

Reduction of PCE and TCE by Magnetite Revisited

Journal:	Environmental Science: Processes & Impacts
Manuscript ID	EM-ART-06-2018-000286.R1
Article Type:	Paper
Date Submitted by the Author:	27-Aug-2018
Complete List of Authors:	Culpepper, Johnathan; University of Iowa College of Engineering, Civil and environmental engineering Scherer, Michelle ; U. Iowa, CEE; The University of Iowa, Robinson, Thomas; University of Iowa, Department of Civil and Environmental Engineering Neumann, Anke; Newcastle University, School of Civil Engineering and Geosciences Cwiertny, David; University of Iowa, Department of Civil and Environmental Engineering Latta, Drew; University of Iowa, Department of Civil and Environmental Engineering

1		
2		
3	1	Reduction of PCE and TCE by Magnetite Revisited
4		
5	2	Johnathan D. Culpepper ^a , Michelle M. Scherer ^a , Thomas C. Robinson ^a , Anke Neumann ^b , David
6	3	Cwiertny ^a , and Drew E. Latta ^{a*}
7 8	4	
8 9	_	
10	5	^{a.} Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242 USA E-mail:drew-latta@uiowa.edu Tel: +1-319-936-0034
11	6 7	^{b.} School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
12	8	School of Englineering, Newcastle Oniversity, Newcastle apon Tytie, NET 710, OK.
13	9	
14	10	
15	11	Abstract
16	12	Here we revisit whether the common mixed-valent Fe mineral, magnetite, is a viable reductant for
17	13	the abiotic natural attenuation of perchloroethylene (PCE) and trichloroethylene (TCE) in anoxic
18	14	groundwater plumes. We measured PCE and TCE reduction by stoichiometric magnetite as a
19 20	15	function of pH and Fe(II) concentration. In the absence of added Fe(II), stoichiometric magnetite
20	16	does not reduce PCE and TCE over a three month period. When Fe(II) is added to magnetite
22	17	suspensions, PCE and TCE are reduced under Fe(II) and pH conditions that appear to be controlled by
23	18	the solubility of ferrous hydroxide, $Fe(OH)_2(s)$. Reduction rates are slow with only 1 to 30% carbon
24	19	products (primarily acetylene) accumulating over several months. We conducted a similar set of
25	20 21	experiments with $Fe(OH)_2(s)$ alone and found that, compared to in the presence of magnetite, $Fe(OH)_2(s)$ reduces PCE and TCE only at $Fe(II)$ concentrations that are too high (≥ 13 mM, 726 mg/L)
26	21	to be representative of natural aquifer conditions. Our results suggest that magnetite present in
27	23	aquifer sediments alone is unlikely to reduce PCE and TCE sufficiently fast to contribute to natural
28	23	attenuation of PCE and TCE. The lack of compelling evidence for PCE and TCE reduction by magnetite
29 30	25	raises important questions regarding the current application of using magnetic susceptibility as a
31	26	potential indicator for abiotic natural attenuation. Dynamic conditions and high Fe(II) concentrations
32	27	that favor active precipitation of minerals, such as $Fe(OH)_2(s)$ in the presence of magnetite (or other
33	28	Fe minerals), however, may lead to PCE and TCE reduction that could help attenuate PCE and TCE
34	29	plumes.
35		
36	30	Environmental significance
37	31	We present evidence that suggests magnetite alone is unlikely to reduce PCE and TCE fast enough to
38	32	significantly contribute to the natural attenuation of PCE and TCE in contaminated aquifer plumes.
39 40	33	Under reducing conditions where high concentrations of ferrous iron may be present, however,
40 41	34	active precipitation of metastable phases in the presence of magnetite (or other Fe minerals) may
42	35	contribute to abiotic natural attenuation of PCE and TCE.
43	36	
44	37	Submitted to Environmental Science: Processes and Impacts
45		
46	38	Revised Manuscript
47	39	24 August 2018
48		
49 50		
50 51		
52		
53		
54		1
55		1
56		
57		
58		
59		

40 Introduction

Perchloroethene (PCE) and trichloroethene (TCE) are chlorinated ethenes that were used at thousands of industrial and commercial facilities as cleaning and metal degreasing solvents.^{1,2} For decades, PCE and TCE have been, and continue to be, the most prevalent priority pollutants in groundwater at hundreds of sites and a major concern for the environment and human health.³⁻⁷ Despite extensive cleanup efforts costing billions of dollars, PCE and TCE are still detected at many groundwater sites at concentrations above regulatory limits.^{4,8,9} Recent concerns regarding energy consumption and carbon emissions have made it even more critical to assess whether it is feasible for site managers to rely on natural biological, chemical, and physical processes (i.e., natural attenuation) to remediate chlorinated ethene plumes.¹⁰ Biological natural attenuation of PCE and TCE via reductive dechlorination has been extensively studied. These investigations have resulted in several tools that can be used to provide lines of

evidence for biological natural attenuation including methods for determining the numbers of Dehalococcoides sp. (Dhc) bacteria, vinyl chloride reductase gene copy numbers (vcrA), 1^{1-14} and compound-specific isotope analysis of PCE and TCE.^{15,16} In addition, significant evidence has accumulated for biotic oxidation of chlorinated ethenes in aerobic plumes,^{17,18} and there are hints that anaerobic oxidation may also occur coupled to metal reduction.¹⁹ There still remains significant uncertainty, however, about how much abiotic reduction reactions, such as reduction by ferrous iron (Fe(II)) bearing minerals, natural organic matter, and reduced sulfur species contribute to natural attenuation.

Of the abiotic natural attenuation processes, reduction by Fe(II)-containing minerals has been discussed as a potentially promising degradation pathway for chlorinated solvents for over two decades.²⁰⁻²³ Abiotic PCE and TCE degradation remains of significant interest largely because abiotic reduction most often occurs by reductive elimination with acetylene observed as the primary endproduct. Acetylene is a preferred end-product because it is benign and avoids the dichloroethene and vinyl chloride stall that commonly occurs with biotic reductive dechlorination pathways.²⁰⁻²⁴

Of the Fe(II)-containing minerals, magnetite (Fe $_3O_4$), a common mixed-valent Fe mineral, has been suggested to be responsible for chlorinated ethene attenuation at some field sites²⁴⁻²⁶ despite slow rates of reduction by magnetite observed in laboratory experiments.^{24,27-29} Indeed, the promise of magnetite as a reductant for chlorinated ethenes has recently led some to suggest that high magnetic susceptibility of aquifer sediments could be used as a potential indicator for abiotic natural attenuation at a site.²⁵ Such proxy methods are desirable due to the difficulty in measuring biologically labile products such as acetylene. We also note that more recent evidence alternatively implicates an oxidative abiotic pathway^{30,31} based on a Fenton-like process involving OH radical in chlorinated ethene degradation by pyrite (FeS₂) in the presence of oxygen.

