Reactions of Water with Radical Cations of Guanine, 9-Methylguanine, 2'-Deoxyguanosine and Guanosine: Keto-Enol Isomerization, C8-Hydroxylation, and Effects of N9-Substitution

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Physical Chemistry Chemical Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>CP-ART-08-2018-005453.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>13-Oct-2018</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Sun, Yan; Queens College of the City University of New York, Chemistry and Biochemistry; The Graduate Center of the City University of New York, Ph.D. Program in Chemistry
Zhou, Wenjing; Queens College of the City University of New York, Chemistry and Biochemistry
Moe, May; Queens College of the City University of New York, Chemistry and Biochemistry
Liu, Jianbo; Queens College of the City University of New York, Chemistry and Biochemistry; The Graduate Center of the City University of New York, Ph.D. Program in Chemistry |
Reactions of Water with Radical Cations of Guanine, 9-Methylguanine, 2′-Deoxyguanosine and Guanosine: Keto-Enol Isomerization, C8-Hydroxylation, and Effects of N9-Substitution

Yan Sun, Wenjing Zhou, May Myat Moe, and Jianbo Liu*

a Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA
b Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA

Abstract

The reactions of D$_2$O with radical cations of guanine (9HG$^{•+}$), 9-methylguanine (9MG$^{•+}$), 2′-deoxyguanosine (dGuo$^{•+}$) and guanosine (Guo$^{•+}$) were studied in the gas phase, including measurements of reaction cross sections over a center-of-mass collision energy (E_{col}) range from 0.1 to 2.0 eV and computation of reaction pathways at DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-31+G(d,p). Reaction efficiencies of all radical cations are well below unity (~2% of collision rate), despite there being exoergic pathways. For each reactant ion, the energetically most favorable product channel corresponds to formation of water complexes; however, this channel accounts for only 5% of the total cross section at lowest E_{col} and becomes negligible at high E_{col} due to short complex lifetimes. The dominant product channel is H/D exchange that appears to be complex-mediated at low E_{col}, but switches to a direct mechanism and accompanies keto-enol isomerization of guanine moiety when E_{col} increases. C8-hydroxylation, a minor yet the most biologically important channel, was observed for 9HG$^{•+}$; and its mechanism was elucidated in the presence of single and double water molecules, of which the second water eliminates the barrier for C8-addition via a proton shuttle mechanism. All reactions show strong dependence on radical structures, with overall reactivity being 9HG$^{•+}$ ≫ 9MG$^{•+}$ ≻ dGuo$^{•+}$ ≈ Guo$^{•+}$. Reaction dynamics of 9HG$^{•+}$ and 9MG$^{•+}$ with water was simulated at E_{col} = 0.1 eV using ωB97XD/6-31+G(d), to reveal complex formation at the early stage of reactions and the effects of N9-substitution. Trajectory results suggest that the missing of a W9 complex (water bonded to N9-H) is responsible for the reduced reactivity of N9-substituted radical cations; but the relatively long-lived W16 complexes (water bonded to N1-H and C6-O) of dGuo$^{•+}$ and Guo$^{•+}$ may enhance keto-enol isomerization.

*aCorresponding author. E-mail: jianbo.liu@qc.cuny.edu. Telephone: 1-718-997-3271.
I. Introduction

Among all DNA nucleobases, guanine (G) has the lowest oxidation potential (E° vs. NHE = 1.29 V for guanosine, 1.10 – 1.24 V for the guanine moiety of DNA, 1.42 V for adenosine, 1.6 V for deoxycytidine, and 1.7 V for thymidine)1,2 and in parallel the lowest adiabatic ionization energy (AIE = 7.75 eV for G, 8.27 eV for adenine, 8.66 eV for cytosine, and 8.82 eV for thymine)3,4 and thus represents a preferential target for oxidation and ionization over adenine and pyrimidine bases. This leads to the formation of guanine radical cation G$^{++}$ in DNA upon radiolysis5,6, mono7 and bi-photonic8 UV laser photolysis, chemical oxidation9, electron transfer between metal complexes bound to DNA10, electrocatalytic oxidation11,12, and type I photooxidation13,14. Pairing guanine with cytosine in double-stranded (ds) DNA further decreases its oxidation potential15,16, forcing radical cations (holes) initially formed on other nucleobases to migrate through duplex and eventually leading to the more stable G$^{++}$6,17.

Scheme 1 outlines the intermediacy of G$^{++}$ in DNA post-ionization conversion$^{18-23}$. An unique feature of G$^{++}$ is that it becomes more acidic, i.e. $pK_a = 9.4$ for guanosine and 3.9 for its radical cation5. As a consequence, G$^{++}$ loses its N1-proton24 to water at neutral pH within 56 ns (rate constant $k = 1.8 \times 10^7$ s$^{-1}$)25,26. The resulting [G – H]* does not directly react with water27 and lives for 0.07 – 0.28 s in single-stranded (ss) DNA/oligonucleotide28,29 and 0.18 – 5 s in ds DNA/oligonucleotides29,30 before its conversion to 2Ih22, Iz and Z18 as depicted in Scheme 1. At low pH, the lifetime of G$^{++}$ is, in contrast, governed by C8-water addition to the formation of C8-hydroxylated guanine radical [8-OH-G + H]$^{++}$ — an intermediate that was proposed on the basis of the EPR/electron nuclear double resonance (ENDOR) measurement upon OH* addition to a single crystal of N7-protonated guanine31. C8-hydroxylation completes within 3 ms ($k = 3.3 \times 10^2$ s$^{-1}$ at pH 2.5)28 followed by secondary oxidation to 8-oxo-7,8-dihydroguanine (OG, $k = 4 \times 10^9$ s$^{-1}$)19,20. OG is a widely used biomarker for oxidative stress within cells and tissues32,33 and participates in a variety of biological sequelae including photocleavage34, G-C → A-T mutation35, Alzheimer’s36 and Parkinson’s diseases37, and DNA–protein cross-linking38.

