
<table>
<thead>
<tr>
<th>Journal:</th>
<th><em>Environmental Science: Processes &amp; Impacts</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>EM-ART-06-2018-000255.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>26-Jul-2018</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Ni, Jinzhi; Fujian Normal University, College of Geographical Sciences Pignatello, Joseph; The Connecticut Agricultural Experiment Station, New Haven, Environmental Sciences</td>
</tr>
</tbody>
</table>

(ScholarOne Manuscripts logo)
Environmental Significance Statement

Cohesive forces within natural organic matter (OM) play crucial roles in the biogeochemical behavior of OM and its interactions with pollutants, but are not well understood. This study shows that weak acids, but not other hydrogen (H)-bonding solutes, increase the water solubility of OM in a reference soil. The pattern is consistent with the disruption of (negative) charge-assisted H bonds between carboxyl groups on OM segments or separate molecules, and formation of new ones with the solute, as a main cause. The (-)CAHB is an extraordinarily strong type of H bond between groups of similar proton affinity, or pK_a. Besides solubility, the results are potentially broadly significant for OM adsorption, aggregation in solution, metal ion complexation, and bonding with chemicals and engineered nanoparticles.
Charge-Assisted Hydrogen Bonding as a Cohesive Force in Soil Organic Matter:

Water Solubility Enhancement by Addition of Simple Carboxylic Acids

Jinzhi Ni\textsuperscript{a,b} and Joseph J. Pignatello\textsuperscript{a,*}

\textsuperscript{a}Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut, 06504-1106, U.S.A.

\textsuperscript{b}Permanent address: College of Geographical Sciences, Fujian Normal University, Fuzhou 350007 China

*Corresponding author: joseph.pignatello@ct.gov; +1(203) 974-8518
Abstract:

Weak bonds between molecular segments and between separate molecules of natural organic matter (OM) govern its solubility, adsorption, supramolecular association in solution, and complexation with metal ions and oxides. We tested the hypothesis that especially strong hydrogen bonds, known as (negative) charge-assisted hydrogen bonds, (-)CAHB, contribute significantly to OM cohesion and increase water solubility of solid-phase OM. The (-)CAHB, exemplified by structures such as (-CO$_2$…H…O$_2$C) and (-CO$_2$…H…O), may form between weak acids with similar proton affinity, and is shorter, more covalent, and much stronger than ordinary hydrogen bonds. Using a high-organic reference soil, we show that (-)CAHBs within the solid OM phase (intra-OM) are disrupted by solutions of aliphatic and aromatic acids, resulting in enhanced solubility of OM. The aromatic acids included naturally occurring plant exudate compounds. At constant pH and ionic strength, OM solubility increased with added organic acid concentration and molecular weight. Polar compounds incapable of forming (-)CAHBs, such as alkanols, acetonitrile, and dimethyl sulfoxide, were ineffective. Solubility enhancement showed behavior consistent with (-)CAHB theory and published observations—namely, i) that formate is more effective than acetate due to its tendency to form stronger (-)CAHBs; ii) that solubility enhancement peaks at pH ~5-6, where the product of interacting carboxylate ion concentrations reaches a maximum; and iii) that elution of acetate or formate through soil columns releases hydroxide ion, consistent with formation of (-)CAHBs between added acid and free weak acid groups on the solid OM. The results support the hypothesis that the (-)CAHB contributes to the cohesion of OM in the solid state.

Keywords: Pahokee Peat; hydrogen bond; soil organic matter; humic substances; low-barrier hydrogen bond; charge-assisted hydrogen bond; plant exudate;
1. INTRODUCTION

Natural organic matter (OM) plays important roles in microbial activity, soil structure, mineral weathering, nutrient availability to plants, carbon storage, and pollutant fate. Establishing the biogeochemical roles of OM requires a molecular level understanding of the interactions of OM molecules with each other and with mineral and biological surfaces. Coming to such understanding has been challenging due to the intrinsic heterogeneity of OM on the microscopic, macroscopic, and geographic scales. The historical conceptual model of dissolved OM regards it as a macromolecular substance composed of individual molecules that randomly coil in solution as a result of weak forces and the hydrophobic effect, and that uncoil as pH rises due to charge repulsion between segments. The macromolecular model is based on molecular weight distribution derived from sedimentation velocity and other observations. Recently, a supramolecular model was proposed that regards DOM as a self-assembled association of relatively small molecules that bind intermolecularly by weak forces and the hydrophobic effect. This concept is supported by a shift to lower molecular weight (size exclusion chromatography) or greater translational diffusion coefficients (nuclear magnetic resonance) after decreasing the DOM concentration or adding organic solutes. In addition, molecular weights as low as ~200 g/mole have been observed in high resolution mass spectra of some DOM samples. Solid phase OM (SOM) is also regarded as a supramolecular aggregate, but on a grander scale. The partitioning of OM between the solid and liquid phases (i.e., its solubility) is governed in part by interactions within the solid OM phase (“intra-OM”, including intermolecular and intramolecular interactions) because OM can exist as discrete particles or as multilayer patches on mineral surfaces in soil and sediments.