Here we revisit whether the common mixed-valent Fe mineral, magnetite, is a viable reductant to
contribute to abiotic natural attenuation of PCE and TCE in anoxic groundwater plumes. Our results
suggest that magnetite present in aquifer sediments, alone, is unlikely to reduce PCE and TCE
sufficiently fast to contribute to natural attenuation of PCE and TCE in anoxic plumes. Under
dynamic conditions that result in active precipitation of minerals such as Fe(OH)₂(s), however, PCE
and TCE may be reduced sufficiently fast to help attenuate PCE and TCE plumes.

1			Сι
2	81	Materials and Methods	
3			
4 5	82	Chemicals	
6	83	Tetrachloroethylene (PCE, \geq 99%) and trichloroethylene (TCE, \geq 99%) were purchased from Sigma-	
7	84	Aldrich. Non-chlorinated C ₂ gases were used from a certified mixture containing 2.0% ethane, 1.97%	6
8	85	ethylene and 1.9% acetylene mixture in N_2 (Praxair). Hexanes and methanol (Fisher Scientific) were	
9	86	pesticide residue grade and ACS reagent grade ≥ 99.8%, respectively. PCE and TCE (24, 250 & 500)	
10	87	mM stock solutions were gravimetrically prepared in N ₂ -sparged methanol, sealed with viton septa	
11	88	and stored in a glovebox.	
12	89	All deionized water was deoxygenated by purging with N ₂ and stored for 24 hours in an anoxic	
13 14	90	glovebox (93% $N_2/7\%$ H ₂) before being used in any experiments. Buffer solutions of 10 mM 3-(N-	
15	91	Morpholino)propanesulfonic acid (MOPS, RPI Corp.) buffer solution, or 10 mM Piperazine-N,N"–	
16	92	bis(3-propanesulfonic acid) (PIPPS, GFS Chemicals) with 10 mM sodium chloride (NaCl) background	
17	93		n
18		electrolyte were prepared. All pH adjustments were done with deoxygenated hydrochloric acid (HCl	')
19	94	or sodium hydroxide (NaOH).	
20	95	Ferrous chloride stock solutions (~1.4 M FeCl ₂ ·4H ₂ O) were further purified by adjusting the pH to	1
21	96	~4.5 and filtering to remove any Fe(III) precipitates.	
22 23	97		
24	98	Magnetite synthesis	
25	99	Magnetite was synthesized using iron chloride salts following the method used as previously	
26	100	described. 32,33 Briefly, 0.1 M ferrous chloride (FeCl ₂ ·4H ₂ O) and 0.2 M ferric chloride (FeCl ₃ ·6H ₂ O)	
27	101	solutions were prepared in deoxygenated deionized water within the glovebox. Both solutions were	ć
28	102	combined. The mixture was vigorously stirred and titrated using 10 M NaOH to set the pH between	
29 30	103	10.0 and 11.5. The magnetite suspension was sealed and left overnight before filtering. The mineral	s
30 31	104	were removed from the glovebox in a sealed vessel and freeze-dried. Freeze dried minerals were	
32	105	ground with a mortar and pestle and sieved through a 150-micron sieve and stored in the glovebox.	
33	106	With this approach, the (~20 nm) magnetite particles have surface area values close to the	
34	107	previously reported 63 ± 7 m ² g ⁻¹ using N ₂ -BET analysis. ³³	
35	108		
36	109	Mineral characterization	
37 29		Magnetite stoichiometries ($x = Fe^{2+}/Fe^{3+}$) were determined using previously established methods. ³²	
38 39	110 111	The first approach was by acid dissolution (x_d) of the magnetite in 5 M HCL under glovebox	
40			
41	112	atmosphere. Using the 1,10-phenathroline method, 32,34 we evaluated the Fe ²⁺ and total Fe	
42	113	concentrations to determine the stoichiometric ratio. Powder X-ray diffraction (x_{xrd}) was the second	i -
43	114	approach using a Rigaku MiniFlex II system equipped with a Co source. Magnetite powders were	
44	115	mixed into two drops of glycerol to form a well-mixed paste in the glovebox to avoid oxidation of th	e
45 46	116	mineral during analysis. The powder X-ray diffraction stoichiometries (x_{xrd}) were then derived from	
40	117	unit-cell dimension. ³² Transmission Mössbauer spectroscopy was performed with a variable	
48	118	temperature He-cooled system with a ⁵⁷ Co source. Unless otherwise noted, Mössbauer spectra wer	e
49	119	collected at 140 K. Spectra were fit using the Recoil software ³⁵ and procedures outlined by Gorski	
50	120	and Scherer. ³² To prepare samples and avoid oxidation, we sealed samples with Kapton tape in the	
51	121	glovebox. To characterize minerals after reaction, we shook the reactor and filtered a 5 mL aliquot.	
52			
53 54			
55			3

These post-reaction samples were sealed for XRD using a layer of Kapton tape over the sample to
 prevent rapid oxidation of Fe(OH)₂.

125 Reactor design

Reactors were 160 mL glass serum bottles sealed with Viton fluoroelastomer septas (20 mm x 8 mm depth, Wheaton) and contained 150 mL of liquid and 10 mL of headspace. All batch reactors were prepared in a N_2/H_2 filled glovebox with an oxygen content below 1 ppm. Each system was covered with foil, stored and mixed (~100 rpm) upside down to have the headspace in contact with glass rather than the septum. Mixing reactors upside down was important to minimize headspace gas loss through the septum. The desired mass of iron oxides was added to the buffer solution, then the reactor pH was adjusted (when needed) and the chlorinated solvent added via a spike from the stock solution. A PCE and TCE concentration of 50 μ M (8,291 and 6,570 μ g/L of PCE and TCE, respectively) was used for most experiments. Reactors contained either 10 mM MOPS (pH range of 7.5 to 8.0) and 10 mM NaCl or 10 mM PIPPS (pH > 8.0) and 10 mM NaCl as buffer and background electrolyte, respectively.

In magnetite reactors containing Fe(II), bottles containing buffer and background electrolyte were first spiked with Fe(II) from an 1.4 M FeCl₂ stock, and then the initial Fe(II) concentration was measured. In reactors containing magnetite, magnetite was added, and then the systems were titrated to the desired pH using 2.5 or 10 M NaOH. Because titration of Fe(II) solutions results in a pH plateau near pH 8.0, we took care to add the same volume of NaOH to reactors that were prepared as replicates. Once the pH was adjusted, a 500 μ L sample was collected after filtration and the final Fe(II) concentration ([Fe(II)]_f) of the filtrate was determined. Reactors containing only Fe(II) were prepared as described above, but without the addition of magnetite.

146 Analytical Procedures

Analyses of parent and product analytes were performed using an Agilent 6890 gas chromatograph
equipped with electron capture (ECD) and flame ionization (FID) detectors. PCE and TCE were
quantified with GC-ECD after a liquid-liquid extraction of 0.25 to 1 mL of sample containing both the
aqueous and solid phases added to 2 mL of hexanes. The daughter products ethane, ethylene,
acetylene, the dichloroethenes, and vinyl chloride were detected using GC-FID. Further details on
analytical methods are provided in the Supporting Information.