The aforedescribed G$^{++}$ kinetics indicates that free G$^{++}$ or that within ss DNA undergoes deprotonation
overwhelmingly at neutral pH\(^{35}\) (5 orders of magnitude faster than hydration), and produces little OG.\(^{39}\) This however does not represent the scenario within ds DNA, where the hydration of G\(^{•+}\) becomes more efficient\(^{13}\) (\(k = 6 \times 10^4\) s\(^{-1}\) at neutral pH\(^{40}\)) as G\(^{•+}\) is stabilized through base stacking and base pairing which limit its ability to lose a proton, \(i.e.,\) the N1-proton (pKa 3.9)\(^5\) of G\(^{•+}\) is shared with the N3 (pKa 4.3)\(^{41}\) of cytosine, with an equilibrium constant \(K_{eq}\) estimated to be 2.5 for G\(^{•+}\)-C \(\rightleftharpoons [G - H]^{•*}[C + H]^{•}\). Consequently, the formation of OG in ds DNA is a factor of 7 greater than in ss DNA.\(^{29}\) These seeming contradictions imply that free G\(^{•+}\) in solution might not faithfully mimic the local environment experienced by nucleobases within DNA.\(^{6}\) In this regard, gas-phase environment may be more appropriate for examining G\(^{•+}\) structure and reactivity, as deprotonation of G\(^{•+}\) shuts down in the gas phase and no longer competes with hydration.

G\(^{•+}\) was often generated by photolysis\(^5, 28, 42\) or radiolysis\(^5, 24, 43\) of \(\text{S}_2\text{O}_8^{2-}\), Br\(^-\) or Cl\(^-\) solution where the resulting SO\(_4^{•-}\), Br\(_2^{•-}\) or Cl\(_2^{•-}\) in turn oxidized G to G\(^{•+}\), followed by measurements of radicals in solution or frozen/dry samples using transient absorption,\(^{25, 28, 29, 42}\) IR,\(^{14, 44}\) resonance Raman,\(^{43}\) and EPR.\(^{24, 30, 31}\) The mechanistic aspects for formation and subsequent deprotonation of G\(^{•+}\) in the presence of SO\(_4^{•-}\) have been examined in G-quadruplexes by recent experimental\(^{45}\) and theoretical\(^{46}\) work.

Gas-phase G\(^{•+}\) could be formed by electron-impact ionization (EI) of guanine\(^{47}\) or fast atom bombardment (FAB) of a mixture of guanosine and dimethyloxynaphthalene in \(m\)-nitrobenzyl alcohol.\(^{48}\) But EI and FAB generated substantial electronical and vibrational excitation and fragmentation of resulting radicals. A pioneering work by Siu and co-workers\(^{49}\) has shown that radical cations of tyrosyl-containing oligopeptides could be formed in the gas phase by collision-induced dissociation (CID) of [Cu\(^{II}\)(diethylenetriamine)(oligopeptide)]\(^{2+}\) that was formed in solution and electrosprayed into the gas phase. Later, O’Hair and McFadyen \textit{et al.} produced radical cations of nucleobases in a similar procedure using Cu\(^{II}\) ternary complexes of terpyridine and nucleobases/nucleosides.\(^{50, 51}\) Recently, Cheng and Bohme\(^{52}\) and O’Hair and Orbell \textit{et al.}\(^{53}\) reported a more convenient way of producing nucleobase radical cations by CID of Cu\(^{II}\)-nucleoside binary complexes.
The successful generation of stable G•+ in the gas phase has made it possible to examine G•+ intrinsic reactivity unperturbed by solvent and counter ions. In the present work, reactions of water with radical cations of unsubstituted guanine (9HG•+, in a N9-H tautomeric form), 9-methylguanine (9MG•+), 2'-deoxyguanosine (dGuo•+) and guanosine (Guo•+) have been examined in the gas phase. We used tandem mass spectrometry coupled with ion-beam scattering to measure reaction cross sections, product branching ratios and their collision energy (E_{coll}) dependence. The sensitivity of gas-phase experiment, corroborated with reaction potential energy surface (PES) calculations and dynamics simulations, has led to a better understanding of guanine radical ion chemistry.