Regardless of the conceptual model of OM, an underlying issue of importance is the nature of the forces holding molecular segments and separate molecules together. Participation of van der Waals (dispersion, induction, dipolar), metal ion bridging, and hydrogen (H) bonding have been widely invoked. While van der Waals forces can be taken for granted, and while computations have lent insight into metal ion involvement and H-bonding, there is surprisingly little experimental data backing the
existence and contributions of these interactions to the cohesive forces of OM. The present study addresses H-bonding. The breakup of supramolecular aggregates of DOM to smaller, faster-diffusing molecules upon addition of methanol, acetic acid, or propionic acid was attributed to disruption of van der Waals, π-π, and CH-π forces or H-bonding forces. The reduction in average molecular weight of dissolved Suwannee River Fulvic Acid (by electrospray ionization-mass spectrometry) after methylation with diazomethane was taken as evidence for disaggregation caused by disruption of intra-OM H-bonding involving carboxyl groups. Ordinary intra-OM H-bonds face strong competition from water molecules. Molecular dynamics simulations of hypothetical humic molecules show that, as hydration increases, OM-OM H-bonds decrease in abundance, leveling off after a point, whereas OM-water H-bonds increase in abundance.

A potential contribution to OM cohesion that has so far been overlooked is the exceptionally-strong H-bond that can form between a favorably-orientated donor-acceptor pair having closely-similar proton affinity (or pKₐ), known as the Charge-Assisted Hydrogen Bond (CAHB). Of particular relevance is the negative (-) CAHB formed by conjugate pairs of carboxylate, phenolate, or enolate groups, which are abundant in OM. These bonds may be written (−CO₂⋅H⋅⋅⋅O₂C−), (−CO₂⋅H⋅⋅⋅O−), or (−O⋅H⋅⋅⋅O−). Also known are (+/-)CAHB and (+)CAHB formed by conjugation of N/O and N/N donor-acceptors with closely-similar pKₐ, but weak acid N groups are much less abundant in OM. The CAHB is a subset of the Low Barrier Hydrogen Bond (LBHB), so-called because the energy barrier for proton exchange between heteroatoms is small or zero, creating a bond that is shorter, more covalent, and much stronger than ordinary H bonds. The strength of the LBHB increases as the difference in acidity constants of the donor and acceptor groups, ΔpKₐ, approaches zero. The (-)CAHB owes its exceptional strength to the close sharing of the proton due to the small ΔpKₐ and the participation of the negative charge in stabilization of the complexed proton. The sterically-unhindered (-)CAHB between carboxyl groups is the strongest H-bond known among organic compounds. Homoconjugation of phenols and heteroconjugation between a phenol and carboxylic acid are somewhat weaker. The CAHB are believed
to be involved in intermediate or transition state stabilization of enzymatic reactions \(^24\) and in the structure of metal-organic and inorganic molecular networks \(^{25,26}\). Recent studies show that the (-)CAHB is important in adsorption of weak acids, including carboxylic acids, sulfonamides, and phenols to carbonaceous materials such as chars and partially-oxidized carbon nanotubes, whose surfaces are abundant in carboxyl/phenoxyl groups \(^{27,17,28-30}\).

We proposed that exceptionally strong intramolecular and intermolecular (-)CAHBs can be counted among the important cohesive forces of SOM, and that disruption of such bonds can lead to greater solubility of SOM. To test this hypothesis we examined solubility of SOM in a high-organic reference soil after addition of simple aliphatic acids and single-ring aromatic acids and phenolic acids to the aqueous phase. Many of the selected aromatic and phenolic acids have been identified in soils (e.g., \(^{31}\)), where they are released from living and decaying plants and can influence soil and humus formation, metals complexation, mineral dissolution, allelopathy, nutrient bioavailability, and plant-microbe interactions \(^{32-35}\).