154 Results and Discussion

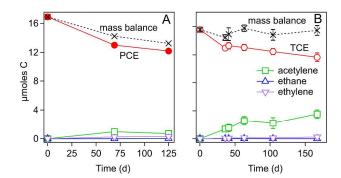
155 Reduction of PCE and TCE by Magnetite

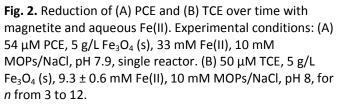
156To evaluate whether magnetite reduces PCE and TCE, we measured PCE and TCE reduction by157stoichiometric magnetite ($x = Fe^{2+}/Fe^{3+} \approx 0.5$) over a range of pH values (7.0 - 8.0) and solids loading158(5 - 20 g/L). In all experiments, we observed negligible loss of both PCE and TCE over 140 days159(Figure 1 and Table S1 in the Supporting Information). Further, no carbon products were observed,160and we were able to recover nearly all of the carbon initially present in the system (recoveries were161TCE: $105 \pm 8\%$ for n = 7; PCE: $98 \pm 6\%$ for n = 5, details in Table S1). We originally anticipated that162magnetite stoichiometry would affect the rate of PCE and TCE reduction by magnetite as we have

1			Ci
2	163	previously observed that magnetite stoichiometry strong	gly influenced the rates and extent of
3 4	164	uranium, mercury, and nitroaromatic compound reducti	
4 5	165	measurable reduction of PCE and TCE by magnetite ever	
6	166	therefore did not further explore reduction of PCE and T	
7	167	The complete lack of PCE and TCE	ce by non-stolenometric magnetite.
8			
9	168	reduction by stoichiometric magnetite was	60- J
10	169	unexpected as PCE and TCE reduction by	
11 12	170	magnetite has been previously reported. ²⁶	
13	171	magnetite has been previously reported. ²⁶⁻ ²⁹ A close look at the data, however, reveals that prior evidence for reduction of PCE and TCE by magnetite is somewhat limited.	
14	172	that prior evidence for reduction of PCE and	30-
15	173	TCE by magnetite is somewhat limited.	
16	174	ک While an early study by Sivavec and Horney	⁵ 15-
17	175	reported fast rates of TCE reduction by	ethene + ethane + acetylene
18 10	176	magnetite with a surface-area normalized	
19 20	177	rate coefficient (k_{SA}) of 4.5 x 10 ⁻⁴ L m ⁻² d ⁻¹	0 50 100 150
20	178	(half-life of 19 days), ²⁸ more recent	time (d)
22	179		CE and TCE concentration versus time in the
23	180	10^{-9} 10^{-2} 10^{-1} 10^{-1}	e of stoichiometric magnetite ($x = Fe^{2+}/Fe^{3+} =$.50). Experimental conditions: 50 µM
24	181		, 10 mM MOPs/NaCl at pH 7.0, 7.5, and 8.0
25	182		reactors and pH 7.5 for PCE reactors, mass
26 27	183		5 - 20 g/L. Average carbon recoveries, TCE
27 28	183		%) for $(n = 7)$, and PCE (98 ± 6%), for $(n = 5)$.
29	185		rs represent 1o for a set of triplicate reactors
30	185	high uncertainties, the authors (pH 8.0,	5 g/L, TCE)
31		-	
32	187 188	appropriately chose not to quantify rates of reduction. ²⁹ Of the other two studies, the anomalously h	high rate of reduction was based on TCC loss
33 34		alone with no report of products ²⁸ and the other study r	
34 35	189		
36	190	that reduction had occurred. ²⁷ Given the rather limited	-
37	191	and high uncertainties in the previously reported data, w	
38	192	reduction of PCE and TCE by magnetite is not so surprisi	-
39	193	Despite the limited laboratory evidence for PCE and	
40	194	rates extrapolated from fate and transport modelling of	-
41 42	195	have sometimes been attributed to abiotic attenuation of	
42 43	196	For example, aquifer degradation rate coefficients (k_{aquife}	$_{\rm er}$) on the order of ~ 1 yr ⁻¹ were extrapolated
44	197	from contaminated groundwater at Twin Cities Army An	nmunition Plant (TCAAP) to describe
45	198	chlorinated ethene plumes that were smaller than exped	cted based on dilution. ^{26,44,45} More extensive
46	199	data was collected for cis and 1,1-DCE and the combinat	ion of plume attenuation beyond dilution,
47	200	microcosm data showing similar degradation rates with	sterile and autoclaved sediments, and the
48 40	201	presence of magnetite in the sediments led the authors	
49 50	202	to reaction with magnetite. ²⁶ While this a reasonable co	-
50 51	202	Ferrey et. al., the only potential explanation for their ob	
52	200		
53			
54			5
55			
56			

Nevertheless, this work²⁶ is often cited as evidence for chlorinated ethene (PCE, TCE, and DCE) reduction by magnetite^{24-26,39} despite the data only being for DCEs, a need to use rate constants from batch reactors containing high Fe(II) concentrations, and the authors carefully stating that the loss of DCE may be due to reaction with magnetite and further research into the mechanisms of loss is needed. Collectively, the limited field and laboratory data for reduction of PCE and TCE by magnetite, and our observation of negligible reduction of PCE and TCE by magnetite, suggests that reduction by magnetite alone is unlikely responsible for field extrapolated degradation rates of PCE and TCE that have been previously attributed to magnetite. We note that there are some important differences between our experiments and aquifer plume conditions (e.g., buffers, magnetite crystallinity, flow environment, etc.). Taken together however, the existing literature and our findings provide no rigorous evidence that magnetite reduces PCE and TCE under anoxic conditions, and in fact, suggest that magnetite does not reduce PCE and TCE under a variety of conditions.

Reduction of PCE and TCE by Magnetite and Fe(II)

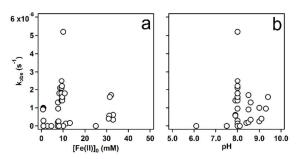

To investigate whether magnetite plus aqueous Fe(II) can abiotically degrade PCE and TCE, we measured the reduction of PCE and TCE by magnetite in the presence of Fe(II) over a range of Fe(II) concentrations and pH values (Table S2 and S3). Consistent with previous chlorinated ethene work,^{27,40} we found that adding Fe(II) to magnetite


suspensions did, in some cases, result

loss of PCE and TCE and

accumulation of 25% carbon products

- in PCE and TCE reduction. For
 - example, we observed measurable


(primarily as acetylene) with 5 g/L magnetite and 9.3 mM Fe(II) or 33 mM Fe(II), for PCE and TCE, respectively (Figure 2). Our observation of acetylene as the primary product in all reactors suggests that reductive β -elimination of PCE and TCE was likely the primary mechanism for reduction.⁴¹ Carbon recovery was higher with TCE (99 \pm 4.3%) than PCE (78%). In an attempt to better close the PCE mass balance, we measured for reductive dechlorination products, including dichloroethenes and vinyl chloride, but did not detect any. It is unclear if the mass balance loss of PCE is due to reduction to an unknown product or loss due to sorption or volatilization, however, we did observe up to 30% PCE and TCE loss in controls sampled more frequently than these reactors (Table S1), suggesting volatilization was likely the main contributor to loss.

