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In a previous study, we introduced a new computational protocol to accurately predict the index of
refraction (RI) of organic polymers using a combination of first-principles and data modeling. This
protocol is based on the Lorentz-Lorenz equation and involves the calculation of static polarizabilities
and number densities of oligomer sequences, which are extrapolated to the polymer limit. We chose
to compute the polarizabilities within the density functional theory (DFT) framework using the
PBE0/def2-TZVP-D3 model chemistry. While this ad hoc choice proved remarkably successful, it is
also relatively expensive from a computational perspective. It represents the bottleneck step in the
overall RI modeling protocol, thus limiting its utility for virtual high-throughput screening studies,
in which efficiency is essential. For polymers that exhibit late-onset extensivity, the employed
linear extrapolation scheme can require demanding calculations on long-oligomer sequences, thus
becoming another bottleneck. In the work presented here, we benchmark DFT model chemistries to
identify approaches that optimize the balance between accuracy and efficiency for this application
domain. We compare results for conjugated and non-conjugated polymers, augment our original
extrapolation approach with a non-linear option, analyze how the polarizability errors propagate
into the RI predictions, and offer guidance for method selection.

I. INTRODUCTION

Organic materials with high index of refraction (RI)
have gained considerable attention in recent years as
they hold tremendous potential for applications in op-
tic and optoelectronic devices [1–5]. The vast majority
of carbon-based polymers has relatively low RI values
(typically in the range of 1.3 to 1.5) [6, 7], which has
made the search for compounds with high and very high
RIs (greater than 1.8) an active area of research [8, 9].
The key to increasing the RI values of organic polymers
is our ability to tailor their molecular structure [6, 9–
11]. However, the number of compounds that results
from considering even only a modest selection of poly-
mer building blocks is practically infinite. Experimental
efforts alone are too time-, labor-, and resource-intensive
to effectively survey the massive chemical space associ-
ated with this problem setting (and many others in the
molecular sciences).
Computational high-throughput screening approaches

have emerged as a way to rapidly characterize and assess
large candidate pools, and to identify lead compounds
for further in-detail investigations (see, e.g., Refs. [12–
20]). In the context of optical materials with large di-
electric constants (and thus large RI values), the work
by Ramprasad et al. [21–23] is particularly noteworthy.
The foundation for any in silico screening study are suit-
able modeling protocols for the properties and compound
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classes of interest. For use in large-scale investigations,
these protocols not only have to produce sufficiently ac-
curate predictions, but they also have to be fast. A num-
ber of modeling approaches for the RI values of polymers
have been introduced in the past [21, 22, 24–29], each
with distinct advantages and disadvantages in the areas
of accuracy, reliability, robustness, cost, and range of ap-
plicability.

We recently introduced a new protocol [30] based on a
synergistic combination of first-principles and data mod-
eling. In this protocol, we calculate RI values nr using
the Lorentz-Lorenz equation with the number density N
and polarizability α of a given candidate compound as in-
put parameters. We obtain the former using the van der
Waals volume and packing factor of the compound, and
the latter directly from quantum chemistry. Specifically,
we compute the van der Waals volumes using Slonim-
skii’s method [31], and for the packing fraction of the
amorphous bulk polymer, we introduced a support vec-
tor regression [32, 33] (i.e., machine learning) model. For
the polarizabilities, we employ Kohn–Sham density func-
tional theory (DFT) [34, 35] using the PBE0 functional
and def2-TZVP basis set along with D3 dispersion correc-
tion. As the protocol’s target systems are quasi-infinite
polymers, we obtain the asymptotic trends towards the
polymer limit through a linear extrapolation scheme from
a sequence of small-oligomer calculations. This scheme
exploits the relatively short correlation length in many
systems, in which it leads to an early onset of extensivity
in the response properties. We tested the RI predictions
of the protocol on 112 non-conjugated polymers and the
results show very good agreement with the experimental
values (R2 = 0.94). The protocol is overall economical

