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Turing patterns on radially growing domains: Experi-
ments and simulations†

Christopher Konow,a Noah H Somberg,a Jocelyne Chavez,b Irving R Epsteina and Miloš
Dolník ∗a

We study Turing pattern formation in a system undergoing radial growth in two dimensions. The
photosensitive chlorine dioxide-iodine-malonic acid reaction is illuminated to inhibit patterning,
with a growing non-illuminated circular domain in which the pattern develops. We examine the
relationship between the linear radial growth rate and the resulting pattern morphology. Faster
growth causes the pattern to form parallel to the growing boundary as concentric rings, while
slower growth leads to pattern formation perpendicular to the growing boundary. We observe
three distinct growth modes for the Turing patterns, which also depend on the radial growth rate.
The experimental results are qualitatively reproduced in numerical simulations using the Lengyel-
Epstein model with an additional term to account for the photosensitivity of the reaction. These
results may provide new insight into how patterns form in growing biological systems.

1 Introduction
Over sixty years ago, Alan Turing proposed a mechanism for the
spontaneous generation of heterogeneity in an originally homo-
geneous system via chemical reaction and diffusion.1 This mech-
anism can result in temporally stable, spatially periodic patterns
which are commonly referred to as Turing patterns.2,3 Morpho-
logically, these patterns are characterized by stripes or hexago-
nal arrays of spots with a characteristic wavelength.4,5 In na-
ture, there are many systems for which patterning is thought to
arise from a Turing-type mechanism6,7, such as fish skins7–9, bird
feathers10,11, leopard coats12,13, seashells7, and biomass distri-
butions in arid ecosystems.14,15

Despite the wide variety of Turing patterns found in nature,
experimental studies on Turing pattern-generating systems re-
main difficult due to the inherent complexity of biological pro-
cesses.2,6,13 With the introduction of the continuously fed un-
stirred reactor (CFUR) in the late 1980s,16 chemical systems have
often been used as viable alternatives to study Turing pattern be-
havior due to their more well-understood dynamics.2,17,18 In par-
ticular, the chlorite-iodide-malonic acid (CIMA) reaction2,3 and
its derivative, the chlorine dioxide-iodine-malonic acid (CDIMA)
reaction,19–24 have been used for the past three decades to gain
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deeper insight into the dynamics of Turing pattern formation.
One particular advantage of using the CDIMA system is the re-
action’s photosensitivity.19 When exposed to intense visible light,
the Turing pattern is inhibited due to the photodissociation of
molecular iodine.19 This property has previously been used to ex-
plore the effect of spatiotemporal forcing of Turing patterns23,24

as well as pattern recovery after a period of inhibition20.

However, most prior studies on Turing patterns in chemical
systems ignore a critical aspect of biological systems: growth.
Growth has been shown to significantly impact biological pat-
tern formation.8,9,12,13,25 In addition, mathematical simulations
reveal a wealth of new Turing pattern phenomena arising when
growth is included, such as the widening of the region in pa-
rameter space where Turing patterns exist,26–28 history depen-
dence of the resulting pattern,28 patterns on periodically deform-
ing domains,27 and patterns arising from activator-activator and
short range inhibitor-long range activator systems.26 Míguez et
al. have performed the only experimental studies on the effect
of growth, specifically one-dimensional axial growth, on a Tur-
ing pattern resulting from the CDIMA reaction.21 They find that
the growth rate has a significant impact on the pattern orienta-
tion, with faster speeds orienting the pattern parallel and slower
speeds orienting the pattern perpendicularly with respect to the
moving boundary.21

In this article, we examine the impact of two-dimensional do-
main growth on Turing pattern development. We present an ex-
perimental method for controlling the two-dimensional growth
of Turing patterns generated by the CDIMA reaction. Both ex-
perimental and numerically simulated results of linear (constant)
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Fig. 1 Schematic of experimental setup for generating Turing patterns
in the CDIMA reaction with radially growing domain. The blue arrows
indicate the one-sided reagent inflow to the CFUR.

radial growth of a domain with Turing patterns show good agree-
ment with the experiments performed by Míguez et al.,21 and
extend them into the second dimension. We observe three dis-
tinct modes of Turing pattern formation in growing domains and
provide some discussion of how the growth mode relates to the fi-
nal pattern. To analyze the stability and robustness of the various
Turing pattern modes, we construct a parametric diagram from
numerical simulations and discuss the size of the various pattern-
ing regions. To conclude, we consider other studies that might
be performed on two-dimensional Turing patterns in growing do-
mains, some of which are currently in progress.