To avoid including potential sorption and/or volatilization losses in estimated rates of PCE and TCE reduction, we quantified reduction rates based solely on accumulation of carbon reduction products (primarily acetylene). We modeled product accumulation over time using an exponential product in-growth equation (Equation 1), where P(t) is the mass of products (in µmoles C) at time t,

 $P(t) = C_0 \left(1 - e^{-k_{obs} \cdot t} \right)$

 $\frac{\ln\left(1-\frac{P(t)}{C_0}\right)}{t} = -k_{obs}$

Culpepper et al.

(1)

(2)

Fig. 3. Plots of kobs for PCE and TCE reduction as a function of $[Fe(II)]_0$ (initial Fe(II) concentration) (a) and pH (b)

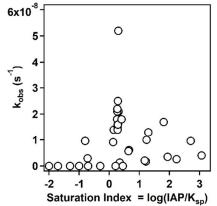


Fig. 4. Plot of k_{obs} for PCE and TCE reduction vs. the Fe(OH)₂(s) initial saturation index (<0 undersaturated, 0 at saturation, >0 oversaturated).

283	To quantitatively evaluate if $Fe(OH)_2(s)$ precipitation was necessary for PCE and TCE reduction, we
284	plotted k_{obs} values versus the saturation index (SI) for Fe(OH) ₂ (s) (Figure 4). We calculated the SI as
285	log(IAP/ K_{sp}) using the initial Fe(II) concentration and an Fe(OH) ₂ (s) K_{sp} of 5 × 10 ⁻¹⁵ . ⁴²⁻⁴⁴ A noticeable
286	pattern emerges with PCE and TCE reduction corresponding to conditions where the initial SI > 0.

saturated (or super-saturated) with respect to $Fe(OH)_2(s)$ based on the amount of Fe(II) added and the pH value the reactor was set at. We note that after precipitation of $Fe(OH)_2$, the SI is likely closer

to 0. For experiments that were saturated

or super-saturated, 93% (27 of 29) had

measurable reduction products form. Conversely, for experiments that were

undersaturated only 18% (2 of 11) had

measurable reduction products form.

To better visualize the influence of

 $Fe(OH)_2(s)$ precipitation on PCE and TCE

reduction, we also plotted the initial pH and

Fe(II) concentration of these magnetite plus Fe(II) experiments on an Fe(OH)₂(s)

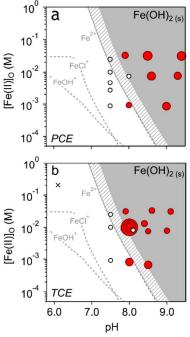
solubility diagram (Figure 5). In Figure 5,

solid, red markers indicate conditions

where reduction products were observed,

whereas open markers indicate conditions where no reduction products were

observed. In addition, we scaled the size of the red markers to the relative amount of


products formed. A clear visual picture emerges highlighting that products were observed (i.e., red markers) only when Fe(II) concentration and pH values were such that $Fe(OH)_2(s)$ was expected (and visually

observed) to precipitate. Of the forty

- experiments we conducted, thirty-six (90%)
- followed the trend of reduction occurring
- only when conditions were such that
- $Fe(OH)_2(s)$ was expected to precipitate.
- These results provide compelling evidence
 - that, under our experimental conditions,
 - precipitation of ferrous hydroxide is
- necessary for PCE and TCE reduction to be
- observed in the presence of magnetite.
 - Note that in the presence of different
- buffers, such as carbonate, other minerals would likely precipitate (such as siderite or carbonate

green rust).

Although adding Fe(II) to the magnetite suspensions resulted in reduction of PCE and TCE when $Fe(OH)_2(s)$ precipitated, the rates of reduction are still quite slow. Only 1 to 30% carbon products

Fig. 5. $Fe(OH)_2(s)$ solubility diagram with magnetite plus Fe(II) reactor conditions overlaid for (a) PCE and (b) TCE reactors. Fe(II) is plotted as the initial Fe(II) concentration – [Fe(II)]₀. Red markers represent PCE and TCE reactors where carbon products were observed and the markers are scaled relative to the amount of products produced (ranging up to 46%). Black open markers represent reactors where no products were observed..The grey hatched area represents a range of ferrous hydroxide solubility product Ksp ($[Fe(OH)_2(s)] = [Fe^{2+}] [OH^{-}]^2$) of $10^{-14.51}$ to $10^{^{\rm 15.11\,42-44}}$ The grey hatched and shaded areas represent the region where Fe(OH)₂ is expected to precipitate. Speciation diagrams were calculated with Visual MINTEQ for 10 mM Na⁺ and 30 mM Cl⁻ to represent Cl⁻ added with a nominal Fe(II) spike of 10 mM.

1				
2 3	329	(primarily acetylene) accumulated over a three to five mor	nth ti	ime period. Surface-area normalized
4	330	first-order rate coefficients (k_{SA}) estimated from carbon pro	oduc	t accumulation ranged from 3.7×10^{-7}
5	331	to 1.5×10^{-5} L m ⁻² d ⁻¹ , corresponding to half-lives ($t_{1/2}$) rangi	ing f	rom 0.42 to 17 years (Table S2 and
6	332	S3). These rates are much slower than those for TCE report	ted k	by Sivavec in experiments conducted
7 8	333	at pH 6.0 and 200 mM Fe(II) with 217 g/L magnetite ($t_{ m 1/2}$ $^{\sim}$	3 d).	⁴⁰ We attempted to reproduce the
9	334	experimental conditions used in the Sivavec		a
10	335	patent but observed no measurable TCE	10	a Fe(OH) _{2 (s)}
11	336	reduction (Figure S3). One possible	10	1Fe ²⁺
12	337	explanation for the rapid TCE reduction		0 0 0 0
13 14	338	explanation for the rapid TCE reduction observed by Sivavec is that the conditions may have led to formation of green rust,	or 10	
15	339	may have led to formation of green rust,	10	3
16	340	which has been shown to reduce PCE and		0
17	341	TCE. ⁴⁵ Note that our replication of Sivavec's	10	⁴ PCE
18 19	342	conditions (marked by × in Figure 5) are	10	0 Fe(OH) _{2 (s)}
20	343	well below ferrous hydroxide saturation		
21	344	and therefore consistent with our finding	10	Fe ⁴
22	345	that no reduction by magnetite occurs	(m) 0[(II)a_1]	² FeCl 8
23	346	under these conditions.	ſ(II)a	FeOn
24 25	347	Ľ	Ľ 10	
25			10	
27				6.0 7.0 8.0 9.0
28				pH

Fig. 6. Fe(OH)₂(s) solubility diagram with aqueous Fe(II) reactors without magnetite conditions overlaid for PCE and TCE reactors. Fe(II) is plotted as the initial Fe(II) concentration – [Fe(II)]₀. Red markers represent PCE and TCE reactors where products were observed and the markers are scaled relative to the amount of products produced (ranging up to 46%). Black open markers represent reactors where

