Dalton Transactions

PbFePO4F2 with a 1/6th bond depleted Triangular Lattice

Journal:	Dalton Transactions
Manuscript ID	DT-COM-09-2018-003802.R1
Article Type:	Communication
Date Submitted by the Author:	08-Oct-2018
Complete List of Authors:	Lu, Hongcheng; Duke University, Physics Kageyama, Hiroshi; Kyoto University, Department of Energy and Hydrocarbon Chemistry
	···,-······,

SCHOLARONE[™] Manuscripts

Dalton Transactions

COMMUNICATION

PbFePO₄F₂ with a 1/6th bond depleted Triangular Lattice

Hongcheng Lu, ^a Hiroshi Kageyama *^a

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

We hydrothermally synthesized a layered PbFePO₄F₂ (*P*₁/*n*). Fe³⁺ cations (*S* = 5/2) within the layer are connected via F⁻ and (PO₄)³⁻ anions to give a novel (distorted) 1/6th bond depleted triangular lattice. The $\chi(T)$ suggests strong antiferromagnetic interactions with Weiss constant of –125 K, but geometrical frustration and low dimensionality appears to prohibit an long-range order down to 23 K.

Mixed-anion compounds have been a topic of extensive research owing to novel functional properties,¹ including non-toxic pigments (e.g. LaTaON₂),² visible-light-responsive photocatalysts (e.g. Bi₄NbO₈Cl),³ nonlinear optical materials (e.g. $C_{10}H_{10}N_3NbOF_4$),⁴ and electrodes (e.g. AgNa(VO₂F₂)₂).⁵ Inclusion of anion-groups (polyanion) such as (BO₃)^{3–}, (CO₃)^{2–} and (PO₄)^{3–} further enriches chemical bonds and thus available functionalities. Fluorides combined with anion groups are particularly promising as nonlinear optical materials because of the ability of the fluorine ion to blue-shift the absorption edge, such as KBe₂BO₃F₂⁶ and NH₄B₄O₆F⁷ with (BO₃)^{3–} and Ba₂VO₂(IO₃)₃F₂⁸ with (IO₃)[–]. Besides, when non-d⁰ transition metal is used, various magnetic lattices with tuneable exchange interactions result.⁹⁻¹²

Geometrically frustrated spin systems are known to exhibit exotic phenomena such as successive phase transitions, nontrivial spin textures and spin liquid state.¹³⁻¹⁵ The triangular lattice (Figure 1a) is an archetypal system that has been examined since the earliest days of research in frustrated magnetism.¹⁶ Later, the attention has shifted to kagomé lattice (Figure 1b), a 1/4th site depleted triangular lattice (d = 1/4) since the reduced coordination number of z = 4 (vs. 6) could enhance quantum fluctuations.¹⁷ The honeycomb lattice with a 1/3th site depletion (d = 1/3, z = 3), shown in Figure 1c, can be frustrated when the next-nearest-neighbour is added,¹⁸ and also represents the exactly solvable Kitaev model.¹⁹ Although much less investigated, other site depleted triangular lattice derivatives are reported, such as 1/4th and 1/6th site depleted triangular lattices (Figure 1d and e) in K₂Mn₃(VO₄)₂(OH)₂^{20, 21} and Mn₅(VO₄)₂(OH)₄,²¹⁻²³ and a maple-leaf lattice (Figure 1f) in MgMn₃O₇·3H₂O.²⁴ Besides site depletion, bond depletion could also obtain triangular lattice derivatives,²⁵ such as cube tile lattice with 1/3th bond depletion (Figure 1g) as found in CsFe₃(SeO₃)₂F₆.²⁶

Fig. 1 Evolutions of triangular lattice: (a) triangular lattice,¹⁶ (b) kagomé lattice,¹⁷ (c) honeycomb lattice,^{18, 19} (d) 1/4th site depleted triangular lattice,^{20, 21} (e) 1/6th site depleted triangular lattice,²¹⁻²³ (f) maple-leaf lattice,²⁴ (g) cube tile lattice,²⁶ (h) 1/6th bond depleted triangular lattice (this work), where *d* is the number of site depletion from triangular lattice and *z* is the coordination number.