2 Methods
2.1 Experimental

2.1.1 Apparatus and Procedure

A schematic overview of the experimental setup is depicted in Fig-
ure 1. The experiments were carried out in a CFUR composed of a
2% agarose gel (Sigma-Aldrich, thickness 0.45 mm, diameter 25
mm). The CFUR gel was fed on one side with well-mixed reagents
from a continuously stirred tank reactor (CSTR, volume 2.0 mL,
stir rate 660 rpm). The CSTR and CFUR were separated by two
membranes, a cellulose nitrate membrane (Whatman, pore size
0.45 μm) and an anapore membrane (Whatman, pore size 0.2
μm), both of which were impregnated with 2% agarose gel to
provide rigid support and color contrast with the gel.

Three reagent solutions were fed into the CSTR using peristaltic
pumps (Gilson). First, an unforced Turing pattern was allowed
to develop under ambient light (0.4 mW cm-2) until the pat-
tern was fully formed, which took approximately 3 hours. Then,
a MATLAB-controlled program was used to generate a growing
mask, where the growing domain was a dark circle under ambi-
ent light (0.4 mW cm-2) on a visible light background (10.1 mW
cm-2). This inhibited the patterns outside of the growing mask
by forcing the reaction in that region of the CFUR into the light
steady state (SS).19 The mask was projected onto the CFUR using
a PC-controlled DLP-projector (Dell 1510X). Images of the pat-

terns were collected with a CCD Monochrome Imaging Camera
(PixeLINK, PL-B953U). Images were collected every minute over
the course of the experiment, which typically lasted from one to
three days. At the conclusion of the experiment, the resulting im-
ages were enhanced to improve contrast using Corel Photo-Paint
x5. MATLAB was used to develop space-time plots and Adobe
Photoshop was used to create the animations found in the ESI†.

2.1.2 Materials

The CSTR was fed with the following three solutions: (i) I2
(Aldrich) and acetic acid (Fisher, 10% by volume, used to fully
dissolve iodine); (ii) malonic acid (MA, Aldrich) and poly-(vinyl
alcohol) (PVA, Aldrich, Mw 9,000-10,000, 80% hydrolysed); and
(iii) ClO2, which was prepared according to ref. 29. All three
infeed solutions also contained 10 mM H2SO4 (Aldrich). The
initial concentrations of the reactants in the CSTR (after mixing
the three solutions as they entered the CSTR) for all experiments
were: [I2] = 0.4 mM, [MA] = 1.0 mM, [ClO2] = 0.08 mM, and
[PVA] = 10 g L-1. Concentrations of the stock I2 and ClO2 so-
lutions were measured spectrophotometrically using a Shimadzu
UV-Visible Spectrophotometer (UV-1650PC).

2.2 Numerical Simulations

We simulated the CDIMA reaction using the Lengyel-Epstein two-
variable model3 modified to account for the effects of illumina-
tion.19

∂u
∂τ

= a−u− 4uv
1+u2 −W +∇

2u (1)

∂v
∂τ

= σ

[
b
(

u− uv
1+u2 +W

)
+d∇

2v
]

(2)

Here, u and v are dimensionless concentrations of the activator
and inhibitor species, I− and ClO −

2 respectively. a, b, d, and
σ are dimensionless parameters, and W is the dimensionless ef-
fect of the illumination. For our simulations the parameters were
fixed at a = 12, d = 1, and σ = 50. We used W = 1.5 to simulate
the illuminated area and W = 0 to simulate the dark area of the
reactor. The parameter b was varied between 0.300 and 0.340,
and the growth rate of the dark domain was varied between 0.05
and 0.75 s.u./t.u. (dimensionless space units per time unit).

Equations 1 and 2 were solved numerically using COMSOL
Multiphysics versions 4.4 and 5.3, with zero-flux boundary con-
ditions along the circular boundary of the reactor. The size of
the dark area of the reactor was increased stepwise via paramet-
ric sweep of the radius by varying increments depending on the
growth rate. The time-dependent solver was fixed to solve at t = 0
and t = 10 t.u. for each radius step. Each simulation was run until
a final radius of 100 s.u.