Page 1 of 11 Physical Chemistry Chemical Physics



2

and suitable for high-throughput in silico studies. How-
ever, the polarizability calculations nonetheless stand out
as the bottleneck that limits its efficiency. Another con-
cern is that for conjugated systems with long-range cor-
relation, the linear extrapolation scheme will require re-
sults of very long oligomers to reach extensivity, and thus
become prohibitively costly.
In this paper, we present a benchmark study of sev-

eral DFT model chemistries to identify approaches that
deliver a more favorable balance of accuracy and effi-
ciency for polarizabilities in the context of large-scale RI
studies, and to understand the nature of prediction er-
rors. We also revisit the protocol’s extrapolation scheme,
augmenting it with a non-linear option that uses shorter
oligomer sequences below the extensivity threshold, and
demonstrate its validity and performance. We provide
an analysis of how the errors in the polarizability results
propagate into the RI value predictions. In Sec. II, we
introduce the benchmarking methodology and computa-
tional details of this study. Sec. III presents and discusses
the results for the model chemistry performance analysis
(Sec. III A), the improved extrapolation approach (Sec.
III B), and the error propagation (Sec. III C). Our find-
ings are summarized in Sec. IV.

II. METHODS AND COMPUTATIONAL
DETAILS

As mentioned in Sec. I, the RI protocol introduced
in Ref. [30], employs the PBE0/def2-TZVP-D3 model
chemistry to compute the static polarizabilities that serve
as input for the Lorentz–Lorenz equation. The protocol
calls for calculations on a sequence of small oligomers
until a constant increase in the polarizability per added
monomer unit is observed, which allows for a linear ex-
trapolation to the polymer limit. For the non-conjugated
polymers studied in Ref. [30], extensivity was reached for
very short oligomers (i.e., n ≪ 10 monomer units).
Computed polarizability values and the derived RI

predictions generally depend on the employed quantum
chemical approximation, and different model chemistries
yield different results at different computational cost.
In the DFT benchmark study at hand, we compare six
reasonable functional choices from across Jacob’s ladder
[36], covering generalized gradient approximation (BP86
[37, 38]), hybrid (B3LYP [38–40], PBE0 [41]), meta-
hybrid (TPSSh [42]), highly-parametrized meta-hybrid
(M06-2X [43, 44]), and double-hybrid (B2PLYP [45])
functionals. Their formal cost scaling with system size
is n3 (generalized gradient approximation), n4 (hybrid
functionals), and n5 (double-hybrid functionals), respec-
tively. Each functional is tested with the atom-centered
double-ζ def2-SVP and triple-ζ def2-TZVP basis sets
(abbreviated for convenience as DZ and TZ, respec-
tively) from the highly successful def2 basis set family by
Ahlrichs et al. [46]. The polarizability calculations were
performed analytically via the solution of the coupled-

perturbed self-consistent field equations in all-electron,
closed-shell mode, and include Grimme’s D3 dispersion
correction [47] (we omit the D3 label for brevity). By
default, we use single-point calculations on geometries
optimized at the universal force field (UFF) level [48] via
the OpenBabel code [49] as outlined in Ref. [30]. For
the PA, PB, PE, and PT studies in Sec. III B, we uti-
lize B3LYP/DZ optimized structures instead in order to
obtain a clean results as UFF gives less reliable geome-
tries for conjugated systems. We included these opti-
mized geometries (xyz coordinates) in the Supplemen-
tary Material. All DFT calculations were carried out
using the ORCA 3.0.2 quantum chemistry program pack-
age [50] with default settings. The benchmark study in-
volved about 5400 individual DFT calculations, which we
performed using our automated virtual high-throughput
screening code ChemHTPS 0.7 [51, 52].

The RI predictions from the different model
chemistries are compared with the experimentally known
RI values of the same 112 non-conjugated polymers used
in Ref. [30]. In addition, we perform an in-depth analysis
of two prototypical examples for non-conjugated and con-
jugated polymers, i.e., polyethylene (PE) and polyacety-
lene (PA), respectively. To study the transition from the
conjugated to the non-conjugated regime, we further se-
lect polythiophene (PT) and poly(1,4-phenylene) (PB)
as test cases, and break their conjugation by introducing
non-planarity in the polymer chain (i.e., by constrain-
ing consecutive rings as perpendicular to each other as
shown in Fig. 1).

