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Abstract: The FE integral for the normalized Boltzmann-weighted number of molecular states 

above the threshold energy is the key quantity in computing the collision efficiency in the 

pressure-dependent unimolecular rate theory developed by Troe, who calls this the energy 

dependence factor of the density of states. By using the Whitten-Rabinovitch approximation and 

assuming the Whitten-Rabinovitch a(E) function is independent of energy, FE can be 

approximated by an analytic formula by; this approximate formula is widely used because of its 

convenience and computational efficiency. Here we test its validity by comparing the computed 

rate constants by using the approximate FE to the ones given by using the numerically integrated 

FE. For small-sized molecules and for reactions with high threshold energies E0, the differences 

are negligible at all temperatures, but in other cases the approximate formula tends to 

underestimate FE and thus overestimates the collision efficiency, and this leads to smaller 

pressure falloff. When a(E) at high energies differs appreciably from a(E0), we find that the 

underestimation of pressure-dependent rate constants by using the approximate formula can be 

more than a factor of 5 at high temperatures. The physical insight we draw form this study is that 

for reactions with threshold energies below about 30 kcal/mol, the rate of collisional energy 

transfer can be appreciably slowed down by the increase in the density of states at higher 

energies, and this increases the falloff effect by which finite-pressure rate constants are lower 

than the high-pressure limit, especially at higher temperatures.
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Predicting the pressure dependence of reaction rate constants is of fundamental importance 

in combustion1 and in atmospheric chemistry.2 For a bimolecular reaction that involves a 

unimolecular intermediate, in the high-pressure limit, all of the rovibrationally excited 

unimolecular states (which are generated via chemical activation) are stabilized via nonreactive 

collisions with the bath gas molecules so that thermal equilibrium is maintained; at lower 

pressures, such collisions are not strong enough to de-energize all the rovibrationally excited 

states of the intermediate, and thus the reaction rate constant depends on pressure.3 Pressure 

effects are also of central importance in unimolecular reactions, where, at pressures below the 

high-pressure limit, the thermal activation of the reactant cannot maintain its Boltzmann 

distribution, and this leads to the falloff of rate constants as pressure is lowered.4 Similar 

considerations apply to pressure-dependent association reactions.5

Troe developed an approximation to the solution of the master equation6,7 that is widely 

used in calculations of rate constants k(T, p) as functions of temperature T and pressure p. The 

usefulness of this approximation for simulating complex processes and planning experiments has 

been emphasized by Holbrook et al.8 The key quantity determining the activation and 

de-activation rates of energized species and hence the pressure dependence is the collision 

efficiency βc, the value of which is between 0 and 1 (where the upper limit is called the 

strong-collision limit). The collision efficiency βc is computed from:7

 (1)
c

1 c
1/2 

E
FEkBT

where  is the average energy transferred per collision in both de-activation and activation E

processes (it is a negative number), kB is the Boltzmann constant, and FE is the energy 

dependence factor of the density of states. The energy dependence factor of the density of states 

is a normalized Boltzmann-weighted number of molecular states above the threshold energy, in 

particular: 7,9

 (2)FE  (E)
(E0 )

e EE0 /kBT dE
kBTE0





where  is density of states of the unimolecular species at energy E, and E0 is the threshold (E)

energy. Usually, FE is the only quantity that one computes in order to obtain βc because in 

practical applications the average energy transferred is treated as a parameter, and the value of 
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this parameter is obtained from fits to limited experimental data10,11 or is set equal to the value 

for a similar system. (There has also been progress in evaluating the energy transfer parameter 

from trajectories12 and models.13)

Troe proposed a very efficient analytic formula6 for calculating FE by using the vibrational 