3 Results and Discussion

3.1 Final Pattern Morphologies

We observe a distinct trend for the resulting pattern morpholo-
gies from two-dimensional radial growth. For fast growth rates,
stripes in the shape of concentric rings form parallel to the grow-
ing boundary, as seen in Figure 2a for a radial growth rate of
0.50 mm/h. For slow growth rates, the resulting Turing stripes
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Fig. 2 Turing patterns on a radially growing domain for fast, intermediate, and slow growth rates. Final Turing pattern (left) and a space-time plot of
the experiment (right) are shown. Each box around the final Turing patterns is 7.66 mm x 7.66 mm. The red lines indicate the location where the
space-time plot information was taken. Radial growth rates (total growth time) are (a) 0.50 mm/h (416 min), (b) 0.20 mm/h (1041 min), and (c) 0.10
mm/h (1386 min).

are oriented perpendicular to the the growing boundary, as seen
in Figure 2c for a growth rate of 0.10 mm/h. Note that there
are also areas of inverted spots (black hexagonal spots with white
borders) in Figure 2c. This is due to experimental irregularities
such as slight inhomogeneities in the CFUR gel. However, no con-
centric ring patterns are observed at the slower growth rates.

For intermediate growth rates (typically rates between 0.35
and 0.15 mm/h) we observe a striped pattern that is interme-
diate between concentric rings and perpendicular patterns. The
stripes are oriented across the circular growing domain, similar
to the perpendicular patterns. However, instead of extending
radially from the center of the domain in many different direc-
tions, the stripes form parallel to one another, with most of the
stripes growing in the same direction. An example of this type of
pattern is shown in Figure 2b for a growth rate of 0.20 mm/h.
These similarly-oriented stripes indicate the transition between
the striped concentric rings and the perpendicular patterns shown
in Figure 2a,c respectively. For all of the patterns shown in Fig-
ure 2, time-lapse videos of their growth are provided in the ESI†.

The experimental results shown in Figure 2 are supported by
numerical simulations using the Lengyel-Epstein model. The re-
sults and space-time plots are shown in Figure 3. Notably, the per-
pendicular stripe pattern in Figure 3c do not show any inverted
spot patterns, as the simulations lack any inhomogeneity present
in experiments. In addition, the stability of the final patterns was
tested using the numerical simulations. As long as a constant light
forcing (W = 1.5) was used at the edge of the domain, the result-

ing patterns remained stable indefinitely. Time-lapse videos of the
simulated pattern development are also provided in the ESI†.

The final pattern morphologies seen in Figures 2 and 3 show
good agreement with the one-dimensional axial growth patterns
observed by Míguez et al..21 The concentric rings that are a result
of the fast growth rates are the growing circular domain equiva-
lent to the stripes that form parallel to the axial one-dimensional
growing boundary. Likewise, for slow growth rates, both the one-
dimensional axial growth21 and the two-dimensional linear ra-
dial growth presented here show patterns forming perpendicular
to the growing boundary. We suggest that the parallel-stripe pat-
tern shown in Figures 2b and 3b is the two-dimensional radial
growth equivalent to the oblique stripes shown in Ref. 21, as the
stripes grow perpendicular to parts of the growing boundary and
parallel to other parts. There is fair quantitative agreement be-
tween the two-dimensional linear radial growth and Míguez et
al.’s one-dimensional axial growth,21 as the axial growth rates
used by Míguez are about twice the radial growth rates in the
experiments presented in Figure 2. If we were to consider the
growth rate of the diameter of the circular domains, the growth
rates in the two works would be similar. This indicates that ra-
dial growth in two dimensions is analogous to axial growth in one
dimension.

3.2 Growth Modes

In addition to differing final pattern morphologies, we also ob-
serve three different Turing pattern growth modes depending on
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Fig. 3 Simulations of radial growth at fast, intermediate, and slow growth rates for b = 0.31. Final Turing patterns (left) are displayed next to the
space-time plot of each simulation (right). Each final pattern is image is 115 s.u. across. The red lines indicate where the space-time plot information
was taken. Radial growth rates (total growth times) are (a) 0.75 s.u./t.u. (130 t.u.), (b) 0.32 s.u./t.u. (310 t.u.), and (c) 0.25 s.u./t.u. (400 t.u.).

the domain radial growth rate: outer ring addition, perpendic-
ular pattern growth, and inner ring growth. These modes are
distinguished by the way in which new wavelengths of the Turing
patterns are added to the system. All simulated results presented
in the following figures (Figures 4-6) use b = 0.32 in Equation 2.