When one alternately removes bonds along one direction, one obtains a lattice with d = 0 and z = 4 and 6, which we call hereafter a 1/6th bond depleted triangular lattice (Figure 1h). In this study, we have hydrothermally synthesized an iron phosphate fluoride containing $(PO_4)^{3-}$ anions, PbFePO₄F₂. The consideration of exchange pathways suggests that PbFePO₄F₂ is an experimental realization of the distorted 1/6th bond

^{a.}Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan. mail: kage@scl.kyoto-u.ac.jp

⁺ Electronic Supplementary Information (ESI) available: CCDC 1040865 for PbFePO₄F₂. For ESI and crystallographic data in CIF, magnetic data or other electronic format See DOI: 10.1039/x0xx00000x

depleted triangular lattice. Magnetic measurement indicates a sizable spin frustration and low dimensionality.

Fig. 2 Crystal structure of PbFePO₄F₂ viewed along (a) [100] and (b) [010].

PbFePO₄F₂ was hydrothermally synthesized by using 0.2 g Pb₃O₄, 0.1 g FeO, 0.4 mL H₃PO₄, 0.8 mL 48% aqueous HF (caution!). Experimental details for synthesis and characterization are described in Supporting Information. Single crystal X-ray diffraction has revealed that this compound crystalizes in a layer structure with the space group $P2_1/n$. The PXRD is shown in Figure S1. The unit cell parameters are a =5.257(2) Å, b = 12.404(5) Å, c = 7.098(3) Å and $\beta = 102.8(1)^{\circ}$ (Z =4). There are two Fe atoms, one Pb atoms, one P atom, two F atoms, four O atoms in its asymmetric unit. As shown in Figure 2, (FeF₂PO₄)²⁻ layers, separated by 12-coordinated Pb²⁺ cations, stack along [010] with a distance of 6.202(3) Å (half of the b axis). In the FeF₂PO₄ layer, two iron-centered heteroleptic octahedra, $Fe(1)O_2F_4$ and $Fe(2)O_4F_2$, are alternately connected through the F^- and $(PO_4)^{3-}$ ligands to form the doubly-bridged $Fe(1)-F(1)/(PO_4)-Fe(2)$ chains along [001] (Figure 2b). This provides the shortest Fe–Fe distance of 3.5490(15) Å. These chains are linked by the $(PO_4)^{3-}$ groups within the *ab* place. The Fe(1)O₂F₄ octahedron has fluorine anions at the equatorial sites $(d_{\text{Fe}(1)-\text{F}(1)} = 1.941(5) \text{ Å} \times 2 \text{ and } d_{\text{Fe}(1)-\text{F}(2)} = 1.933(5) \text{ Å} \times 2) \text{ and}$ oxide anions at the apical site ($d_{Fe(1)-O(1)} = 1.985(5) \text{ Å} \times 2$). The $Fe(2)O_4F_2$ octahedron has equatorial O^{2-} anions $(d_{Fe(2)-O(3)} =$ 1.978(5) Å × 2, $d_{Fe(2)-O(4)}$ = 2.074(5) Å × 2) and apical F⁻ anions $(d_{\text{Fe}(2)-F(1)}=2.012(5) \text{ Å} \times 2)$. The P–O bond length in the PO₄ group ranges from 1.518 Å to 1.552 Å, which agree with those reported.9 Other bond lengths and angles are summarized in Table S2. The oxidation states of +3 in iron (calculated values: 3.03 for Fe(1) and 2.76 for Fe(2)), +5 in phosphorus (calculated value: 4.83) are confirmed by bond valence sum (BVS) calculations using values reported by Brese and O'Keefe (see Table S2).²⁷ Upon heating, a powder sample starts to decompose around 200 °C (Figure S3) and the final product after TGA is identified as $Pb_3Fe(PO_4)_3$ and hematite Fe_2O_3 (Figure S1). The weight loss of 6.2% is in good agreement with the calculated loss of 5.6%.