II. Experimental and computational details

1. Ion-molecule scattering

Reactions were carried out on a home-made electrospray ionization (ESI) guided-ion-beam tandem mass spectrometer described in detail elsewhere. The apparatus consists of an ESI ion-source, a radio frequency (rf) hexapole ion guide, a quadrupole mass filter, an rf octopole ion guide surrounded by a scattering cell, a second quadrupole mass filter, and a pulse-counting electron multiplier detector. Both quadrupoles use Extrel 9.5 mm diameter tri-filter rods operating at 2.1 MHz to cover a mass/charge (m/z) range of 1 – 500.

Right before the experiment, a sample solution was prepared in methanol/water (3:1 vol.) containing 0.25 mM Cu(NO$_3$)$_2$ (AlfaAesar, >99.999%) and 0.5 mM guanosine (Acros, 99%). The solution was sprayed into the ambient atmosphere through an electrospray needle at a flow rate of 0.06 mL/h, with the ESI potential of 2.35 kV relative to ground. Positively charged droplets entered the source chamber of the mass spectrometer through a pressure-reducing desolvation capillary. The distance between the emission tip of the ESI needle and the sampling orifice of the capillary was 7 mm. The capillary was biased at 115 V and heated to a temperature tuned between 180 and 200 °C to maximize desired ion intensities. Liquid aerosols underwent desolvation as they passed through the capillary, converting to a mixture of gas-phase doubly charged [Cu$^{1+}$(Guo)$_{0.6}$(MeOH)$_{0.3}$]•+.52,53 Ions were focused toward the...
capillary axis by gas flow and then transported into the source chamber that was evacuated to a pressure of 1.7 Torr. A skimmer with an orifice of 1.5 mm is located 3 mm away from the capillary end, separating the source chamber and the hexapole ion guide. The skimmer was biased at 17 – 25 V relative to ground. The electrical field between the capillary and the skimmer prompted CID of $[\text{Cu}^{II}(\text{Guo})_{0.6}(\text{MeOH})_{0.3}]^{2+}$ with background gas within the chamber, of which the fragmentation of $[\text{Cu}^{II}(\text{Guo})_{3}]^{2+}$ and $[\text{Cu}^{II}(\text{Guo})(\text{MeOH})_{2}]^{2+}$ is featured by production of Guo** via redox charge separation followed by dissociation due to Coulombic repulsion within the complex, and the resulting Guo** may rupture the N-glycosidic bond and produce 9HG**, i.e. eqs. (1 – 3): 52, 53

\[
\begin{align*}
[Cu^{II}(\text{Guo})_{3}]^{2+} &\rightarrow [\text{Cu}(\text{Guo})_{2}]^{+} + \text{Guo}^{**} \\
[Cu^{II}(\text{Guo})(\text{MeOH})_{2}]^{2+} &\rightarrow [\text{Cu}(\text{MeOH})_{2}]^{+} + \text{Guo}^{**} \\
\text{Guo}^{**} &\rightarrow 9\text{HG}^{**} + C_{5}H_{8}O_{4}
\end{align*}
\]

9MG** and dGuo** were generated via in-source CID of $[\text{Cu}^{II}(9\text{MG})_{3}]^{2+}$ and $[\text{Cu}^{II}(\text{dGuo})_{3}]^{2+}$, for which the ESI solution was prepared using a mixing of 0.25 mM Cu(NO$_3$)$_2$ and 0.5 mM 9MG (Aldrich, ≥ 98.0%) or dGuo (Sigma, > 99%).

Radical cations that emerged from the skimmer were transported into the hexapole ion guide at a pressure of 24 mTorr, undergoing collisional focusing and thermalization to ~310 K. Radical cations subsequently passed into the first quadrupole mass filter for selection of specific radical ions. Mass-selected radical ions were collected and collimated by a lens set. The combination of collisional damping within the hexapole and the controlled collection radius at the quadrupole exit produced a mass-selected ion beam with narrow kinetic energy spread. Mass-selected reactant ions were injected into the octopole ion guide, which trapped ions in the radial direction. The octopole is surrounded by the scattering cell. D$_2$O (Magnisolv, 99.9%) was held in a thermostated glass reservoir, purified by freeze-pump-thaw cycles before the experiment, and leaked into the scattering cell through a leak valve. The valve was kept at 80°C to avoid freezing D$_2$O in the valve orifice. The scattering cell pressure was controlled at less than 0.08 mTorr (unless otherwise stated) and measured by a capacitance manometer.
(MKS 690 head and 670 signal conditioner). Under these conditions, reactant radical cations underwent at most a single collision with D$_2$O. A DC bias voltage was applied to the octopole, allowing the control of the kinetic energy of reactant ions in the laboratory frame (E_{Lab}) and thus the E_{col} between reactant ions and D$_2$O molecules in the center-of-mass frame using $E_{\text{col}} = E_{\text{Lab}} \times \frac{m_{\text{neutral}}}{(m_{\text{ion}} + m_{\text{neutral}})}$, where m_{neutral} and m_{ion} are the masses of neutral and ionic reactants, respectively. After passing through the scattering cell, remaining reactant ions and product ions drifted to the end of the octopole, and then were m/z analyzed by the second quadrupole and counted by the electron multiplier.