3.2.1 Outer Ring Addition (ORA)

For the experimental conditions described in Section 2.1, the most
common of the Turing pattern growth modes is outer ring addi-
tion, which occurs for intermediate and faster growth rates. For
the ORA growth mode, once an initial spot or stripe forms (Fig-
ure 4a) rings are added to the outside of the pattern as the domain
grows to accommodate additional wavelengths. In the time-lapse
images shown in Figure 4, two rings are added in the experi-
mental images and four rings are added in the simulated images.
Space-time plots of images that show the ORA growth mode are
characterized by horizontal stripes emerging as the diameter of
the growth domain becomes larger, signifying that once the stripe
appears it does not shift over time (Figures 2a and 3a).

3.2.2 Perpendicular Pattern Growth (PPG)

The perpendicular pattern growth mode is similar to ORA in the
sense that the Turing pattern grows by adding to the outer edge
of the existing pattern. However, instead of adding a new stripe,
the PPG mode functions by lengthening the existing stripes that
are perpendicular (or near-perpendicular) to the growing bound-
ary. This is shown experimentally in Figure 5, where an initial
pattern with small perpendicular stripes surrounding a ring (Fig-
ure 5a) grows by extending the offshoots, which occasionally

branch into two separate near-perpendicular stripes (Figure 5b-
e). If stripes diverge enough for an additional wavelength to fit
between them, a new stripe that is perpendicular to the growing
boundary emerges. The PPG mode is also shown in simulations
in Figure 5. The simulations shown in Figure 5 are of a larger
Turing pattern domain to better highlight the growth mode, as
for these conditions the simulations begin in a spot pattern be-
fore organizing into perpendicular stripes. The spot patterns are
temporary, and with time they will resolve themselves into per-
pendicular stripes. This was confirmed in simulations by stopping
the growth while the pattern was spotted. The spot patterns orga-
nized into perpendicular stripes after additional time integration
at fixed domain size. Space-time plots of patterns that undergo
this growth mode are shown in Figure 2c and Figure 3c for exper-
iments and simulations, respectively.

We suggest that the growth mode of the pattern shown in Fig-
ures 2b and 3b is a mixture of the ORA and PPG growth modes.
Similar to the ORA growth mode, new stripes are added next to
the sides of previously formed stripes as the domain grows. How-
ever, where the stripes point to the growing boundary, they sim-
ply expand their length without any stripe addition as in the PPG
mode. This suggestion is supported by the value of the growth
rate, which is between the growth rates for PPG and ORA growth
modes.

3.2.3 Interior Ring Growth (IRG)

The third Turing pattern growth mode that is observed is inte-
rior ring growth (Figure 6). This type of growth only occurs for
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Fig. 4 Time-lapse images of the outer ring addition (ORA) growth mode of Turing pattern development. Experimental domain of Turing patterns grows
at a rate of 0.40 mm/h, and the domain of simulated Turing patterns grows at a rate of 0.6 s.u./t.u. The times below each image indicate the time since
growth initialization (top) and the time lapsed since the first image in the sequence (bottom).
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Fig. 5 Time-lapse images of the perpendicular pattern growth (PPG) mode of Turing pattern development. Experimental domain of Turing patterns
grows at a rate of 0.10 mm/h, and the domain of simulated Turing patterns grows at a rate of 0.2 s.u./t.u. The times below each image indicate the time
since growth initialization (top) and the time lapsed since the first image in the sequence (bottom).
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Fig. 6 Time-lapse images of the interior ring growth (IRG) mode of Turing pattern development. Experimental domain of Turing patterns grows at rate
of 0.04 mm/h, and the domain of simulated Turing patterns grows at a rate of 0.05 s.u./t.u. The times below each image indicate the time since growth
initialization (top) and the time lapsed since the first image in the sequence (bottom).
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Fig. 7 Parametric diagram of the different growth modes observed in nu-
merical simulations of the Lengyel-Epstein model. All simulated growth
was performed until a final radius of 100 s.u. was reached. Symbols
are the results of numerical simulations, showing both the final pattern
morphology and the growth mode. Mixed modes are shown by two over-
lapping symbols. Shaded areas are approximate shapes of the different
regions in phase space.