Certain features of the (-)CAHB are noteworthy in the context of the present study. First, unlike ordinary H-bonds that form between non-ionizable groups with widely different pK\(_a\) values (e.g., alcohols, ethers, ketones, esters), the (-)CAHB is potentially strong enough to out-compete OM-water H-bonds \(^{17}\), especially within the OM phase, where the H\(_2\)O concentration is lower than in bulk solution. Interestingly, molecular models of hydrated humic aggregates show that OM-OM H-bonds remain constant at about 1 H-bond per 2 heteroatoms regardless of water content \(^{15}\). Second, maximum conjugation occurs at a pH equal to the mean pK\(_a\) of the two reactants. The pK\(_a\) frequency in OM peaks around 4-5 reflecting mainly carboxyl groups, and then again around 9-10 reflecting mainly phenolic groups \(^{36}\). This means that OM cohesion due to (-)CAHB forces should maximize around pH 3-6 where the carboxylate group dissociates, and then again around pH 8-10 where phenolic and other acidic alcoholic groups dissociate. Third, water may supply a proton for the (-)CAHB, raising the bulk pH according to the reaction:
2A\(^{-}\) + H\(_2\)O ⇌ (A···H···A\(^{-}\)) + OH\(^{-}\)  

(1)

Our working hypotheses were as follows (Scheme 1).  

a) The organoanion solute can compete with existing (-)CAHB between carboxyl groups on SOM to displace relatively water-soluble OM molecules, leading to an increase in water solubility of SOM (Scheme 1a). The effectiveness of the organoanion may depend on its molecular structure.  

b) The organoanions in solution can form new (-)CAHB with SOM by abstracting a proton from water, resulting in the release of hydroxide (eq 1; Scheme 1b). The rise in bulk-liquid pH associated with this reaction may be mitigated by the buffering capacity of the solid phase.  

c) The organoanion solute can compete with existing intermolecular (-)CAHB between carboxyl groups on separate DOM molecules to promote disaggregation in solution (Scheme 1c). Based on studies with a high-organic reference soil we present data in support of (a) and (b) and defer consideration of (c) to a later report.

2. MATERIALS AND METHODS

2.1. Materials

The source of SOM was the Pahokee (Florida) Peat Soil (BS103P) consisting of both humic and fulvic acids purchased from the International Humic Substances Society. It contains 44.6 % C, 4.70 % H, 3.09 % N, and 6.9 % ash after combustion \(^{37}\), and has a pH (1 g soil:2.5 mL H\(_2\)O) of 5.3. The carboxyl and phenoxyl contents of fulvic and humic acids derived from this soil on the basis of titration curves have been reported \(^\text{36}\). The organic aromatic acids and other reagents were purchased in the highest purity available. Water was purified in a Milli-Q Integral 10 system.

2.2. Batch solubility experiments

Pahokee Peat samples (0.20 g) along with 20 mL of organic acid solution (at pH 6.0) were placed in 20-mL Teflon®-lined septum screw cap glass vials. Then, an amount of standard HCl or NaOH solution
determined according to preliminary experiment was added to each vial to attain a pH near 6. A control
was also made up containing only NaCl at the same molar concentration as organic acid; the ionic strength
of the control and samples was comparable since the dissolved organic acid was nearly completely
dissociated at pH 6. The vials were mixed end-over-end at 40 rpm at 20±1 °C. At termination, the pH was
measured and the vials were centrifuged at 20°C and 1800 rpm for 40 min, and the supernatant (extract)
was filtered through a 0.45-μm PTFE membrane filter. Solubilization rate in 0.3 M p-hydroxybenzoic acid
solution revealed that dissolution continues beyond 300 h, but slows down markedly after 24 h. Twenty
four hours was chosen as the operational solubility equilibration period for all systems.