1			
2 3	348	Reduction of PCE and TCE by Fe(II) and	no products were observed. The grey hatched area
4	349	ferrous hydroxide	represents a range of ferrous hydroxide solubility
5			product Ksp ($[Fe(OH)_2(s)] = [Fe^{2+}] [OH]^2$) of $10^{-14.51}$ to
6	350	Our observation that Fe(OH) ₂ (s)	10 ^{-15.11 42-44} The grey hatched and shaded areas
7	351	precipitation is necessary for PCE and TCE	therefore represent the region where Fe(OH) ₂ is expected to precipitate. Speciation diagrams were
8 9	352	reduction to occur in the presence of	calculated with Visual MINTEQ for 10 mM Na $^{+}$ and 30
9 10	353	magnetite led us to wonder whether	mM Cl ⁻ to represent Cl ⁻ added with a nominal Fe(II)
11	354	$Fe(OH)_2(s)$ or even aqueous $Fe(II)$ alone can	spike of 10 mM.
12	355	reduce TCE. To evaluate whether $Fe(OH)_2(s)$	
13	356	alone or aqueous Fe(II) alone could reduce	
14	357	TCE, we measured TCE reduction over a wide	range of Fe(II) concentrations and pH values (in the
15 16	358	absence of magnetite) and plotted the results	on an Fe(OH) ₂ (s) solubility diagram (Figure 6). As
10	359	expected, no reduction of PCE and TCE was ob	oserved by aqueous Fe(II) (denoted by open markers).
18	360	For most conditions, no PCE and TCE reduction	n were observed even when Fe(OH) ₂ (s) had
19	361	precipitated. However, at very high concentra	tions of initial Fe(II) (> 13 mM, 726 mg/L) some slow
20	362	PCE and TCE reduction was observed with 0.3	to 13% products accumulating over a five to six month
21	363	time period. First-order rate coefficients for P(CE and TCE reduction determined from product
22 23	364	•	s (in absence of magnetite) ranged from 1.8×10^{-10} s ⁻¹
24	365		the high Fe(II) concentrations might have resulted in
25	366		ia secondary mineral transformation of the $Fe(OH)_2(s)$.
26	367		f the solids after 150 days indicated no additional
27	368		S4 and S5). While these results are interesting, we
28 29	369		rations of Fe(II) (> 13 mM, 726 mg/L) make these
29 30	370		ater aquifers where Fe(II) concentrations rarely exceed
31	370		sing $Fe(OH)_2$ saturation index and the plot in Figures 5
32	371		ne figures should not be used as a predictive tool
33	372	because if $Fe(OH)_2$ precipitates the saturation	
34	373	because in re(01)2 precipitates the saturation	index will likely be hear 0.
35 36			
30 37	374	Conclusions and Environmental Implications	
38	375	Environmental Implications	
39	376	Our results, combined with previous laborator	ry studies, ^{27,29} suggest that magnetite in aquifer
40	377	sediments is, on its own, unlikely to reduce PC	E and TCE and contribute significantly to natural
41 42	378	attenuation of PCE and TCE in anoxic plumes.	We did, however, find that precipitation of ferrous
42 43	379	hydroxide in the presence of aquifer minerals	such as magnetite might provide a mechanism for
44	380	abiotic attenuation of chlorinated ethenes. To	
45	381		e could be important in natural (or engineered)
46	382		we scaled our laboratory rate coefficients (k_{sA}) to
47	383	•	ulations in Supporting Information). Using a field
48 49	384		eld-scaled first-order rate coefficients (k _{field}) ranging
49 50	385		rs) (Table S2). These rates are comparable to both
51	386		have been attributed to abiotic degradation. ^{24,26}
52	500	seament merocosm rates and neurates that	

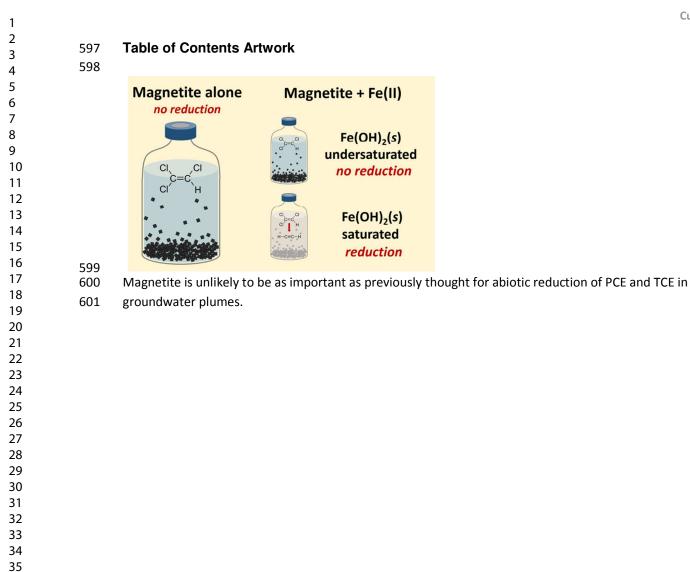
- However, in nearly all of our experiments the amount of Fe(II) added exceeds typical concentrations

of Fe(II) in groundwater (typically < 50 mg/L or 1 mM), $^{46-49}$ making the precipitation of ferrous hydroxide unlikely to be relevant to field conditions. Furthermore, precipitation of ferrous hydroxide is unlikely in natural aquifers due the ubiquitous presence of carbonate, making siderite and ferrous hydroxy-carbonate species more likely candidates for Fe(II) precipitates. Our work does, however, highlight that active precipitation of reactive Fe(II) phases may be important in assessing abiotic natural attenuation.

The lack of compelling evidence for PCE and TCE reduction by magnetite raises important questions regarding whether magnetic susceptibility of aquifer sediments is a useful indicator for abiotic degradation of chlorinated ethenes by magnetite.²⁵ Recent work has suggested that *in situ* magnetic susceptibility measurements might be used along with chlorinated ethene concentration decreases in monitoring wells as a line of evidence for the occurrence of natural attenuation by sediment magnetite in an aquifer.²⁵ Our findings, however, suggest that magnetic susceptibility may not be a useful indicator for abiotic natural attenuation of chlorinated ethenes by reductive elimination. While magnetite and maghemite have magnetic susceptibilities of 2-3 orders of magnitude greater than the other Fe oxides, making magnetic susceptibility a reasonable proxy for sediment magnetite and/or maghemite content, the magnetic susceptibility of magnetite and fullyoxidized maghemite are within 20% of each other.⁵⁰ The similarity between maghemite and magnetite makes magnetic susceptibility measurements at the field level nearly insensitive to Fe redox speciation. Furthermore, the correlation shown in Weidemier et al.²⁵ between chlorinated ethene degradation and magnetic susceptibility is weak, with $r^2 = 0.18$ and a Spearman's rank-order correlation coefficient of 0.41, making the correlation statistically non-significant at even a 90% confidence interval (critical $\rho = 0.49$).