The temperature dependence of the magnetic susceptibility measured at 0.1 T is shown in Figure 3a. A Curie-Weiss fitting was conducted in a high temperature range between 150 K and 350 K, giving an effective magnetic moment of $P_{\text{eff}} = 5.96(1) \mu_{\text{B}}$ and a Weiss constant $\theta = -125.6(6)$ K. The P_{eff} value is fairly consistent with the theoretical value of 5.92 μ_{B} for S = 5/2. The value of θ indicates predominant antiferromagnetic interactions. As the temperature decreases, the magnetic susceptibility shows a kink around 23 K, suggesting the onset of an antiferromagnetic ordering. A slight upturn of $\chi(T)$ below 17 K is ascribed to a small amount of defects, referred as Curie tail;^{28, 29} a fitting yielded 0.63% of free *S* = 5/2 spins (Figure S4a). When measured at 6 T, the kink position slightly shifts to a lower temperature of 21 K (Figure S4b). The isothermal magnetization at 2 K (and 300 K) linearly increases with the moment of 0.33 $\mu_{\rm B}$ at 7 T (Figure 3b), in agreement with the antiferromagnetic ground state.

Fig. 3 (a) Magnetic susceptibility $\chi(T)$ (black) and its inverse $\chi(T)^{-1}$ (blue) for PbFePO₄F₂ at 0.1 T, the inset is magnified $\chi(T)$ around T_{N} . (b) Magnetization M(H) for PbFePO₄F₂ at 300 K (blue) and 2 K (red).

Let us discuss the magnetic interactions in PbFePO₄F₂ from the viewpoint of the crystal structure. As mentioned earlier, Fe(1) and Fe(2) are connected via F⁻ and (PO₄)³⁻ anions along [001] (Figure 2b). Given the Fe(1)–F(1)–Fe(2) bridging angle of 127.7°, this pathway would provide, according to Goodenough-Kanamori rule,^{30, 31} strong antiferromagnetic superexchange interactions J_1 (see Figure 4 and S5a). These Fe chains are linked by (PO₄)³⁻ groups within the *ac* plane, giving super-superexchange interactions. Here, Fe(2) cations in the neighboring chains ($d_{Fe(2)-Fe(2)} = 5.257(2)$ Å) are doubly-bridged by two PO₄ groups to give J_2 , while Fe(1) is connected to Fe(2) ($d_{Fe(1)-Fe(2)} = 5.6557(18)$ Å) via a single PO₄ group to give J_2' (Figure 4 and S5a). There is no magnetic exchange pathway between two Fe(1) cations despite a similar distance of $d_{Fe(1)-Fe(1)} = 5.257(2)$ Å. The interlayer interactions should be much smaller since the FeF₂PO₄ layers are separated by Pb cations.

Fig. 4 A distorted 1/6th bond depleted triangular lattice in PbFePO₄F₂.

As a result, the magnetism of PbFePO₄F₂ can be described by a 'distorted' 1/6th bond depleted triangular lattice with J_1 , J_2 and J_2' , as shown in Figure 4. A degree of frustration is typically estimated using the frustration index f, which is defined by f = $|\theta|/T_N$. For PbFePO₄F₂, f is calculated as $|\theta|/T_N = |-125.6|/23$ = 5.5, suggesting moderate frustration.^{13, 15, 32}. In the absence of further magnetic measurements such as elastic/inelastic neutron scattering as well as DFT calculations, the sign and magnitude of J_2 and J_2' remains unclear. However, the magnetic superexchange interaction mediated by PO₄ groups could be strong and significantly important, as manifested in VODPO₄·0.5D₂O³³ and (VO)₂P₂O₇³⁴⁻³⁶ by inelastic neutron scattering, electron spin resonance (ESR) and nuclear magnetic

Journal Name

resonance (NMR) measurements. Thus, in PbFePO₄ $F_2 J_2$ and J_2' could be comparable in the magnitude with J_1 . We believe that the present study will stimulate theoretical investigations of the 1/6th and other bond depleted triangular lattices.