2.3. Column elution experiments

These experiments employed a glass column (Benchmark, 150 mm×10 mm; Kinesis Inc.) equipped with
an adjustable Teflon plunger at each end. The column was packed with a mixture of Pahokee Peat and
glass microbeads (210-300μm, Sigma-Aldrich). The microbeads were pre-treated by soaking three times
in 0.1 M HCl for 24 h, washing repeatedly with water, and finally drying at 120 °C. The column was
packed dry in a vertical position by layering a homogeneous mixture of Pahokee Peat (1 g) and
microbeads (6 g) between layers of microbeads alone at each end of the column (1 g at inlet and 2 g at
outlet), each layer being added all at once. The top plunger was inserted to eliminate free space and 2 M
NaCl solution adjusted to pH 5.3 was pumped through the column from the bottom up at a flow rate of
0.05 mL/min using a constant-volume HPLC pump (Agilent 1100). When the liquid began to elute from
the column, the flow was stopped and the column was allowed to condition for 14-16 h. Flow was
resumed at 0.2 mL/min until the pH of the effluent approached 5.3 and then the eluent was then changed
to 2 M organic acid solution that had been pre-adjusted to pH 5.3 and total ionic strength of 2 M with
NaCl; the amount of NaCl added was based on the calculated degree of dissociation of the organic acid
given its pKₐ. Effluent was received to the bottom of a 1.0 mL vial in which a pH microprobe was
situated, and allowed to spill to waste. The pH was recorded approximately every 5 min. Approximately
every 10 min an aliquot of the effluent was collected from the same vial and passed through a 0.45 μm
PTFE filter prior to OM analysis. A diagram of the experiment is shown in Figure 1.

2.4. Determination of DOM concentration

Except for the controls, dissolved organic carbon (DOC) concentrations in the liquid samples could not be determined with any precision by ordinary combustion analysis because the DOC levels originating from the added organic solute were too high. Therefore, we used absorbance at 254 or 365 nm as a surrogate for DOM concentration. The results are generally reported at 365 nm, but qualitatively similar trends were obtained at both wavelengths in all experiments.

Figures 2a and 2b show that DOM absorbance of aqueous extracts or eluents of soil depends on electrolyte (NaCl, Na-formate, or Na-acetate), electrolyte concentration, and pH. To eliminate these effects in order to facilitate comparison among samples, the filtrate was pre-diluted in a phosphate buffer (0.1 M; pH 6.5) by at least 10-fold and sufficient to keep the absorbance reading at 254 and 365 nm below 1. Figure 2c shows that, diluted in this way, absorbance over the entire spectrum from 250 – 500 nm became independent of initial pH and electrolyte composition up to at least 2 M. The absorbance values reported in all the figures apply to the calculated values for the original solutions.

To evaluate the correlation between absorbance and OC concentration, Pahokee Peat (0.2 g) was mixed with 0.1 M NaCl (50 mL) and adjusted at different pH from 2 to 6 with NaOH or HCl using a quantity determined in a preliminary experiment, and the samples. After end-over-end shaking at 20±1 °C for 24 h, the vials were centrifuged and the supernate filtered per the steps described above. Non-purgeable total organic carbon (TOC) was measured in the filtrate by the high temperature combustion method (Shimadzu TOC-500) against a potassium phthalate standard and compared with absorbance after 10-fold dilution into the pH-6.5 phosphate buffer, as above. The results (Figure 2d) show that $A_{365}$ or $A_{254}$ correlates well with TOC. The non-zero intercept indicates a substantial concentration of DOC exists that is colorless at these wavelengths, more so at 365 nm. Abouleish and Wells observed a non-zero intercept between $A_{254}$ and DOC for various Pahokee peat and other fulvic and humic acid standards and
suggested that it was due to protein-like and carbohydrate-like components that do not absorb well at 254 nm.

3. RESULTS AND DISCUSSION

3.1. Studies in batch systems

Figure 3 shows the 24-h solubility of OM from Pahokee peat in 2 M solutions of formate, acetate, methanol, or the NaCl-in-water control as a function of pH. All systems were adjusted with NaCl to the same ionic strength at each pH, as depicted in the top graph. Solubility generally increased with pH, with a steeper rise above pH ~7, as expected due to deprotonation of acidic groups. Features of these plots support the (-)CAHB hypothesis. Addition of the (-)CAHB-capable organic acids greatly enhanced solubility compared to methanol and the water control. Solubility is greater for formate than acetate, consistent with the tendency of formate to form stronger (-)CAHB than acetate. By contrast, solubility is not enhanced—in fact, it is suppressed—by methanol. Methanol generally forms H bonds of only ordinary strength at environmental pH. The H-bond between SOM acidic groups and methanol—e.g., \((-\text{CO}_2\cdots\text{HOCH}_3)\)—are of the ordinary type because \(\Delta pK_a\) is large (the \(pK_a\) of carboxyl groups is \(~3-5\), and of methanol is 15.7). One could attribute solubility enhancement to a non-specific effect in which the relatively apolar parts of the OM molecules are better solvated when an organic solute is present.

However, the lack of solubility enhancement for 2 M methanol suggests that a general solvophilic effect cannot explain solubility enhancement by the organic acids. Lastly, solubility for formate and acetate peaks around pH 5, which is near mean \(pK_a\) of the organic acid solute and the carboxyl groups of SOM.