Whitten–Rabinovitch (WR) approximation14,15,16 for the density of states. In the vibrational WR 

approximation, overall rotation and internal rotation are not considered (they can be added at a 

later stage,9,17). Then  becomes the vibrational density of states without internal rotations, (E)

and in the present article we consider only this case. The WR approximation is a reasonably 

good approximation for efficiently computing the vibrational density of states without requiring 

large computations. It is based on a previous semiclassical model proposed by Marcus and Rice18 

and on empirical development by Rabinovitch and coworkers.19,20,21 The WR approximation 

only requires the information of vibrational frequencies, and it is computed by the following 

equations:

 (3)WR (E) 
[E  a(E)Ez ]s1

(s 1)! h i
i1

s



 (4)a(E)  1 

in which, for E ≥ Ez,

 (5)log10   1.0506(E / Ez )0.25

and for E < Ez,

 (6)  [5E
Ez

 2.73( E
Ez

)0.5  3.51]1

with

 (7) 
(s 1)2  i

2

i1

s



s(  i
i1

s

 )2

where s is number of vibrational degrees of freedom, a is an empirical energy dependence factor, 

Ez is the zero-point vibrational energy (computed from the frequencies), and  is the vibrational  i

frequency for the i-th mode.
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By substituting the Whitten–Rabinovitch density of states  into equation (2), one WR (E)

obtains an integral for computing FE that cannot be evaluated analytically. In order to obtain an 

analytic approximation, Troe assumed that the E dependence of the a(E) function may be 

ignored, with its value is fixed at a(E0). By doing this, the original integrand can be re-written in 

the form of xtexp(x), and the integral becomes an incomplete gamma function, which leads to 

the following analytic approximation to the integral:6,8

 (8)FE  (s 1)!
(s 1 i)!i0

s1

 kBT
E0  a(E0 )Ez










i

Equations (1)-(8) are the standard equations used in most practical calculations.22

Here we test whether or not this widely used approximation is accurate by comparing the 

final k(T, p) computed by using equation (8) to that by numerically integrating equation (2) with 

. Note that the computed k(T, p) depends on many factors, including the WR (E)

pressure-dependence model itself, the energy transfer parameters, including <ΔE>, and the 

accuracy of the computed high-pressure-limit rate constants, and we are not examining all these 

factors in the present work. Our purpose is not to compare the accuracy of the final computed 

pressure-dependent rate constants to experimental values, but solely to examine the validity of 

the widely used approximate analytic formula as compared to the numerically integrated 

Whitten–Rabinovitch FE. (In a practical application, due to fortuitous or empirical cancellation 

of errors, the final k(T, p) with the numerical integrated FE need not agree better than using 

Troe’s approximate analytic formula, but our goal here is to test the effect of applying the Troe 

model without the unnecessary approximation to the integral because physical insight drawn 

from a model that works by cancellation of errors may be invalid.)

We pick five examples23,24,25,26,27 to test the approximation, and they are listed in Table 

1.
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Table 1  Reactions studied

CHF3 dissociation:23 CHF3 → CF2 + HF (R1)

carbon–carbon double–bond homolysis of C2F4:24 C2F4 → CF2 + CF2 (R2)

SO2 + OH association:25 SO2 + OH → HOSO2 (R3)

silylene anion isomerization:26 (SiH3)2SiHSiH–  → (SiH3)2SiSiH2
– (R4)

H addition to toluene:27 C6H5CH3 + H → C6H6CH3 → C6H6 + CH3 (R5)

Except for the computations of FE, the computations for the high-pressure-limit rate 

constants and the details in the pressure-dependent rate constants using system-specific quantum 

RRK (SS-QRRK) theory23,27,28 are the same as reported in the previous work,23,24,25,26,27 and 

since they are not the major concerns here, we shall not repeat them. Notice that for long-chain 

molecules (with or without multiple branches), the Whitten–Rabinovitch approximation itself 

may not be adequate for computing density of states, since multiple conformational structures 

and coupled internal torsions29,30,31 may significantly affect the density of states, and for such 

cases more exhaustive computational work is needed in order to obtain the density of states; in 

the present work, we do not consider such cases, and we focus on the above-mentioned systems 

for which density of states can more reasonably be described by the WR approximation. 