FIG. 1. Planar and non-planar structures of poly(1,4-
phenylene) (PB) and polythiophene (PT).

The following statistical measures are used in the er-
ror analyses: mean absolute error (MAE), mean abso-
lute percentage error (MAPE), root mean squared er-
ror (RMSE), root mean squared percentage error (RM-
SPE), mean error (ME), mean percentage error (MPE),
maximum absolute error (MaxAE), maximum absolute
percentage error (MaxAPE), and difference of most ex-
treme (i.e., spread of largest positive and negative) errors
(∆MaxE). Aside from providing these direct measures,
we also quantify the extent of correlations between re-
sults of different methods by listing R2, slope, and offset
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values of linear regressions.

III. RESULTS AND DISCUSSION

A. Model Chemistry Performance

Fig. 2 compares the RI predictions based on the dif-
ferent model chemistries with the experimentally known
values of our 112-polymer data set, and Tab. I summa-
rizes the corresponding error and correlation statistics.
The analysis reveals that the PBE0/TZ and B3LYP/TZ
results are favorable by most measures without a clear
advantage for either one. This is a somewhat surpris-
ing finding considering the competition of more modern
and more advanced functionals. Since PBE0/TZ was the
method used in Ref. [30], we choose it as the high-level
reference throughout the following benchmarking. The
RI prediction errors it yields are very reasonable with
MAPE = 0.9%, RMSPE = 1.2%, and MaxAPE = 3.0%,
and the results have very little directional bias as seen
from MPE = −0.3%.
The basis set error between DZ and TZ is the most

significant error contribution we observe, with the best
DZ result being inferior to the worst one from TZ. Most
RI values derived from TZ polarizabilities follow the ex-
perimental trends faithfully, with linear regression slopes
close to 1, offsets close to 0, and only moderate spread (all
R2 > 0.91, except for BP86 with R2 = 0.86). B2PLYP
and BP86 show the largest MAE, MAPE, and RMSPE
with B2PLYP systematically under- and BP86 system-
atically overpredicting (MPE = −1.7% and +1.8%, re-
spectively). BP86 also shows the largest values for the
worst-case metrics MaxAE, MaxAPE, and ∆MaxE. De-
spite its lower-order scaling, BP86/TZ is thus not a con-
vincing alternative to the PBE0/TZ reference. The more
expensive B2PLYP/TZ does not offer any benefits, de-
spite featuring a higher-level functional.
Considering only the DZ results, this picture changes

notably, with BP86 having the lowest MAE, MAPE,
RMSE, RMSPE, ME, and MPE. B2PLYP is doing worst
in most of these measures, while the remaining function-
als show comparable performance without a distinct com-
petitive edge. However, considering the correlation with
the experimental data, B3LYP, PBE0, and TPSSh with
R2 values between 0.86 and 0.90 have an advantage over
the other functionals (including BP86 with only 0.81).
Given the considerable savings due to the smaller ba-
sis set, there is a case to be made for either BP86/DZ,
B3PLY/DZ, PBE0/DZ, or TPSSh/DZ as low-cost alter-
natives to the PBE0/TZ reference. The errors for each
of these methods are, however, 3-4 times larger. While
BP86/DZ is the cheapest option with overall low errors, it
does exhibit some of the most extreme failures and weak-
est correlation with respect to more accurate approaches.
An interesting observation for the DZ results is that all
functionals lead to underestimates of the RI predictions
with negative MPE values between −2.8% and −5.1%.

This bias is more pronounced for high-RI compounds,
which is apparent from the linear regression slopes being
significantly below 1.
In Fig. 3, we show the polarizability results under-

lying these RI predictions and compare them with the
PBE0/TZ benchmark reference. An analysis of the er-
rors and correlations is provided in Tab. II. Despite the
considerable differences in the employed electronic struc-
ture approximations, we can clearly see that the results of
the different methods are very strongly correlated. With
respect to PBE0/TZ, we find R2 values of at least 0.97
(0.99 within the TZ approaches). However, the direct
polarizability error metrics are many times larger than
those for the RI predictions.
The DZ results stand out for all having large negative