Our work, together with the poor mechanistic and statistical correlation between magnetic susceptibility and abiotic chlorinated ethene reduction by magnetite suggests that further measurements are needed to link iron mineralogy to abiotic natural attenuation. Although our work suggests that magnetite is not likely to contribute significantly to abiotic degradation of PCE and TCE, there is substantial laboratory evidence that other Fe(II)-containing Fe minerals, such as mackinawite (FeS) and green rust, reduce chlorinated ethenes much faster (see reviews by He; Fan).^{24,51} The faster PCE and TCE reduction rates for mackinawite and green rust suggest that reduction by these minerals may be an important degradation process in contaminated plumes. Indeed, sulfate amendments to induce biological formation of mackinawite in-situ has been demonstrated in the field and in the laboratory.⁵²⁻⁵⁶ Consistent with active precipitation of FeS being important for continued degradation of PCE and TCE in sulfate-reducing field sites,⁵⁴ it is possible that Fe(II) precipitation as Fe(OH)₂ and green rusts might occur in dynamic environments receiving a constant flux of Fe(II) from dissimilatory Fe reduction, or in zones where a change in pH occurs. We suggest that field screening methods for acid volatile sulfides targeting FeS⁵⁷ and citrate-bicarbonate (CB) extractable Fe targeting green rusts and labile Fe(II) phases^{58,59} might provide a measure of the potential for abiotic chlorinated ethene reduction by Fe(II) and sulfide minerals, although further study is needed. Zones of active Fe(II) precipitation in anoxic aquifer could result in PCE and TCE reduction that is sufficiently fast to help attenuate PCE and TCE plumes.

Conflicts of interest


2	430	There are no conflicts to declare.
3	430	
4		
5 6	432	Acknowledgements
7	433	This research has been funded entirely with funds from the Strategic Environmental Research and
8	434	Development Program – (SERDP) project ER-2532, and an NSF – GRFP to Johnathan Culpepper. The
9	435	contents do not necessarily reflect the views and policies either of the sponsors nor does mention of
10	436	trade names or commercial products that constitute endorsement or recommendation for use. The
11	437	authors would like to thank Luiza Notini (University of Iowa) for designing the table of contents art.
12	438	
13	439	Electronic Supplementary Information
14	439	Electronic Supplementary mormation
15	440	⁺ Electronic Supplementary Information (ESI) available: See DOI: 10.1039/x0xx00000x
16	440	
17	441	
18	442	
19	443	References
20		
21 22	444	1. Doherty, R. E., A history of the production and use of carbon tetrachloride, tetrachloroethylene,
22	445	trichloroethylene and 1, 1, 1-trichloroethane in the United States: Part 1historical background;
23	446	carbon tetrachloride and tetrachloroethylene. Environmental forensics 2000, 1, (2), 69-81.
25		
26	447	2. Doherty, R. E., A history of the production and use of carbon tetrachloride, tetrachloroethylene,
27	448	trichloroethylene and 1, 1, 1-trichloroethane in the United States: part 2trichloroethylene and 1, 1,
28	449	1-trichloroethane. Environmental Forensics 2000, 1, (2), 83-93.
29		
30	450	3. Pankow, J. F.; Cherry, J. A., Dense chlorinated solvents and other DNAPLs in groundwater: History,
31	451	behavior, and remediation. 1996 .
32	450	A K was D H. Charles H. F. March C M. Wash C H. Chlaster I advected as a second strict
33	452	4. Kueper, B. H.; Stroo, H. F.; Vogel, C. M.; Ward, C. H., <i>Chlorinated solvent source zone remediation</i> .
34	453	Springer: 2014.
35	454	5. Guyton, K. Z.; Hogan, K. A.; Scott, C. S.; Cooper, G. S.; Bale, A. S.; Kopylev, L.; Barone Jr, S.; Makris,
36 37	455	S. L.; Glenn, B.; Subramaniam, R. P., Human health effects of tetrachloroethylene: key findings and
38	456	scientific issues. Environ. Health. Perspect. 2014, 122, (4), 325.
39	450	sechane issues. Environ. neuran. r erspeet. 2014, 122, (4), 525.
40	457	6. Chiu, W. A.; Jinot, J.; Scott, C. S.; Makris, S. L.; Cooper, G. S.; Dzubow, R. C.; Bale, A. S.; Evans, M.
41	458	V.; Guyton, K. Z.; Keshava, N., Human health effects of trichloroethylene: key findings and scientific
42	459	issues. Environ. Health. Perspect. 2013, 121, (3), 303.
43		
44	460	7. Lepom, P.; Brown, B.; Hanke, G.; Loos, R.; Quevauviller, P.; Wollgast, J., Needs for reliable
45	461	analytical methods for monitoring chemical pollutants in surface water under the European Water
46	462	Framework Directive. J. Chromatogr. A 2009, 1216, (3), 302-315.
47		
48	463	8. Zogorski, J. S.; Carter, J. M.; Ivahnenko, T.; Lapham, W. W.; Moran, M. J.; Rowe, B. L.; Squillace, P.
49	464	J.; Toccalino, P. L., Volatile organic compounds in the nation's ground water and drinking-water
50	465	supply wells. US Geological Survey Circular 2006, 1292, 101.
51		
52 53		
55 54		
55		12
56		
57		