Intensities of reactant ion beam were $3 - 5 \times 10^5$ counts/s for 9HG$^{++}$ and 9MG$^{++}$, and $1.2 - 1.5 \times 10^5$ counts/s for dGuo$^{++}$ and Guo$^{++}$. Initial kinetic energy of the ion beam was set to 0.9 eV with an energy spread of 0.6 eV that corresponds to an E_{col} resolution better than 0.07 eV. Reaction cross sections were calculated from the ratios of reactant and product ion intensities, the D$_2$O pressure in the scattering cell, and the effective cell length. Experiment was repeated multiple times and cycled through different E_{col} each time. Based on the reproducibility of measurements, the relative error of reaction cross sections (e.g. uncertainty in comparing data at different E_{col}) was estimated to be $\leq 20\%$.

2. Electronic structure calculations

Density functional theory (DFT) has been extensively used for calculating the structures and reactions of nucleobase and nucleoside radical cations in the gas phase and in solution. Compared to B3LYP that suffers from spin-contamination for doublet systems and self-interaction errors (SIE), oB97XD mitigates SIE and improves orbital descriptions of ionized states. Therefore, reactants, intermediates, transition states (TSs) and products were calculated using oB97XD paired with the 6-31+G(d,p) basis set. Conformation search was conducted for reactant ions, and their lowest-energy conformers were used as starting structures in PESs and dynamics simulations. TSs were verified as first-order saddle points, and the vibrational mode associated with an imaginary frequency corresponds to the anticipated reaction pathway. Aside from local criterion, intrinsic reaction coordinate (IRC) calculations were carried out to verify reactant/product minima connected through the TSs.
The ωB97XD-predicted stability order of conformers was affirmed by MP2/6-31+G(d,p). To benchmark the accuracy of ωB97XD/6-31+G(d,p) energies, we calculated AIEs for 9HG and 9MG and gas-phase acidities (GA) for 9MG**. ωB97XD/6-31+G(d,p)-calculated AIEs are 7.69 eV for 9HG and 7.53 eV for 9MG. For comparison, other predications are 7.65 – 7.68 eV (9HG) and 7.49 eV (9MG) at B3LYP/6-31++G(d,p),13,15,16 7.71 eV (9HG) and 7.53 eV (9MG) at ωB97XD/6-31++G(d), 7.79 eV (9HG) and 7.64 eV (9MG) at M06-2X/6-31++G(d),58 7.82 eV (9HG) at MP2/6-311++G(d,p),61 7.65 eV (9HG) at CASPT2(IPEA=0.25)//CASSCF/ANO-L 431/21,62 and 7.89 eV (9HG) at G3MP2B3-ROMP2,63 and the VUV photoionization-measured AIE is 7.75 eV for 9HG.3 The ωB97XD/6-31+G(d,p)-calculated GA of 9MG** is 967.8 kJ/mol. The value was refined to 950.8 kJ/mol by single-point calculation at DLPNO-CCSD(T)/aug-cc-pVTZ (the domain based local pair-natural orbital coupled-cluster method with single-, double- and perturbative triple excitations64) using ωB97XD optimized geometries. The latter value is in an excellent agreement with the experimental value of 952 ± 10 kJ/mol measured using Cooks’ kinetic method.65 Encouraged by the improved accuracy of this combination method, reaction enthalpies (∆rH° at 298 K, with respect to reactants) were determined on the basis of electronic energies calculated at DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-31+G(d,p) and thermal corrections calculated at ωB97XD/6-31+G(d,p). The ωB97XD vibrational frequencies and zero-point energies (ZPEs) were scaled by a factor of 0.95 and 0.974,66 respectively. DFT and MP2 calculations were carried out using Gaussian 09,67 and DLPNO-CCSD(T) calculations and T1 diagnostic were accomplished using ORCA 3.0.3.68 Complex lifetimes were analyzed on the basis of Rice-Ramsperger-Kassel-Marcus (RRKM) theory,69 for which unimolecular rate constants were calculated using the program of Zhu and Hase.70

3. Direct dynamics trajectory simulations

Collision dynamics of 9HG** and 9MG** with water was simulated at Ecol = 0.1 eV, using the Venus software71,72 to set up trajectory initial conditions, and the Hessian-based predictor-corrector algorithm73 implemented in Gaussian 09 to integrate the classical equations of motion, with Hessian matrix updated every five steps. The initial separation between the centers of mass of randomly oriented collision
partners was set at 8.0 Å (where the attractive potential between reactants is negligible), with a collision impact parameter of 0 Å. The vibrational and rotational temperatures of reactants were set at 300 K to mimic the ion-molecule experiment. Quasi-classical Boltzmann sampling was used to select vibrational and rotational energies. A quadratically convergent SCF method was used in case the conventional first-order SCF algorithm failed to converge. Trajectories were terminated when the product separation exceeded 8.8 Å or the maximum trajectory integration time (5000 fs) was reached.