MPE values between −6.4% and −12.6%, slopes < 1,
and negative offsets, i.e., they all systematically under-
estimate the polarizabilities, and the bias increases with
increasing magnitude of the polarizability values. For
TZ, the slope is in each case much closer to 1 and the
offset closer to 0 (except for BP86 where TZ has a larger
offset). The B3LYP/TZ results are closest to those of
the reference, with TPSSh/TZ giving acceptable accu-
racy as well. Amongst the DZ results, BP86 again yielded
the best results for several of the error metrics, however,
it also exhibits some of the most extreme discrepancies,
i.e., with respect to MaxAE, MaxAPE, ∆MaxE, and R2

it performs worst (together with M06-2X). B3LYP/DZ,
PBE0/DZ, and TPSSh/DZ again yield very good results
without the extreme error instances seen in BP86/DZ.
B2PLYP and M06-2X do not offer any benefits in either
basis.
In summary, we find that DZ approaches result in

systematically lower polarizability values than the cor-
responding TZ models, which we can rationalize based
on the less flexible DZ expansion of the frontier or-
bitals that have to facilitate the electronic response. Be-
tween the functionals, BP86 yields the largest polariz-
abilities, which is consistent with the well-known over-
delocalization of orbitals from generalized gradient ap-
proximation functionals. The order of the other func-
tionals is (based on their MPEs): TPSSh > B3LYP >
PBE0 > M06-2X > B2PLYP. For the hybrid function-
als, this correlates directly with their increasing amount
of exact exchange, i.e., 10%, 20%, 25%, and 54%, respec-
tively, which is known to lead to increasing orbital local-
ization, thus damping the electronic response [53]. For
the double-hybrid B2PLYP with 53% exact exchange, ad-
ditional perturbation contributions play a role in further
lowering the polarizability values it produces.

B. Extrapolation Scheme

In Fig. 4, we show for the non-conjugated prototype
polymer PE the incremental increase of the polarizability
α with oligomer size, i.e., with the number of monomer
units n. We observe the rapid convergence of α/n to
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FIG. 2. Comparison of refractive index (RI) values calculated from polarizabilities of different model chemistries with experi-
mental values of 112 non-conjugated polymers. Linear regressions (red lines) and their correlation coefficients (R2) are provided
in each case.

FIG. 3. Comparison of polarizability results α for 112 non-conjugate polymers from different model chemistries compared to
PBE0/def2-TZVP-D3 (PBE0/TZ) benchmark reference results. Linear regressions (red lines) and their R2 values are provided
in each case.
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TABLE I. Performance of different model chemistries for RI predictions. The error and correlation analysis compares the
computational results to the experimentally known values of 112 non-conjugated polymers. The most favorable finding for each
statistical measure is highlighted in bold and the best results within the DZ method spectrum in bold-italics.

Functional BP86 B3LYP PBE0 TPSSh M06-2X B2PLYP

Basis set DZ TZ DZ TZ DZ TZ DZ TZ DZ TZ DZ TZ

MAE 0.043 0.029 0.058 0.013 0.060 0.014 0.054 0.016 0.065 0.017 0.079 0.027
RMSE 0.052 0.038 0.082 0.031 0.063 0.018 0.064 0.018 0.058 0.021 0.070 0.022
ME -0.042 0.027 -0.057 0.001 -0.060 -0.004 -0.054 0.005 -0.060 -0.008 -0.078 -0.026
MaxAE 0.177 0.159 0.166 0.077 0.142 0.045 0.137 0.073 0.149 0.088 0.161 0.068
deltaMaxE 0.195 0.197 0.218 0.111 0.170 0.089 0.144 0.115 0.290 0.137 0.242 0.096
MAPE 2.8% 1.9% 3.8% 0.8% 4.0% 0.9% 3.6% 1.1% 4.2% 1.1% 5.2% 1.8%
RMSPE 3.4% 2.5% 4.1% 1.1% 4.2% 1.2% 3.8% 1.4% 4.5% 1.4% 5.4% 2.1%
MPE -2.8% 1.8% -3.8% 0.1% -3.9% -0.3% -3.5% 0.3% -3.9% -0.5% -5.1% -1.7%
MaxAPE 12.1% 10.9% 11.3% 4.8% 8.9% 3.0% 8.6% 4.3% 9.6% 6.1% 10.1% 4.4%

