-480.
 - (48) P. J. Mouser, A. L. N'Guessan, H. Elifantz, D. E. Holmes, K. H. Williams, M. J. Wilkins, P.
 E. Long and D. R. Lovley, Influence of heterogeneous ammonium availability on bacterial
 community structure and the expression of nitrogen fixation and ammonium transporter
 genes during in situ bioremediation of uranium-contaminated groundwater, *Environmental Science & Technology*, 2009, 43, 4386-4392.
 - 660 (49) Groundwater Protection Council, Interstate Oil & Gas Conservation Commission,
 661 FracFocus Chemical Disclosure Registry, http://fracfocus.org, (accessed May 2017).
 - (50) J. F. Gao, L. B. M. Ellis and L. P. Wackett, The University of Minnesota
 biocatalysis/biodegradation database: Improving public access, *Nucleic Acids Research*,
 2010, **38**, D488-D491.
 - (51) E. Otal and J. Lebrato, Anaerobic degradation of polyethylene glycol mixtures, *Journal of Chemical Technology and Biotechnology*, 2003, **78**, 1075-1081.
 - (52) Y. L. Huang, Q. B. Li, X. Deng, Y. H. Lu, X. K. Liao, M. Y. Hong and Y. Wang, Aerobic
 and anaerobic biodegradation of polyethylene glycols using sludge microbes, *Process Biochemistry*, 2005, 40, 207-211.
 - (53) F. Kawai, The biochemistry and molecular biology of xenobiotic polymer degradation by
 microorganisms, *Bioscience, Biotechnology, and Biochemistry*, 2010, 74, 1743-1759.
 - (54) M. Kanehisa, Y. Sato, M. Kawashima, M. Furumichi and M. Tanabe, KEGG as a reference
 resource for gene and protein annotation, *Nucleic Acids Reseach*, 2016, 44, D457-462.
 - (55) R. A. Daly, M. A. Borton, M. J. Wilkins, D. W. Hoyt, D. J. Kountz, et al, Microbial
 metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales, *Nature Microbiology*, 2016, 1.
 - (56) M. A. Cluff, A. Hartsock, J. D. MacRae, K. Carter and P. J. Mouser, Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus Shale gas wells, *Environmental Science & Technology*, 2014, 48, 6508-6517.

1		27
2		
3	681	(57) J. Fichter, K. Wunch, R. Moore, E. Summer, S. Braman and P. Holmes, How Hot is Too
4	682	Hot for Bacteria? A Technical Study Assessing Bacterial Establishment in Downhole
с С	683	Drilling, Fracturing and Stimulation Operations, In NACE International Corrosion
7	684	<i>Conference</i> , National Association of Corrosion Engineers International, Salt Lake City, UT,
, 8	685	March 11-15 2012
9	686	(58) V M Pathak and Navneet Review on the current status of polymer degradation: A
10	600	(Jo) V. W. Fallax and Navneet, Review on the current status of polymer degradation. A
11	007	(50) N. Obradara and L. Aquilar, Efficient biodegradation of high molecular weight polyathylana
12	000	(39) N. Obradors and J. Agunar, Efficient biodegradation of high-molecular-weight polyethylene
13	689	glycols by pure cultures of Pseudomonas stutzeri, Applied and Environmental Microbiology,
14	690	1991, 57, 2383-2388.
15	691	(60) M. Sugimoto, M. Tanabe, M. Hataya, S. Enokibara, J. A. Duine and F. Kawai, The first step
16	692	in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol
17	693	dehydrogenase containing flavin adenine dinucleotide, Journal of Bacteriology, 2001, 183,
18	694	6694-6698.
19	695	(61) R. Marchal, E. Nicolau and J. P. Ballaguet, Biodegradability of polyethylene glycol 400 by
20	696	complete microfloras, International Biodeterioration & Biodegradation, 2008, 62, 384-390.
21	697	(62) C. Han, R. Mwirichia, O. Chertkov, B. Held, A. Lapidus, et al., Complete genome sequence
22	698	of Syntrophobotulus glycolicus type strain (FlGlyR). Standards in Genomic Sciences, 2011.
24	699	4 . 371-380.
25	700	
26	,00	
27		
28		
29		
30		
31		
3Z 22		
33		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44 15		
46		
47		
48		
49		
50		
51		
52		
53		
54 57		
55 56		
50 57		
52		
59		

Table 1. Pseudo-first-order half-lives $(t_{1/2})$ and standard error fit during the oxic period of the

702 produced water microcosm experiments.

microcosm	PEG-9 t1/2 (d)	PPG-6 <i>t</i> 1/2 (d)
A-22	0.4 ± 0.1	7.5 ± 5.2
A-611	< 0.4	2.7 ± 0.5
B-14	1.1 ± 0.2	14 ± 3.7
B-161	< 0.4	2.5 ± 0.2

Figure 1. Dissolved oxygen (DO) vs. time in the A-22 (diamond symbols), A-611 (triangles),

706 B-14 (squares), and B-161 (circles) microcosm experiments.

Figure 2. Initial (day 0) distribution of PEG homologues in (a) A-22, (b) A-611, (c) B-14, and

709 (d) B-161 microcosms.

Figure 3. Chromatographic separation of PEG-9 (black trace) and corresponding products
PEG-9-COOH (green trace) and PEG-9-diCOOH (orange trace) on (a) day 0 and (b) day 4 of the
B-14 microcosm experiment, and (c) response (integrated peak area) of the three compounds
relative to PEG-9 (*C*/*C*_{0,parent}) during the microcosm experiment. The aerobic metabolic pathway
is shown (d).

Figure 4. Initial (day 0) distribution of PPG homologues in (a) A-22, (b) A-611, (c) B-14, and

719 (d) B-161 microcosms.

Figure 5. Chromatographic separation of PPG-4 (black trace) and corresponding product PPG-4-COOH (green trace) on (a) day 0 and (b) day 4 of the B-14 microcosm experiment, and (c) response (integrated peak area) of the three compounds relative to PPG-4 ($C/C_{0,parent}$) during the microcosm experiment. The aerobic metabolic pathway is shown (d).

4 Figure 6. Degradation of (a) PEG-9 and (b) PPG-6 in A-22 (diamond symbols), A-611 (triangles), B-14 (squares), and B-161 (circles) microcosms. Oxic and anoxic periods are represented by solid and open symbols, respectively. An axis break at day 10 is used to show detail for rapid degradation. а A-22, oxic A-22, anoxic 1.0 A-611, oxic A-611, anoxic B-14, oxic B-14, anoxic B-161, oxic B-161, anoxic 0.8 PEG-9 C/C₀ 0.6 0.4 0.2

Figure 7. Abundance of the primary alcohol dehydrogenase gene (PA-DH) relative to a
housekeeping gene (*recA*) generated from metagenomes predicted from the 16S rRNA gene of
microbial communities in the A-22 (diamond symbols), A-611 (triangles), and B-14 (squares)
microcosms, in addition to the aquifer sediment prior to exposure to produced water (black
diamond symbol). Oxic and anoxic periods are represented by solid and open symbols,
respectively.

Polyethylene glycol, polypropylene glycol, and their degradation products could be utilized to

better characterize shallow groundwater contamination following a spill of produced water.