2	466	9. Council, N. R., Alternatives for managing the nation's complex contaminated groundwater sites.
3	460 467	National Academies Press: 2013.
4	407	National Academies Press. 2015.
5	100	10 Council N. D. Contaminants in the subsurface. Source zone assessment and remediation
6	468	10.Council, N. R., Contaminants in the subsurface: Source zone assessment and remediation.
7	469	National Academies Press: 2005.
8	470	44 - A de Zee - D. Herrer F. Herleter N. D''reede H. de Ver M. M. Car'dt H. Cartina I.
9	470	11.van der Zaan, B.; Hannes, F.; Hoekstra, N.; Rijnaarts, H.; de Vos, W. M.; Smidt, H.; Gerritse, J.,
10	471	Correlation of Dehalococcoides 16S rRNA and chloroethene-reductive dehalogenase genes with
11	472	geochemical conditions in chloroethene-contaminated groundwater. Appl. Environ. Microbiol. 2010,
12	473	76, (3), 843-850.
13		
14	474	12.Lee, P. K.; Macbeth, T. W.; Sorenson, K. S.; Deeb, R. A.; Alvarez-Cohen, L., Quantifying genes and
15	475	transcripts to assess the in situ physiology of "Dehalococcoides" spp. in a trichloroethene-
16	476	contaminated groundwater site. Appl. Environ. Microbiol. 2008, 74, (9), 2728-2739.
17		
18	477	13.Lu, X.; Wilson, J. T.; Kampbell, D. H., Relationship between Dehalococcoides DNA in ground water
19	478	and rates of reductive dechlorination at field scale. Water Res. 2006, 40, (16), 3131-3140.
20		
21	479	14.Hendrickson, E. R.; Payne, J. A.; Young, R. M.; Starr, M. G.; Perry, M. P.; Fahnestock, S.; Ellis, D. E.;
22	480	Ebersole, R. C., Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-
23	481	contaminated sites throughout North America and Europe. Appl. Environ. Microbiol. 2002, 68, (2),
24	482	485-495.
25		
26	483	15.Damgaard, I.; Bjerg, P. L.; Bælum, J.; Scheutz, C.; Hunkeler, D.; Jacobsen, C. S.; Tuxen, N.; Broholm,
27	484	M. M., Identification of chlorinated solvents degradation zones in clay till by high resolution
28	485	chemical, microbial and compound specific isotope analysis. J. Contam. Hydrol. 2013, 146, 37-50.
29		
30	486	16.Hunkeler, D.; Aravena, R.; Butler, B., Monitoring microbial dechlorination of tetrachloroethene
31	487	(PCE) in groundwater using compound-specific stable carbon isotope ratios: microcosm and field
32	488	studies. Environ. Sci. Technol. 1999, 33, (16), 2733-2738.
33	400	States. Environ. Sci. recimol. 1999, 33, (10), 2733-2730.
34	489	17.Mattes, T. E.; Alexander, A. K.; Coleman, N. V., Aerobic biodegradation of the chloroethenes:
35	490	pathways, enzymes, ecology, and evolution. <i>FEMS Microbiol. Rev.</i> 2010 , <i>34</i> , (4), 445-475.
36	450	pathways, cheymes, coology, and evolution. Tends Wherebool. Nev. 2010, 54, (4), 445, 475.
37	491	18.Findlay, M.; Smoler, D. F.; Fogel, S.; Mattes, T. E., Aerobic Vinyl Chloride Metabolism in
38	492	Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria. <i>Environ. Sci. Technol.</i>
39	493	2016 , <i>50</i> , (7), 3617-3625.
40	455	2010, 50, (7), 5017-5025.
41	494	19.Bradley, P. M.; Landmeyer, J. E.; Dinicola, R. S., Anaerobic oxidation of [1, 2- ¹⁴ C] dichloroethene
42		
43	495	under Mn (IV)-reducing conditions. Appl. Environ. Microbiol. 1998 , 64, (4), 1560-1562.
44	496	20.Haderlein, S. B.; Pecher, K., Mediation of organic pollutant reduction by iron oxides. Abstr. Pap.
45		
46	497	<i>Am. Chem. Soc.</i> 1997, <i>213,</i> 129-GEOC.
47	100	21 Christophi D. M. Scharor, M. M. Abjetic Processor Affecting the Demodiction of Chlorinated
48	498	21.Cwiertny, D. M.; Scherer, M. M., Abiotic Processes Affecting the Remediation of Chlorinated
49	499	Solvents. In In Situ Remediation of Chlorinated Solvent Plumes, Stroo, H. F.; Ward, C. H., Eds. Springer
50	500	New York: New York, NY, 2010; pp 69-108.
51	504	22 March T. M., Criddle, C. C., Marchell, D. L. Transformations of holosophical distributions and
52	501	22.Vogel, T. M.; Criddle, C. S.; McCarty, P. L., Transformations of halogenated aliphatic compounds.
53	502	Environ. Sci. Technol. 1987, 21, (8), 722-736.
54		13
55		
56		
57		
58		
59		

2	503	23.Kriegman-King, M. R.; Reinhard, M., Reduction of hexachloroethane and carbon tetrachloride at	
3	505 504	surfaces of biotite, vermiculite, pyrite, and marcasite. In Organic Substances and Sediments in Water	~
4	504	Baker, R., Ed. Lewis: MI, 1991; Vol. 2, pp 349-364.	,
5	505	baker, N., Lu. Lewis. Nii, 1991, Vol. 2, pp 549-504.	
6	506	24.He, Y. T.; Wilson, J. T.; Su, C.; Wilkin, R. T., Review of Abiotic Degradation of Chlorinated Solvents	
7	507	by Reactive Iron Minerals in Aquifers. <i>Groundwater Monitoring & Remediation</i> 2015 , <i>35</i> , (3), 57-75.	
8	507	by redeave non minerals in Aquiters. Groundwater worktoring & remediation 2013, 55, 57, 57, 57.	
9 10	508	25.Wiedemeier, T. H.; Wilson, B. H.; Ferrey, M. L.; Wilson, J. T., Efficacy of an In-Well Sonde to	
10	509	Determine Magnetic Susceptibility of Aquifer Sediment. <i>Groundwater Monitoring & Remediation</i>	
12	510	2017, <i>37</i> , (2), 25-34.	
12	510		
14	511	26.Ferrey, M.; Wilkin, R.; Ford, R.; Wilson, J., Nonbiological removal of cis-dichloroethylene and 1,1-	
15	512	dichlorethylene in aquifer sediment containing magnetite. <i>Environ. Sci. Technol.</i> 2004 , <i>38</i> , (6), 1746-	
16	513	1752.	
17	515		
18	514	27.Lee, W.; Batchelor, B., Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing	
19	515	soil minerals. 1. Pyrite and Magnetite. <i>Environ. Sci. Technol.</i> 2002 , <i>36</i> , (23), 5147-5154.	
20	515		
21	516	28.Sivavec, T. M.; Horney, D. P. In Reduction of chlorinated solvents by Fe(II) minerals, 213th Nationa	il.
22	517	Meeting, San Francisco, CA, 1997; American Chemical Society: San Francisco, CA, 1997; pp 115-117.	
23	517		
24	518	29.Liang, X. M.; Philp, R. P.; Butler, E. C., Kinetic and isotope analyses of tetrachloroethylene and	
25	519	trichloroethylene degradation by model Fe(II)-bearing minerals. <i>Chemosphere</i> 2009 , <i>75</i> , (1), 63-69.	
26	515		
27	520	30.Pham, H. T.; Suto, K.; Inoue, C., Trichloroethylene Transformation in Aerobic Pyrite Suspension:	
28	521	Pathways and Kinetic Modeling. Environ. Sci. Technol. 2009, 43, (17), 6744-6749.	
29	011		
30	522	31.Pham, H. T.; Kitsuneduka, M.; Hara, J.; Suto, K.; Inoue, C., Trichloroethylene transformation by	
31	523	natural mineral pyrite: The deciding role of oxygen. <i>Environ. Sci. Technol.</i> 2008 , <i>42</i> , (19), 7470-7475.	
32			
33	524	32.Gorski, C. A.; Scherer, M. M., Determination of nanoparticulate magnetite stoichiometry by	
34	525	Mössbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical review. Am.	
35	526	Mineral. 2010, <i>9</i> 5, (7), 1017-1026.	
36	520		
37	527	33.Gorski, C. A.; Nurmi, J. T.; Tratnyek, P. G.; Hofstetter, T. B.; Scherer, M. M., Redox behavior of	
38	528	magnetite: Implications for contaminant reduction. <i>Environ. Sci. Technol.</i> 2009, 44, (1), 55-60.	
39	520		
40	529	34.Tamura, H.; Goto, K.; Yotsuyan.T; Nagayama, M., Spectrophotometric determination of iron(II)	
41	530	with 1,10-phenanthroline in presence of large amounts of iron(III). <i>Talanta</i> 1974 , <i>21</i> , (4), 314-318.	
42	550		
43	531	35.Lagarec, K.; Rancourt, D. G. Recoil-Mössbauer spectral analysis software for Windows, University	
44	532	of Ottawa, Ottawa, ON: 1998.	
45	552		
46	533	36.Latta, D. E.; Gorski, C. A.; Boyanov, M. I.; O'Loughlin, E. J.; Kemner, K. M.; Scherer, M. M.,	
47	534	Influence of magnetite stoichiometry on U ^{VI} reduction. <i>Environ. Sci. Technol.</i> 2012 , <i>46</i> , (2), 778-786.	
48	554		
49	535	37.Gorski, C. A.; Nurmi, J. T.; Tratnyek, P. G.; Hofstetter, T. B.; Scherer, M. M., Redox behavior of	
50	536	magnetite: Implications for contaminant reduction. <i>Environ. Sci. Technol.</i> 2010 , <i>44</i> , (1), 55-60.	
51	550		
52			
53			
54		14	4
55			
56			