ωB97XD/6-31+G(d) was used for the simulations as it provided the similar calculation accuracy as ωB97XD/6-31+G(d,p) but at a less computational cost. 100 trajectories were accomplished for each of 9HG** + H₂O and 9MG** + H₂O. Trajectories of 9HG** each took ~ 4300 CPU hours on an Intel 2.6 GHz core-based computational cluster, while those of 9MG** each took ~ 6100 CPU hours. Trajectories of representative collisions were recalculated at ωB97XD/6-31+G(d,p) to test how a basis set with the explicit polarization term for H affects trajectory outcomes. The ωB97XD/6-31+G(d,p) trajectories reproduced the collision dynamics observed at ωB97XD/6-31+G(d), and the difference between the two sets of trajectories is within statistical uncertainty. gOpenMol was used for trajectory visualization. Individual trajectories and ensemble averages were analyzed using programs written for these purposes.

III. Results
1. Structures of radical cations

We have examined all low-lying structures of 9HG**, 9MG**, dGuo** and Guo**, taking into account the N9H–N7H tautomerization of guanine and the anti- and syn-conformations about the N-glycosidic bond of dGuo** and Guo**. Their structures (Figs. S1 – S4) and Cartesian coordinates are provided in the Supporting Information. All structures have no spin contamination (⟨S^2⟩ = 0.750, as expected for a radical), and the T1 values from CCSD(T) calculations did not exceed the upper limit of 0.02 (above which non-dynamic correlation effects are large enough to make single-reference method unreliable).

Guanine has N9-H and N7-H tautomers, of which 7HG** lies in energy at least 0.11 eV above 9HG** and thus is unimportant. The global minima of 9HG**, 9MG**, dGuo** and Guo** all adopt a keto-
conformation for the guanine moiety. The sugar groups of dGuo$^{*+}$ and Guo$^{*+}$ prefer an anti-keto configuration, opposite to the syn-enol conformation found for gas-phase neutral dGuo77 and Guo78. The calculated lowest-energy structures are consistent with IR spectra and CID of gas-phase 9MG$^{*+65}$ and dGuo$^{*+}$. On the basis of their populations at 298 K, these lowest-energy conformers should be overwhelmingly dominating in our experiment and were thus used in the discussion of reactions.

To demonstrate the location of the unpaired electron, spin density contours for the lowest-energy 9HG$^{*+}$, 9MG$^{*+}$, dGuo$^{*+}$ and Guo$^{*+}$ are plotted in Fig. 1, along with charge distributions. For comparison, both keto and enol conformers are included in the figure. All radical cations share the same spin density distribution in that an unpaired electron is delocalized among N3, C5 and C8. Charge is separated from spin and C8-H is more positively charged than other groups, making this site vulnerable for nucleophilic water attack. An obvious consequence of the substitution of N9-H is reflected on charge densities, i.e., the negative charge on N9 decreases from -0.38 at 9HG$^{*+}$ to -0.11 at 9MG$^{*+}$, -0.06 at dGuo$^{*+}$ and -0.04 Guo$^{*+}$; meanwhile the charge on C4 changes from +0.10 at 9HG$^{*+}$ to -0.07 at 9MG$^{*+}$, -0.25 at dGuo$^{*+}$ and -0.26 at Guo$^{*+}$. Charges on C6 and C8 also changes at dGuo$^{*+}$ and Guo$^{*+}$. We tend to attribute these changes to hyperconjugation and the associated electron delocalization between the π bonds of guanine and the σ bond of the substituent. When the dihedral angle of C4-N9-C1'-O(sugar) is distorted from the original -121° to 0° so that the σ(C1'-O) bond lies perpendicular to the π orbitals, changes of the charge distributions become less substantial.

2. Reaction products, enthalpies and cross sections

The radical cations + D$_2$O isotope combination was used in the experiment to look for possible atom scrambling. For all of the four reactant ions, major product channels include formation of water complexes (i.e. hydration), H/D exchange (H/D_Ex) and water-assisted keto-enol isomerization, as shown in reactions (4) – (7) where the presence of deuterium is indicated. H/D exchange and keto-enol isomerization have the same product ion mass. For the reaction of 9HG$^{*+}$, product ions were observed for H elimination (HE), i.e. reaction (4d). Reaction enthalpies ΔH° (298 K) were obtained from
DLPNO-CCSD(T)/aug-cc-pVTZ/ωB97XD/6-31+G(d,p) calculations, and those for H/D exchange were calculated from ZPE changes with deuteration occurring at different H positions.