R
2 0.811 0.863 0.856 0.943 0.876 0.937 0.901 0.915 0.728 0.911 0.835 0.933

Slope 0.900 0.980 0.930 1.050 0.910 1.000 0.900 1.000 0.820 0.950 0.860 0.990
Offset 0.110 0.060 0.050 -0.080 0.070 -0.010 0.100 0.000 0.210 0.070 0.130 -0.020

TABLE II. Performance of different model chemistries for polarizability calculations. The error and correlation analysis com-
pares the results of 112 non-conjugate polymers to those of the PBE0/TZ benchmark reference. The most favorable finding for
each statistical measure is highlighted in bold and the best results within the DZ method spectrum in bold-italics.

Functional BP86 B3LYP PBE0 TPSSh M06-2X B2PLYP

Basis set DZ TZ DZ TZ DZ TZ DZ TZ DZ TZ DZ TZ

MAE 6.087 5.451 8.500 1.539 8.569 0.000 7.600 2.303 9.613 2.072 11.817 3.552
RMSE 8.914 6.905 13.166 4.549 9.816 0.000 9.661 2.429 8.563 3.429 11.126 3.631
ME -5.948 4.855 -8.192 0.753 -8.510 0.000 -7.585 1.386 -8.381 -0.646 -11.511 -3.475
MaxAE 53.633 30.601 39.532 13.474 24.988 0.000 23.220 12.839 38.311 16.574 40.911 12.447
delta MaxE 60.449 42.629 52.706 21.072 28.291 0.000 24.057 23.107 62.492 32.505 58.001 13.847

MAPE 6.5% 5.6% 9.3% 1.6% 9.5% 0.0% 8.4% 2.2% 10.3% 2.0% 12.8% 3.8%
RMSPE 81.1% 64.1% 93.9% 23.0% 93.0% 0.0% 82.1% 30.9% 104.0% 32.3% 124.6% 42.8%
MPE -6.4% 5.2% -9.1% 0.8% -9.5% 0.0% -8.4% 1.4% -9.4% -0.6% -12.6% -3.7%
MaxAPE 35.0% 23.5% 31.6% 10.5% 17.3% 0.0% 16.4% 9.2% 23.2% 17.7% 21.3% 11.9%
R

2 0.977 0.989 0.987 0.997 0.992 1.000 0.995 0.995 0.972 0.993 0.987 0.996
Slope 0.940 1.036 0.928 1.006 0.929 1.000 0.930 1.011 0.928 0.983 0.887 0.964
Offset -0.276 1.492 -1.420 0.183 -1.742 0.000 -0.952 0.338 -1.581 0.925 -0.800 -0.083
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a constant value after only a few monomer units. This
behavior represents the basis of the linear extrapolation
scheme used to great effect in the original RI protocol.
The initial decrease in α/n from monomer to trimer is
due to finite size effects and the diminishing impact of the
terminal hydrogens. Note that the order of the asymp-
totic values for the different model chemistries is consis-
tent with our discussion of basis set and functional effects
at the end of Sec. III A.

FIG. 4. Polarizability α per number of monomer units n of
polyethylene (PE) with varying oligomer chain length com-
puted using different model chemistries. DZ results are shown
in blue, TZ results in red.

While this behavior is typical for non-conjugated poly-
mers, systems with a conjugated π-electron backbone
may only show extensivity for very long oligomers, i.e.,
when the system becomes larger than its electronic cor-
relation length. Fig. 5 shows the α/n values for the con-
jugated prototype polymer PA as a function of oligomer
size. Unlike PE (which reaches a constant α/n for n = 4),
the α/n of PA does not converge in the plotted range up
to n = 11, but rather it increases with increasing number
of monomer units throughout which the valence electrons
are correlated. As the oligomer size increases, so do the
conjugation and polarizability. The π-system is subject
to response in its entirety (rather than its individual con-
stituent monomer units), which thus cooperatively am-
plifies the polarizability values it yields.
Fig. 5 offers another interesting observation, i.e., that

for conjugated systems, the basis set effect (reflecting the
more inflexible DZ orbital expansion) stops being the
dominant factor and that the functional effect (reflect-
ing exact-exchange-driven localization) starts dominat-
ing the order of the results for longer chains. Instead of a
clean separation by basis set (all TZ values above DZ), we
now approach an order by functional. This trend is con-
sistent with the regression slopes discussed in Sec. III A.
Finally, we note that while the individual monomer units
of PE and PA have comparable polarizabilities, the α/n
values of PA grow dramatically and become much larger
than those of PE.