extremely slow growth rates, usually below growth rates of 0.05
mm/h in experimental studies. For IRG, due to the slow growth of
the non-illuminated area where Turing patterns can arise, the pat-
tern can adjust and grow with the boundary, since the reaction-
diffusion dynamics operate on a much faster timescale than the
domain growth. The pattern originally starts off as a singular
"spot" in the center of the growing domain and then grows into
a ring (Figure 6a). As opposed to the ORA growth mode, where
each ring within the concentric ring pattern maintains a constant
diameter, this ring continues to grow with the boundary. Once
there is sufficient space in the middle of the ring, a new spot ap-
pears in the center (Figure 6b,c). Both the outer ring and the
central spot continue to grow with the outer boundary, until the
central spot is large enough to split into a new ring (Figure 6d,e).
In this case the wavelength of the Turing pattern changes dur-
ing the growth in a sawtooth-like manner. First, it increases with
the growth until a new spot forms, which results in the wave-
length sharply decreasing. This phenomenon may also be seen in
the stripe addition of Pomacanthus semicirculatus, where the dis-
tances between the stripes grow as the fish becomes larger until
a new stripe is added between two existing stripes.8,25

3.3 Parametric Diagram and Pattern Robustness

Figure 7 is a parametric diagram showing the growth modes of
Turing patterns obtained in simulations with a radially growing
two-dimensional domain. The diagram shown is the b (Equa-
tion 2)-growth rate plane. We note that the concentric ring mor-
phology arises from both fast and slow growth rates, albeit with
different growth modes (IRG for extremely slow growth and ORA

for fast growth). However, the PPG mode appears to be required
for the final perpendicular pattern morphology. The patterns that
lie close to the boundaries between regions in phase space show
transitional behavior that could be interpreted as a mixture of two
separate growth modes or final morphologies. Two examples of
this are (i) the parallel stripes shown in Figures 2b and 3b and (ii)
how the concentric rings formed through the IRG mode shown in
Figure 6 eventually break into spots (not shown). The spotted
pattern growth region is kept separate because the spots have no
spatial orientation. Thus, while they may show the same growth
modes as the striped patterns, we cannot classify their orientation
as parallel or perpendicular to the boundary in the same way as
stripe patterns.

We also see that most regions in the parametric diagram are
relatively large, indicating that the behavior of the Turing pat-
terns is robust. This is important in assessing the results of our
experiments. Due to the extremely long time scales of most of the
experiments, there could be minor fluctuations in initial concen-
trations of the reagents as they enter the reactor. This may shift
the reactor concentrations slightly (within a few percent), but due
to the robustness of the patterns in the parametric space diagram
we are able to observe the same growth modes in a reproducible
manner.

4 Conclusions and Future Work
We have presented here a novel method for studying Turing pat-
tern formation under the condition of two-dimensional linear ra-
dial growth. We have shown that both the final pattern morphol-
ogy and the growth mode of the Turing pattern vary significantly
based on the radial growth rate. Specifically, we extend the re-
sults of Míguez et al. to two-dimensional growth and observe
the same pattern orientation trends. Additionally, we observe sig-
nificant differences in the growth modes of the Turing patterns.
To the authors’ knowledge, this constitutes the first examination
(at least experimentally) of pattern formation on a continuously
growing two-dimensional domain. These results are obtained ex-
perimentally and supported with data from simulations with the
Lengyel-Epstein model. We also present a parametric space dia-
gram to show the impact growth rates have on the growth modes
for various b values, and comment on the robustness of the vari-
ous types of patterns.

Examining the impact of growth on the development of Turing
patterns may provide new insight into how patterns, such as an-
imal prints or bird feather patterns, form in biological systems.
In particular, this work may guide researchers in biological sys-
tems in identifying species that are functionally important in Tur-
ing pattern generation based on their concentration profile as the
system grows. In addition, this experimental system is highly tun-
able and can be modified for other types of growth. In the future,
we will extend our study to both exponential and logistic growth
rates26–28, as well as test the effects of different growing domain
geometries on the pattern morphologies. We also plan to experi-
mentally test the conclusions of Klíka and Gaffney28, who claim
that growth can be used as a method to initiate Turing patterns
under reaction conditions that would not produce a Turing pat-
tern on a static domain. The methods and results in this paper
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represent a significant step forward in the study of Turing pattern
development, and should lead to a more detailed understanding
of how Turing patterns develop in a biological growing system.
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Our study reports three distinct modes of Turing pattern growth, which depend on the radial growth 
rate of the system. 
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