\[
\begin{align*}
9HG^{+}(m/z 151) + D_2O & \rightarrow 9HG^{+}D_2O (m/z 171) & \text{hydration} & \Delta H^o = -0.50 - -0.70 \text{ eV} & (4a) \\
d_1-9HG^{+} (m/z 152) + \text{HDO} & \rightarrow \text{H/D}_\text{Ex} & \Delta H^o = -0.007 - -0.01 \text{ eV} & (4b) \\
d_1\text{-enol}-9HG^{+} (m/z 152) + \text{HDO} & \rightarrow \text{keto-enol} & \Delta H^o = 0.06 \text{ eV} & (4c) \\
8-OD-G^{+} (m/z 170) + H & \rightarrow \text{HE} & \Delta H^o = 0.99 \text{ eV} & (4d) \\
9HG^{+}(m/z 165) + D_2O & \rightarrow 9HG^{+}D_2O (m/z 185) & \Delta H^o = -0.37 - -0.68 \text{ eV} & (5a) \\
d_1-9MG^{+} (m/z 166) + \text{HDO} & \rightarrow \Delta H^o = 0.06 \text{ eV} & (5b) \\
d_1\text{-enol}-9MG^{+} (m/z 166) + \text{HDO} & \rightarrow \Delta H^o = 0.06 \text{ eV} & (5c) \\
dGuo^{+}(m/z 267) + D_2O & \rightarrow dGuo^{+}D_2O (m/z 287) & \Delta H^o = -0.29 - -0.65 \text{ eV} & (6a) \\
d_1-dGuo^{+} (m/z 268) + \text{HDO} & \rightarrow \Delta H^o = -0.006 - -0.009 \text{ eV} & (6b) \\
d_1\text{-enol-dGuo}^{+} (m/z 268) + \text{HDO} & \rightarrow \Delta H^o = 0.07 \text{ eV} & (6c) \\
Guo^{+}(m/z 283) + D_2O & \rightarrow Guo^{+}D_2O (m/z 303) & \Delta H^o = -0.26 - -0.64 \text{ eV} & (7a) \\
d_1-Guo^{+} (m/z 284) + \text{HDO} & \rightarrow \Delta H^o = -0.006 - -0.008 \text{ eV} & (7b) \\
d_1\text{-enol-Guo}^{+} (m/z 284) + \text{HDO} & \rightarrow \Delta H^o = 0.07 \text{ eV} & (7c)
\end{align*}
\]

In the experiment, all hydration products were formed under single hit conditions where reactant ion reacts with water once or not at all, therefore the geometries of mono-hydrated products were predicted by adding a water molecule to all possible hydration sites of reactant radical cations and then optimized at ωB97XD/6-31+G(d,p). The optimized hydration structures are summarized in Fig. 2, of which the hydration sites are specified in notations. The range of \(\Delta H^o\) listed for hydration reactions indicates the formation of all possible hydration structures, including W12a (\textit{i.e.} water hydrogen-bonded to N1-H and N2-H2a), W16, W9 and W2b for 9HG\(^{+}\)-H\(_2\)O, and W12a, W16, W2b and W8 (or W85\(^{\prime}\)) for 9MG\(^{+}\)-H\(_2\)O, dGuo\(^{+}\)-H\(_2\)O and Guo\(^{+}\)-H\(_2\)O. dGuo\(^{+}\)-H\(_2\)O and Guo\(^{+}\)-H\(_2\)O have additional sugar-hydrated structures. It was found that the water ligand has no obvious influence on spin and charge densities of the radical cations. Attempt was made to optimize complex structures where water is hydrogen-bonded to the lone-pair electron at N3 or N7, but none of these structures converged to stable complexes. Neither
were such structures found in direct dynamics simulations \(\textit{vide infra}\).

Reaction cross sections for individual product channels are shown in Fig. 3. Error bars were estimated by the variations between multiple experimental data sets. Reactions at \(E_{col}\) less than 0.1 eV produced very slow product ions that could not be collected efficiently due to potential barriers in the ion guide. Therefore, reaction cross sections were reported over a center-of-mass \(E_{col}\) range from 0.1 to 2.0 eV. To increase HE product ion intensity, a relatively high D\(_2\)O pressure (~0.2 mTorr) was used in the scattering cell; as a result, both single- (~20%) and multiple- (~8%) collisions have contributed to the measured HE cross section. Fig. 3c only shows HE for 9HG** + D\(_2\)O, as the cross sections for the other three reaction systems are too small to measure \(E_{col}\) dependence. What could be confirmed qualitatively is that all systems had H elimination at lowest \(E_{col}\), which should be mostly attributed to multiple collisions. The total reaction efficiency can be calculated as the ratio of \(\sigma_{\text{total}}/\sigma_{\text{capture}}\), where \(\sigma_{\text{capture}}\) is the ion-neutral dipole capture cross section determined using the statistical adiabatic channel model.\(^8^0\) The efficiencies at lowest \(E_{col}\) are 2% for 9HG**, 0.45% for 9MG**, 0.15% for dGuo** and 0.1% for Guo**.

No proton transfer reaction of G** + D\(_2\)O \(\rightarrow\) [G – H]** + HD\(_2\)O* was seem at \(E_{col}\) up to 2.0 eV, since the reaction was calculated to be endothermic by 2.81, 2.64, 2.86 or 2.73 eV when the proton is abstracted from guanine N1, N2a, N2b and N9, respectively. Neither did we observe the hydrogen abstract reaction of G** + D\(_2\)O \(\rightarrow\) [G + D]** + OD*, as the reaction is 1.70 eV endothermic and thus disfavored in the present \(E_{col}\) range.