FIG. 5. Polarizability α per number of monomer units n of
polyacetylene (PA) with varying chain length computed using
different model chemistries. DZ results are shown in blue, TZ
results in red.

For a clearer comparison of the conjugated and non-
conjugated regimes, we study two conjugated example
polymers – PB and PT – for which we break conjuga-
tion by introducing non-planarity as shown in Fig. 1. As
expected, the α/n values for conjugated PB and PT in-
crease rapidly with oligomer length (see Fig. 6 and Fig.
7), while for non-conjugated PB and PT, they increase
significantly less and start to taper off. (The slight resid-
ual increase may be due to a weak conjugation between
the π-system of the aromatic rings and the σ-framework
of the perpendicular adjacent rings.)

FIG. 6. Polarizability per monomer unit of planar and non-
planar PB as a function of chain length, calculated from dif-
ferent model chemistries.

To illustrate the change from conjugated to non-
conjugated systems, we plot the electron density of the
highest occupied molecular orbital (HOMO) for PB and
PT pentamers (see Fig. 8; plots of the HOMOs them-
selves are provided in the Supplementary Material). The
conjugated systems feature a relatively evenly delocal-
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FIG. 7. Polarizability per monomer unit of planar and non-
planar PT as a function of chain length, calculated from dif-
ferent model chemistries.

ized HOMO density that can readily facilitate substantial
charge redistribution throughout the molecule. The non-
conjugated systems in contrast have HOMO density that
is more localized on the disconnected monomer units.

FIG. 8. Highest occupied molecular orbital electron density of
planar and non-planar pentamers of PB and PT at PBE0/TZ
level of theory.

As the polarizability in conjugated systems increases
non-linearly until extensivity is reached, we propose a
non-linear fit to efficiently account for this behavior. (We
stress that the linear extrapolation scheme introduced in
Ref. [30] still works in principle, but in practice, it may

require calculations of extended oligomer sequences that
would be prohibitive.) The α/n value shows a quasi-
linear trend for smaller n before it asymptotically con-
verges to a constant value for large n. A mathematical
expression (Eqn. 1) was proposed by Hurst et al. [54] to
model this behavior.

α = exp
(

a+
b

n
+

c

n2

)

(1)

However, it does not provide a good fit for long
oligomers (cf. Fig. 9). We propose to add a 3rd-order
term as outlined in Eqn. 2.

α = exp
(

a+
b

n
+

c

n2
+

d

n3

)

(2)

We can show that this new model improves the predic-
tions significantly, in particular by capturing the correct
asymptotic limit: Fig. 9 displays the PBE0/DZ results
for PA, PB, and PT for n up to 50. (To save computing
time, the structures were not fully optimized, but bond
lengths and angles were selected based on the optimized
geometry of the PBE0/DZ optimized n = 10 oligomer.)
The model predictions are based on parameters fitted us-
ing the DFT results for relatively small oligomers up to
n = 10. The new model is valid for all the three exam-
ple polymers yielding very small asymptotic errors, while
the model by Hurst et al. shows significant discrepancies
in each case. We note that the model rapidly improves
further as additional trainings points are provided.

FIG. 9. Validation of the old (1) and new (2) polarizability
models for long oligomers (up to n = 50) of PA, PB, and PT.
The models are parametrized using a fit of PBE0/DZ data
for short oligomers (up to n = 10).