As mentioned in the Introduction (Section 1), this corresponds to the most favorable pH for (-)CAHB formation between interacting groups. Note that solubility in formate solution begins to peak at lower pH values than in acetate solution, reflecting the lower \(pK_a\) value of formate (3.75 vs 4.76). The peak does not appear in the water control or methanol systems, showing that ionic strength is not the cause. All of these
results are consistent with (-)CAHB formation between organic acids and acidic groups of SOM, allowing
greater solubility of SOM.

Figures 4a-4d shows the 24-h solubility of Pahokee peat SOM in solutions of different organic
acids or other polar organic solutes at pH ~6 where the organic acids are almost fully ionized. The solute
concentration in the panels varies to accommodate the different water solubilities of the organic acids.
Figures 4b - 4d show that SOM solubility in different organic acid solutions exceeds that of the control,
suggesting the involvement of (-)CAHB. In Figure 4a it can be seen that the solubility enhancement
observed for 1 M acetic acid is not observed for 1 M polar organic solutes that are incapable of forming
CAHBs because their $pK_a$ values are too far-removed from those of the weakly acid groups on SOM;
these solutes include 2-propanol, dimethylsulfoxide, methanol, and acetonitrile. In fact, the solubility of
SOM in 1 M solutions of the polar solutes is actually lower than in the water control. The lack of
solubility enhancement for the polar co-solvents argues against a non-specific solvophilic-based
explanation for the solubility enhancement by the organic acids. The aromatic acids are more effective
than the two aliphatic acids tested. Note in Figure 4 the outlier, caffeic acid, which gives more than 4
times the solubility enhancement of any other organic acid. The superior performance of caffeic acid may
be due to disruption of metal bridges between SOM segments owing to its chelation ability (via ortho
hydroxyl groups), which is exclusive to caffeic acid among the organic acids tested.

The normalized solubility—that is, the ratio of solubility in organic acid solution to the solubility
in the respective NaCl/water control solution from the data of Figure 4—is shown in Figure 5.

Normalized solubility increases with organic acid concentration in the examples where comparisons were
made (formic, benzoic, and 4-hydroxybenzoic). Normalized solubility trends weakly with organic acid
molecular weight ($R^2$: 0.554 for 1 M; 0.072 for 0.3 M; and 0.631 for 0.1 M organic acid). The trend with
molecular weight may be due to a contribution by van der Waals interactions between the displacing
organic acid molecule and the SOM segments that helps drive solubilization (see Scheme 1a).
3.2. Column studies

Figure 6 shows the results of experiments in which a column of Pahokee peat particles dispersed in glass microbeads was eluted with 2 M acetate, formate, or NaCl solution as control. The column was conditioned with 2 M NaCl at pH 5.3 before switching the influent to the 2 M organic acid solution adjusted to the same pH and ionic strength. About 100 min after the influent was switched, the absorbance abruptly increased from about 2 to about 10 units for formate, and from about 2 to about 5 units for acetate over a 50 min period, and then declined toward the original value. At the same time, the pH increased from 5.32 to 5.44 for formate, or from 5.24 to 5.39 for acetate. A blank column in which Pahokee peat was omitted from the packing material showed no changes in solution absorbance or pH upon switching the eluent to formate (bottom panel in Figure 6).

The column experiments confirm the results of the batch experiments that organic acids displace OM into solution. Consistent with disruption of (-)-CAHBs is the greater release of DOM in the case of formate than acetate. The results further show that displacement of OM into solution occurs coincidentally with uptake of protons from the solution (release of hydroxide to solution). We ascribe proton uptake to the formation of (-)-CAHB between free carboxylate groups on OM and formate or acetate ions, according to the reaction shown in Scheme 1b based on eq 1. Quantification of proton uptake is made complicated by the buffering capacity of SOM and the organic acid itself, as well as possibly the rates of proton exchange with the liquid phase.