2 3 4	537 538	38.Pasakarnis, T. S.; Boyanov, M. I.; Kemner, K. M.; Mishra, B.; O'Loughlin, E. J.; Parkin, G.; Scherer, M. M., Influence of Chloride and Fe(II) Content on the Reduction of Hg(II) by Magnetite. <i>Environ. Sci</i> .
5	539	Technol. 2013, 47, (13), 6987-6994.
7 8	540 541	39.Brown, R. A.; Wilson, J. T.; Ferrey, M., Monitored natural attenuation forum: The case for abiotic MNA. <i>Remediation Journal</i> 2007 , <i>17</i> , (2), 127-137.
9 10 11	542 543	40.Sivavec, T. M. Composition and method for ground water remediation. U.S. Patent 5,750,036, May 12, 1998.
12 13 14	544 545	41.Arnold, W. A.; Roberts, A. L., Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. <i>Environ. Sci. Technol.</i> 2000 , <i>34</i> , (9), 1794-1805.
15 16	546	42.Gustafsson, J. P. Visual MINTEQ, 3.0; 2011.
17 18 19 20	547 548 549	43.Bohnsack, G., Löslichkeit und thermodynamische Daten von Eisen(II)-Hydroxid durch analytische Bestimmung des Eisens und Leitfähigkeitsmessung im System Eisen-Wasser. <i>Berichte der</i> Bunsengesellschaft für physikalische Chemie 1988 , 92, (7), 797-802.
21 22 23	550 551	44.Sawyer, C. N.; McCarty, P. L.; Parkin, G. F., Chemistry for environmental engineering and science. 2016 .
24 25 26 27	552 553	45.Lee, W.; Batchelor, B., Abiotic reductive dechlorination of chlorinated ethylenes by iron bearing soil minerals. 2. green rust. <i>Environ. Sci. Technol.</i> 2002, <i>36</i> , (24), 5348-5354.
28	554	46.Litten, G. R., Quality of ground water used for selected municipal water supplies in Iowa, 1997-
29 30	555	2002 water years: USGS Open File Report 2004-1048. In USGS, Ed. 2004; p 36.
31 32 33	556 557 558	47.Postma, D.; Boesen, C.; Kristiansen, H.; Larsen, F., Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling. <i>Water Resour. Res.</i> 1991 , <i>27</i> , (8), 2027-2045.
34		
35 36 37	559 560	48.Erickson, M. L.; Barnes, R. J., Glacial sediment causing regional-scale elevated arsenic in drinking water. <i>Groundwater</i> 2005 , <i>43</i> , (6), 796-805.
38 39	561 562	49.Anawar, H. M.; Akai, J.; Komaki, K.; Terao, H.; Yoshioka, T.; Ishizuka, T.; Safiullah, S.; Kato, K., Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization
40 41	563	processes. J. Geochem. Explor. 2003, 77, (2-3), 109-131.
42 43 44	564 565	50.Mullins, C., Magnetic susceptibility of the soil and its significance in soil science–a review. <i>Eur. J. Soil Sci.</i> 1977 , <i>28</i> , (2), 223-246.
45	566	51.Fan, D.; Bradley, M. J.; Hinkle, A. W.; Johnson, R. L.; Tratnyek, P. G., Chemical Reactivity Probes
46 47	567	for Assessing Abiotic Natural Attenuation by Reducing Iron Minerals. <i>Environ. Sci. Technol.</i> 2016 , <i>50</i> , (4), 1959, 1975
48	568	(4), 1868-1876.
49 50	569	52.Kennedy, L. G.; Everett, J. W.; Gonzales, J., Assessment of biogeochemical natural attenuation
51 52 53	570 571	and treatment of chlorinated solvents, Altus Air Force Base, Althus, Oklahoma. <i>J. Contam. Hydrol.</i> 2006, <i>83</i> , 221-236.
54		15
55 56 57		
58		
59 60		
60		

53.Kennedy, L. G.; Everett, J. W.; Becvar, E.; DeFeo, D., Field-scale demonstration of induced biogeochemical reductive dechlorination at Dover Air Force Base, Dover, Delaware. J. Contam. Hydrol. 2006, 88, 119-136. 54.He, Y. T.; Wilson, J. T.; Wilkin, R. T., Transformation of reactive iron minerals in a permeable reactive barrier (biowall) used to treat TCE in groundwater. Environ. Sci. Technol. 2008, 42, (17), 6690-6696. 55.Whiting, K.; Evans, P. J.; Lebrón, C.; Henry, B.; Wilson, J. T.; Becvar, E., Factors controlling in situ biogeochemical transformation of trichloroethene: Field survey. Groundwater Monitoring & *Remediation* **2014,** *34*, (3), 79-94. 56.Evans, P. J.; Nguyen, D.; Chappell, R. W.; Whiting, K.; Gillette, J.; Bodour, A.; Wilson, J. T., Factors controlling in situ biogeochemical transformation of trichloroethene: Column study. Groundwater Monitoring & Remediation **2014**, *34*, (3), 65-78. 57.Simpson, S. L., A rapid screening method for acid-volatile sulfide in sediments. Environ. Toxicol. Chem. 2001, 20, (12), 2657-2661. 58. Trolard, F.; Bourrie, G.; Jeanroy, E.; Herbillon, A. J.; Martin, H., Trace-Metals in Natural Iron-Oxides from Laterites - a Study Using Selective Kinetic Extraction. Geochim. Cosmochim. Acta 1995, 59, (7), 1285-1297. 59.Latta, D. E.; Boyanov, M. I.; Kemner, K. M.; O'Loughlin, E. J.; Scherer, M. M., Abiotic reduction of uranium by Fe(II) in soil. Appl. Geochem. 2012, 27, (8), 1512-1524.