C. Error Propagation

As we remarked on in Sec. III A, the deviations be-
tween the polarizability results with respect to the refer-
ence is relatively large with MAPEs between 1.6− 5.6%
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for TZ and 6.5 − 12.8% for DZ, while those of the RI
predictions that build on these α values is much smaller
with MAPEs (with respect to the experimental data) be-
tween 0.8 − 1.9% for TZ and 2.8 − 5.2% for DZ. To un-
derstand the error propagation from polarizability (and
number density) to RI values, we consider the underlying
Lorentz-Lorenz equation (Eqn. 3).

(nr

2
− 1)

(nr

2 + 2)
=

4π

3
Nα (3)

dnr

nr

=
(nr

2
− 1)(nr

2 + 2)

6nr

2

(dN

N
+

dα

α

)

(4)

E =
(nr

2
− 1)(nr

2 + 2)

6nr

2
(5)

We differentiate Eqn. 3 to obtain Eqn. 4 and subse-
quently the error factor (E) as shown in Eqn. 5. We
observe that E is only dependent on the magnitude of
the RI value. For RI values ranging from 1 to 1.8, the
value of E ranges from 0 to 0.59, respectively, as plotted
in Fig. 10. Hence, when the error in the number density
is ignored, the error in the RI predictions, for RI around
1.5, should be in the order of 40% of the inherent error in
the polarizabilities. For instance, if a lower-level method
such as BP86/DZ is employed for the polarizability in-
put instead of the PBE0/TZ reference (with MAPE of
6.5%), the additional error in the RI prediction would
be about 2.5% points (the observed value is somewhat
larger with 2.8% points). This analysis suggests that the
use of more affordable model chemistries with larger po-
larizability errors can be justified as it only leads to a
modest increase in the RI prediction errors. The same
argument holds for using an extrapolation scheme with
relatively short oligomer sequences below the extensibil-
ity threshold with reasonable asymptotic errors.

IV. CONCLUSIONS

In the work presented here, we benchmarked a range
of different DFT model chemistries for the calculation of
polarizability inputs for RI predictions via the Lorentz-
Lorenz equation. We found that PBE0/def2-TZVP-D3
and B3LYP/def2-TZVP-D3 perform best with RI predic-
tion MAPEs of less than 1%. They notably outperform
several more modern and complex functionals, includ-
ing B2PLYP. Amongst the less demanding approaches,
BP86/def2-SVP-D3, B3PLY/def2-SVP-D3, PBE0/def2-
SVP-D3, and TPSSh/def2-SVP-D3 emerge as viable al-
ternatives with reasonable errors given the considerable
cost savings, with BP86 being the most efficient op-
tion (alas also exhibiting the largest uncertainties). We
could observe trends and systematic biases consistent
with small basis set inflexibility and over-localization

FIG. 10. Error factor (E) for RI values (nr) ranging from 1
to 1.8.

driven by exact exchange. Aside from this model chem-
istry assessment, we also revisited the oligomer extrap-
olation scheme to rapidly obtain polarizability values
at the polymer limit. We augmented our linear ap-
proach that is highly efficient for non-conjugated poly-
mers with a non-linear alternative for conjugated sys-
tems, building on a model by Hurst et al. . We could
show that this more flexible model can make accurate
asymptotic predictions given data from relatively short
oligomer sequences, which renders it dramatically more
efficient than the linear scheme and more accurate than
the Hurst model without additional cost. Finally, we
conducted a formal analysis of the polarizability error
propagation into the RI predictions and found a rela-
tively modest impact, suggesting that reasonable errors
in the polarizabilities due to the use of lower-level model
chemistries or approximate extrapolation schemes are ac-
ceptable. With these additional insights, we can make
informed and rational (rather than ad hoc) decisions re-
garding the computation of polarizabilities, and tailor
our RI modeling protocol to alleviate bottlenecks that
limit its utility in the context of high-throughput stud-
ies. In subsequent work, we plan to deploy the adjusted
protocol for the large-scale screening of organic polymer
candidate libraries in order to identify concrete high-RI
lead compounds.

SUPPLEMENTARY MATERIAL

Electronic supplementary material accompanies this
paper and is available through the journal website. It
provides details of all computational and experimental
values displayed in the figures throughout this paper or
that were used in the statistical analysis. We also give
detailed definitions of all statistical metrics used in this
work.
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