First, we examine the validity of approximating a(E) as a constant a(E0). In SS-QRRK 

theory the threshold energy E0 is an effective threshold given by the temperature-dependent 

high-pressure activation energy Ea(T).29,30,31 We note that for reaction R3 the threshold energy 

we need for calculating FE is Ea(T) of the reverse dissociation reaction, and for reaction R5 it is 

Ea(T) of the reverse of the addition reaction; for the other three reactions it is Ea(T) for the 

forward reaction. The resulting temperature-dependent effective threshold energies E0(T) for 

calculating FE for reactions R1–R5 are shown in Table 2. In Figure 1, the a(E) functions for 

these reactions are plotted as functions of E', which is defined as the total energy E minus the E0 

value at the lowest temperature that we considered for each reaction. The figure shows how the 

a(E) function increases gradually to the asymptotic value of unity. For reactions R4 and R5, 

which have relatively small E0, the variation of a(E) with respect to energy can certainly not be 

ignored, and in such cases the a(E) values at E´ = 300 kcal/mol (which determine the 

unimolecular state populations at very high temperatures) differ by 18–20% from a(E0). As a 
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consequence we shall see that assuming that a(E) equals a(E0) significantly underestimates of the 

FE integral for these reactions at high temperatures.

Table 2  Temperature-dependent effective threshold energies E0(T) (kcal/mol) for calculating FE 

R1 R2 R3 R4 R5

T E0 T E0 T E0 T E0 T E0

298 67.6 1100 62.5 200 27.1 298 24.3 298 26.5

400 72.6 1200 63.8 298 27.8 300 24.4 300 26.6

800 74.2 1400 68.3 300 27.8 400 25.4 600 28.6

1200 74.5 1500 71.4 350 27.6 600 25.9 800 29.3

1600 75.9 1750 81.0 400 28.0 800 26.2 1000 28.9

1800 76.9 2000 92.5 450 29.4 1000 26.7 1400 29.0

2000 77.9 1500 28.5 1800 29.3

2200 79.1 2000 29.6

2400 80.3 2400 30.2
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Fig. 1  The a(E) functions for reactions R1–R5 with respect to the energy E', which is defined as 

the total energy E minus the E0 at the lowest temperature that we considered for each reaction. 

In Table 3, we tabulated the FE values computed by numerical integration, which are 

denoted as FE
num, and we also tabulate the ratio FE

app/FE
num, in which FE

app is the approximate FE 

value computed using equation (8). The results are tabulated at various temperatures for each of 

the reactions R1–R5. For reactions R1–R3, the differences between FE
app and FE

num are entirely 

negligible at all temperatures. For reactions R4 and R5, however, the difference is as large as a 

factor of 2 for R4 at 1500 K, and a factor of 2 to 6 for R5 from 1000 K to 2400 K. This means 

that the approximate analytic formula underestimates the fraction of the rovibrationally excited 

unimolecular states above the threshold energy, thereby overestimating the collision efficiency 

and thus underestimating the deviation from the high-pressure limit; the effect is largest at high 

temperatures.
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Table 3  The energy dependence factor of the density of states computed by numerical integration and the reciprocal of its ratio to the 

analytically approximated energy dependence factor of the density of states as a function of temperature (in K)

                R1                                R2                                R3                                R4                                  R5                  

T FE
num FE

app/FE
num T FE

num FE
app/FE

num T FE
num FE

app/FE
num T FE

num FE
app/FE

num T FE
num FE

app/FE
num

298 1.061 0.999 1100 1.445 0.998 200 1.089 0.997 298 1.507 0.944 298 1.462 0.922

400 1.078 0.999 1200 1.491 0.997 298 1.134 0.996 300 1.510 0.944 300 1.465 0.922

800 1.163 0.999 1400 1.563 0.997 300 1.135 0.996 400 1.769 0.924 600 2.422 0.817

1200 1.262 0.998 1500 1.589 0.997 350 1.162 0.996 600 2.660 0.863 800 4.070 0.700