4. CONCLUSIONS AND IMPLICATIONS

The results of this study provide insight into the molecular-level associations that OM can engage with geosolids. The CAHB makes OM molecules “stickier” (more cohesive and adhesive), affecting solubility, molecular aggregation in solution, and adsorption to mineral and biological surfaces. Formation of CAHBs may contribute to supramolecular aggregation of DOM, which can influence the transport of DOM in the vadose and saturated zones. Some evidence in support of the contribution of
(-)CAHB to supramolecular aggregation already exists, although not recognized by the researchers: the finding that diazomethane treatment promotes disaggregation of DOM\textsuperscript{14}; and the finding that simple carboxylic acids break up OM supra-aggregates more readily than methanol\textsuperscript{8}. Plant root exudates are commonly aromatic acids; these exudates may help mobilize SOM in the rhizosphere via CAHB, which, in turn, may impact adsorption, solubility, and bioavailability of OM. The $pK_a$ of the (-)CAHB complex is 1-3 units above those of the free acids\textsuperscript{17}; therefore, such bonds may influence the buffering capacity of OM. Lastly, it is possible that (-)CAHBs may compete with transition metal ion coordination to carboxyl sites on DOM, based on the results for Cu\textsuperscript{2+} complexation with simple organic acids in solution\textsuperscript{40}.

The potential of OM to form (-)CAHB also has implications with respect to its interactions with anthropogenic substances. Already mentioned in the Introduction is the known role that (-)CAHB plays in interactions of small weak acids (contaminants of concern and others) with the surfaces of chars and partially-oxidized carbon nanotubes. Other situations in which (-)CAHB can be of importance are the interactions between DOM and chars, which are ubiquitous in soil and sediment; between DOM and carbon nanotubes; and between DOM and other engineered nanomaterials functionalized with coatings that have weak acid groups. For example, citrate groups on citrate-coated gold nanoparticles (CIT-nAu), render the particles sticky under certain conditions towards each other\textsuperscript{41} and to black carbon (biochar) surfaces through interactions between carboxyl groups on opposing entities.\textsuperscript{42} Esfahani et al.\textsuperscript{43} 44 found that CT-nAu promotes disaggregation of DOM and becomes “overcoated” by OM, possibly through (-)CAHB interactions between bound citrate and OM carboxyl groups.

**ACKNOWLEDGEMENTS**

This study was funded by NSF CBET Environmental Engineering and the USDA National Institute of Food and Agriculture (Hatch). We thank the National Natural Science Foundation of China (41671326) for a scholarship to JN for study abroad.
REFERENCES


2. R. S. Cameron, B. K. Thornton, R. S. Swift and A. M. Posner, Molecular weight and shape of humic acid from sedimentation and diffusion measurements on fractionated extracts., *J. Soil Sci.*, 1972, **23**, 394-408.


Scheme 1. Hypothesized CAHB interactions of carboxylate ions with OM: a) disruption of OM-OM CAHBs in OM anchored to a particle (gray shape) resulting in partial solubilization; b) formation of new OM-carboxylate CAHBs leading to release of hydroxide ions into solution; and c) disruption of OM-OM interactions within supramolecular aggregates leading to their dispersion.
Figure 1. Scheme of column elution experiment. After a time, the eluent is switched from the NaCl solution to the organic acid anion solution at the same ionic strength. The pH and absorbance of the effluent was monitored.
Figure 2. Use of absorbance as surrogate for DOM concentration. **a)** Absorbance at 365 nm of DOM extracted by different solutions in the undiluted supernatant at pH 6 is dependent on salt composition and concentration. **b)** Absorbance ratio $A_{254}/A_{365}$ in the undiluted supernatant is pH-dependent. **c)** Absorbance spectrum of a DOM solution of different compositions after 10-fold dilution into phosphate buffer at pH 6.5 showing the spectrum is no longer sensitive to initial sample composition and pH. **d)** Correlation between absorbance and total non-purgeable total organic carbon content of water extracts of Pahokee peat obtained at different pH and uniform ionic strength of 0.1 M. The TOC was measured directly and
the absorbance was measured after dilution into the pH 6.5 phosphate buffer and then corrected for dilution.
Figure 3. A) Absorbance at 365 nm of DOM extracted by different solutions (2 M formic acid, acetic acid, methanol, or NaCl) as a function of pH. B) Adjusted ionic strength calculated at each measured pH in each experiment in Panel A.
Figure 4. Twenty-four hour solubility of organic matter from Pahokee peat in water containing different organic solutes or NaCl (control) at the specified concentration (in panel b, phenol is 0.8 M due to solubility limitation).
Figure 5. Solubility of Pahokee OM in aqueous solutions of organic acids at different concentrations (data from Figure 6) normalized to the NaCl control as a function of organic acid molecular weight.
Figure 6. Column experiments with Pahokee peat dispersed in glass microbeads and eluted with 2 M NaCl, then switched to formate (A and C) or acetate (B). Panel C represents the control column, which contained only glass microbeads and no peat.
Solubility experiments suggest that very strong hydrogen bonds between weak acid functional groups play an important role in organic matter cohesion.