3. Trajectory results

For a complex system, use of chemical intuition to predict reaction pathways may prove unreliable as there exist multiple concurrent and competing processes. Therefore, direct dynamics trajectories were calculated for 9HG** + H\(_2\)O and 9MG** + H\(_2\)O at \(E_{col} = 0.1\) eV (100 trajectories for each). Dynamics simulations explore multiple minima in the conformation landscape and the reaction PES. The motion of molecules is followed, allowing the molecules to show what the preferred reaction pathways are.\(^7^3, 8^1-8^4\) Of the 200 trajectories we have simulated, 31.5% can be characterized as direct, nonreactive scattering,
resulting in conversion of some E_{col} into vibrational and rotational energies. The remaining trajectories first form electrostatic complexes upon collisions. Such collision complexes do not have well-defined geometries or directional hydrogen bonds. They are simply floppy complexes of reactants, with large-amplitude intermolecular motion. The importance of these complexes, referred to as precursors in the remainder of discussion, is that they allow repeated encounters between reactants, increasing the probability of eventually locking into a stable hydrogen bond such as W12a. Still, a large fraction of precursors dissociate to reactants before the end of trajectories.

Two representative trajectories of forming 9MG**-H$_2$O are illustrated in Fig. 4a and b, where each frame shows collision time scale, changes in system potential energy (PE) and the centers-of-mass distance between collision partners, and changes of hydrogen bonds along the trajectory. In the trajectory of Fig 4a, the collision instant is around 300 fs, after that a precursor forms and then converges to a W12a structure at 1000 fs as shown by the formation of rH1–water and rH2a–water hydrogen bonds in the bottom frame. The two gray levels within the bottom frame mark the maximum distances for weak and modest interactions, respectively. The oscillations in the PE and bond lengths reflect molecular vibrations (including ZPE) and intermolecular motions. The trajectory in Fig. 4b represents the formation of a W8 complex. Note that W8 forms only in the trajectories of 9MG** + H$_2$O, and the nature of W8 is more electrostatic attraction than a hydrogen bond.

Our trajectory simulation times (~5 ps) were too short compared to the ion time-of-flight within the mass spectrometer, therefore we could not predict the distribution of complex structures in final product ions as most of the complexes would eventually dissociate driven by the acquired hydration enthalpy, and some trajectories may interconvert between different hydrogen bonds. The purpose of our dynamics simulations was to examine reaction dynamics at the early stage — the point at the reaction coordinate where different product channels and the effects of reactant structure originate. To this end, formation probabilities of different complex structures in the trajectories of 9HG** + H$_2$O and 9MG** + H$_2$O are compared in the histograms of Fig. 4c. The overall height of each column represents the total formation
probability of individual structures, and the white area represents the fraction of complexes that dissociate to starting reactants before the end of trajectories.

W12a was observed in both 9HG** + H2O and 9MG** + H2O trajectories, as the most probable structure in complex forming. W12a also has the strongest hydrogen bond among all hydration structures, according to DFT calculations in Fig. 2. Surprisingly, the yield of W16 is minor in both 9HG** and 9MG** trajectories, despite it represents the second strongest hydrogen bond. In sharp contrast, W8 diminishes in the trajectories of 9HG** + H2O, whereas W9 diminishes in 9MG** + H2O. As mentioned above W8 is more an electrostatic complex than hydrogen-bonded. We tried to optimize a W8-like structure for 9HG**·H2O, but the water always swings out of the original position and directs to a W9 structure. To compensate the missing of the W9 structure, 9MG** + H2O forms much more W2b and precursor than 9HG** + H2O. The overall complex formation efficiencies are 69% for 9HG** + H2O and 68% for 9MG** + H2O; but 9MG** + H2O produces more precursors (40%) than 9HG** + H2O (32%), and consequently presents a higher dissociation rate, i.e., 35% of 9MG**·H2O dissociate before the end of trajectories, and the rate drops to 30% for 9HG**·H2O.

IV. Discussion

1. Hydration complexes, H/D exchange and keto-enol isomerization

Despite the fact that formation of water complexes is the energetically most favorable, water complexes were detected only at low E_{col} and even then $\sigma_{\text{hydration}}$ is at most 5% of the total cross section. We have calculated the lifetimes of various water complexes using the RRKM theory. For decay of these complexes to reactants, orbiting transition states were assumed because there are no reverse barriers. In the calculations, we used average angular momenta corresponding to capture cross sections, i.e. $L = \mu \cdot v_{\text{rel}} \left(\sigma_{\text{capture}}/\pi \right)^{1/2}$ where μ and v_{rel} are the reduced mass and relative velocity of collision partners, respectively. Recoil energy needed to calculate orbiting TSs was estimated from dynamics trajectories. The average lifetime of 9HG**·H2O is 70 – 80 ns at $E_{col} = 0.1$ eV, dropping to 3 ns at 0.2 eV and 0.1 ns at 0.5 eV. 9MG**·H2O is longer lived than 9HG**·H2O, with an average lifetime of 1 µs at $E_{col} = 0.1$ eV,
60 ns at 0.2 eV and 2 ns at 0.5 eV. The longest lived complexes correspond to dGuo⁻·H₂O and Guo⁻·H₂O. Their lifetimes are > 10 µs at \(E_{\text{col}} = 0.1 \) eV, 0.5 µs at 0.2 eV and 3 ns at 0.5 eV. The RRKM results imply that the lifetimes of all water complexes are shorter compared to ion time-of-flight (µs) in the mass spectrometer, and most complexes decayed back to reactants before reaching the ion detector. The mass spectrometer collected only a very small fraction of hydration products.