Conclusions

An iron phosphate fluoride PbFePO₄F₂ has been hydrothermally synthesized and structurally characterized by single crystal Xray diffraction. PbFePO₄F₂ is an experimental correspondence of a 'distorted' 1/6th bond depleted triangular lattice. Despite strong antiferromagnetic interactions with $\theta = -125.6(6)$ K, no long-range order occurred until 23 K possibly due to moderate frustration in this triangular-lattice derivative. Our work shows an illustration that the use of mixed anions or anion-groups is beneficial to explore and discover novel materials with promising lattices and possible exotic physical phenomena.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by Creation of Innovative Functions of Intelligent Materials on the Basis of Element Strategy (CREST) and Grant-in-Aid for Scientific Research on Innovative Areas "Mixed anion" (JP16H06439) from MEXT.

Notes and references

- H. Kageyama, K. Hayashi, K. Maeda, J. P. Attfield, Z. Hiroi, J. M. Rondinelli and K. R. Poeppelmeier, *Nat. Commun.*, 2018, 9, 772.
- 2. M. Jansen and H. P. Letschert, *Nature*, 2000, **404**, 980.
- H. Fujito, H. Kunioku, D. Kato, H. Suzuki, M. Higashi, H. Kageyama and R. Abe, J. Am. Chem. Soc., 2016, 138, 2082-2085.
- H. Lu, R. Gautier, M. D. Donakowski, T. T. Tran, B. W. Edwards, J. C. Nino, P. S. Halasyamani, Z. Liu and K. R. Poeppelmeier, J. Am. Chem. Soc., 2013, 135, 11942-11950.
- 5. M. D. Donakowski, A. Görne, J. T. Vaughey and K. R. Poeppelmeier, *J. Am. Chem. Soc.*, 2013, **135**, 9898-9906.
- 6. N. Ye and D. Tang, J. Cryst. Growth, 2006, **293**, 233-235.
- G. Shi, Y. Wang, F. Zhang, B. Zhang, Z. Yang, X. Hou, S. Pan and K. R. Poeppelmeier, *J. Am. Chem. Soc.*, 2017, **139**, 10645-10648.
- 8. H. Yu, M. L. Nisbet and K. R. Poeppelmeier, *J. Am. Chem.* Soc., 2018, **140**, 8868-8876.
- 9. H. Lu, N. Hayashi, Y. Matsumoto, H. Takatsu and H. Kageyama, *Inorg. Chem.*, 2017, **56**, 9353-9360.
- X. Yue, Z. Ouyang, M. Cui, L. Yin, G. Xiao, Z. Wang, J. Liu, J. Wang, Z. Xia, X. Huang and Z. He, *Inorg. Chem.*, 2018, 57, 3151-3157.
- 11. G. Corbel, E. Suard, J. Voiron and M. Leblanc, *J. Magn. Magn. Mater.*, 2001, **234**, 423-430.