1600 1.368 0.998 1750 1.630 0.998 400 1.186 0.995 800 4.621 0.781 1000 8.523 0.551

1800 1.423 0.999 2000 1.646 0.998 450 1.204 0.995 1000 9.508 0.687 1400 86.02 0.288

2000 1.480 0.998 1500 110.0 0.525 1800 1906 0.190

2200 1.539 0.997 2000 9908 0.175

2400 1.598 0.998 2400 261100 0.172
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To assess the effect on the rate constant itself, we compared falloff curves computed by 

using FE
app (represented by dots) to those computed by using FE

num (represented by solid lines); 

the falloff curves are plotted for reactions R4 and R5 in Figure 2 in the form of 

 versus p, where kHPL is high-pressure-limit rate constant. For reaction log10[k(T , p) / k HPL (T )]

R5, kstab is the formation rate constant of C6H6CH3 (which is defined as 

(d[C6H6CH3]/dt)/[H][toluene]), and it is depicted as solid lines; and kdiss is the formation rate 

constant of benzene (which is defined as (d[C6H6]/dt)/[H][toluene]), and it is depicted as dashed 

lines. The computed k(T, p) by using FE
app and by FE

num are respectively denoted as kapp(T, p) and 

knum(T, p). 

           

Fig. 2  Computed falloff curves for (a) reaction R4; and (b) reaction R5. The dots are computed 

by using FE
app, and the lines by using FE

num. In (b), the solid lines are for kstab and the dashed 

lines are for kdiss. 

As we can see from Figure 2, using FE
app leads to underestimation of the pressure-dependent 

effects, and this is particularly noticeable at high temperatures. For reaction R4 and kstab of 
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reaction R5, the falloff effects are underestimated, and the computed kapp(T, p) is larger than 

knum(T, p). For reaction R4 at 1500 K and 1.0 bar, kapp(T, p) is a factor of 1.7 larger than knum(T, 

p); and at 0.01 bar, it is a factor of 1.8 smaller. For kstab of reaction R5, at 1.0 bar,  is a kstab
app(T , p)

factor of 1.4, 5.2 and 5.8 larger than  at 1000, 1800 and 2400 K respectively. On the kstab
num (T , p)

other hand, for the further dissociation of the intermediate in reaction R5 which is a chemical 

activation mechanism, the underestimation of falloff effects lead to smaller kdiss, but this effect is 

relatively smaller than for kstab; at 1.0 bar, is only a factor 1.1, 1.0 and 1.0 larger than kdiss
num (T , p)

 at 1000, 1800 and 2400 K respectively, and at 10.0 bar, this factor is 1.5, 1.0 and 1.0 kdiss
app(T , p)

respectively.

We note that FE appears as a ratio to <ΔE> in equation (1); therefore, if experimental data is 

available, and if <ΔE> were to be chosen as a function of temperature to match experimental 

data, there could be some error cancellation (including the error in FE), although one would 

obtain an incorrect physical picture by cancelling errors against an incorrect value of the energy 

transfer parameter. And if <ΔE> is chosen based on energy-transfer experiments or trajectory 

calculations of energy transfer, there will be no error cancellation of this type.

We have concluded that the approximate analytic formula tends to underestimate FE and 

thus overestimates the collision efficiency, and this leads to smaller pressure effects. For small 

molecules and for reactions with high threshold energies E0, the differences are negligible at all 

temperatures. However, if a(E) at high energies differs appreciably from a(E0), then the 

underestimation of pressure-dependent rate constants by using the approximate formula could be 

about a factor 2 or even higher (we find factors as large as a factor of 5.8) at high temperatures. 

The physical insight we draw is that for reactions with threshold energies below about 30 

kcal/mol, the rate of collisional energy transfer can be appreciably slowed down by the increase 

in the density of states at higher energies and this increases the falloff effect by which 

finite-pressure rate constants are lower than the high-pressure limit, especially at higher 

temperatures.
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