- 12. S. Hu, M. Johnsson, J. M. Law, J. L. Bettis, M.-H. Whangbo and R. K. Kremer, *Inorg. Chem.*, 2014, **53**, 4250-4256.
- 13. L. Balents, *Nature*, 2010, **464**, 199-208.
- 14. A. Sen, K. Damle and R. Moessner, *Phys. Rev. Lett.*, 2011, **106**, 127203.
- F. H. Aidoudi, D. W. Aldous, R. J. Goff, M. Z. SlawinAlexandra, J. P. Attfield, R. E. Morris and P. Lightfoot, *Nat. Chem.*, 2011, **3**, 801-806.
- 16. I. Morgenstern, Z. Phys. B Con. Mat., 1981, 43, 33-36.
- 17. M. Fu, T. Imai, T.-H. Han and Y. S. Lee, *Science*, 2015, **350**, 655-658.
- O. Smirnova, M. Azuma, N. Kumada, Y. Kusano, M. Matsuda, Y. Shimakawa, T. Takei, Y. Yonesaki and N. Kinomura, J. Am. Chem. Soc., 2009, 131, 8313-8317.
- A. Banerjee, C. A. Bridges, J. Q. Yan, A. A. Aczel, L. Li, M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu, J. Knolle, S. Bhattacharjee, D. L. Kovrizhin, R. Moessner, D. A. Tennant, D. G. Mandrus and S. E. Nagler, *Nat. Mater.*, 2016, **15**, 733-740.
- 20. J.-H. Liao, D. Guyomard, Y. Piffard and M. Tournoux, Acta Crystallog. C, 1996, **52**, 284-286.
- C. D. McMillen and J. W. Kolis, *Dalton Trans.*, 2016, 45, 2772-2784.
- S.-Y. Zhang, W.-B. Guo, M. Yang, Y.-Y. Tang, M.-Y. Cui, N.-N. Wang and Z.-Z. He, *Dalton Trans.*, 2015, 44, 20562-20567.
- L. D. Sanjeewa, M. A. McGuire, C. D. McMillen, D. Willett, G. Chumanov and J. W. Kolis, *Inorg. Chem.*, 2016, 55, 9240-9249.
- 24. Y. Haraguchi, A. Matsuo, K. Kindo and Z. Hiroi, *Phys. Rev. B*, 2018, **98**, 064412.
- 25. J. M. Hopkinson and J. J. Beck, arXiv:1207.5836, 2012.
- H. Lu and H. Kageyama, *Inorg. Chem.*, 2018, **57**, 6186-6190.
- 27. N. E. Brese and M. O'Keeffe, *Acta Crystallogr. B*, 1991, **47**, 192-197.
- H. Lu, T. Yamamoto, W. Yoshimune, N. Hayashi, Y. Kobayashi, Y. Ajiro and H. Kageyama, J. Am. Chem. Soc., 2015, 137, 9804-9807.
- M. D. Donakowski, H. Lu, R. Gautier, R. Saha, A.
 Sundaresan and K. R. Poeppelmeier, *Z. Anorg. Allg. Chem.*, 2014, 640, 1109-1114.
- 30. J. B. Goodenough, J. Phys. Chem. Solids, 1958, 6, 287-297.
- 31. J. Kanamori, J. Phys. Chem. Solids, 1959, **10**, 87-98.
- R. Gautier, K. Oka, T. Kihara, N. Kumar, A. Sundaresan, M. Tokunaga, M. Azuma and K. R. Poeppelmeier, *J. Am. Chem. Soc.*, 2013, **135**, 19268-19274.
- D. A. Tennant, S. E. Nagler, A. W. Garrett, T. Barnes and C.
 C. Torardi, *Phys. Rev. Lett.*, 1997, **78**, 4998-5001.
- A. W. Garrett, S. E. Nagler, D. A. Tennant, B. C. Sales and T. Barnes, *Phys. Rev. Lett.*, 1997, **79**, 745-748.
- 35. G. S. Uhrig and B. Normand, *Phys. Rev. B*, 1998, **58**, R14705-R14708.
- T. Yamauchi, Y. Narumi, J. Kikuchi, Y. Ueda, K. Tatani, T. C. Kobayashi, K. Kindo and K. Motoya, *Phys. Rev. Lett.*, 1999, 83, 3729-3732.

Table of Contents Only

A 1/6th bond depleted triangular lattice has been experimentally realized in the novel compound $PbFePO_4F_2$ with moderately strong frustration.