The dominant product channel for all reactant ions is H/D exchange. Note that keto-enol isomerization could only be observed in the experiment if there was concomitant H/D exchange. An obvious question is the extent to which simple H/D scrambling (without structure rearrangement) and keto-enol isomerization each contribute to the product cross section, and how their contributions vary with \(E_{\text{col}} \). Our experiment could not distinguish which guanine tautomer formed in the products, but has provided clues through the reaction \(E_{\text{col}} \)-dependence. At low energies H/D exchange is strongly suppressed by \(E_{\text{col}} \), and its cross section approaches a minimum at \(E_{\text{col}} = 0.2 – 0.4 \) eV. However, the cross section rebounds starting from 0.3 eV, becoming energy-independent toward high \(E_{\text{col}} \) limit. Such \(E_{\text{col}} \) dependence suggests that H/D exchange is dominated by one mechanism at lowest \(E_{\text{col}} \), while a second mechanism grows at high \(E_{\text{col}} \). The low-energy H/D exchange is most likely mediated by a complex and proceeds via hydrogen migration or isomerization of hydrogen bonds, with the formation probability and/or lifetime of such migrated complexes strongly suppressed by \(E_{\text{col}} \). A complex-mediated H/D exchange at low \(E_{\text{col}} \) is consistent with the same dependence of complex-forming and H/D exchange cross sections on reactant ion structures (see Fig. 3a and b). The endothermic keto-enol isomerization may contribute to low energy reactions, but cannot be dominant as judged from the \(E_{\text{col}} \)-inhibiting feature of the reaction. The high-energy mechanism, on the other hand, can be mostly attributed to water-assisted keto-enol isomerization. The PES for reaction (4c) is depicted in Fig. 5. There are many complexes form in collisions, but reaction (4c) must certainly pass through W16. The TS for isomerization can be characterized as double proton transfers occurring simultaneously, with activation barrier 0.53 eV above 9HG⁺·W16, but still 0.07 eV below reactants. Catalyzed by water, the
reaction has a threshold of only 0.06 eV. Keto-enol isomerization may also be possible for dry radical
cations via a direct N1-to-O6 proton transfer. We have calculated TS(no water) in Fig. 5 for the direct
version of keto-enol isomerization. The barrier rises to 1.69 eV above starting reactants, rendering the
isomerization of dry guanine less likely. Similar water-assisted isomerization was observed for neutral
8-hydroxyl guanine radical.86

The above discussion leads to a dynamics picture as follows: 1) at low energies, a set of short-lived
water complexes form, and before dying out a fraction of them mediate H/D exchange; 2) as E_{col} raises,
the probability of complex forming decreases rapidly. It is more reasonable to assume that keto-enol
isomerization occurs in an already correctly oriented (W16-like) structure allowing for double proton
transfer, by which we mean that reactivity is controlled by collision geometry; 3) As an additional note,
dGuo$^+\cdot$H$_2$O and Guo$^+\cdot$H$_2$O can carry the water ligand longer than 9HG$^+\cdot$H$_2$O and 9MG$^+\cdot$H$_2$O at high
E_{col} (a phenomena that could be rationalized in terms of increased degrees of freedom and more efficient
IVR in large systems), of which the W16 structure could catalyze keto-enol isomerization. This is
supported by the experimental observation that H/D exchange for dGuo$^{++}$ and Guo$^{++}$ does not undergo
steep decreasing as 9HG$^{++}$ and 9MG$^{++}$ when E_{col} starts increasing, and have higher $\sigma_{H/D}^{H/D;}$EX than 9HG$^{++}$ and
9MG$^{++}$ at high energies. Of course, a direct mechanism still dominates for dGuo$^{++}$ and Guo$^{++}$ at high
energies.

2. **C8-hydroxylation and H elimination**

Perhaps the biologically most relevant product channel is the water attack at the C8 position of
guanine radical cations, as this is the first step toward the cascade of the OG lesions. Despite the pivotal
role, the C8-adduct [8-OH-G + H]$^{++}$ has never been directly detected except EPR/ENDOR measurement
of OH$^+$ addition to solid N7-protonated guanine.31 Schuster and co-worker87 reported an experiment on
the reaction of water with dGuo$^{++}$ in DNA. In the experiment, hydrophobic alkyl-substituted cytidines
and thymidines were incorporated into the duplex, by which they had expected to repel the otherwise
tightly bound water molecules in their vicinity and disrupt the hydration of dGuo$^{++}$. The experiment did
not produce noticeable changes. Later, they found that a counter ion located in the DNA major groove in proximity to the GG segment could assist the addition of water to ionized DNA.88

We were able to detect H-elimination products in the reaction of 9HG+ + D\textsubscript{2}O, which we tend to attribute to a C8-adduct-mediated reaction on the basis of the PES calculation in Fig. 6. The PES is presented for all-H species to allow comparison with the literature (and the differences in reaction enthalpies for deuterated species are less than 0.01 eV). Under single ion-molecule collision conditions, the HE reaction corresponds to 9HG+ + H\textsubscript{2}O → 9HG+.W → TS1·W (C8-water addition) → [8-OH-9HG + H]+ (formation of C8-hydroxylated intermediate) → TS2 (H elimination) → 8-OH-9HG+ + H.

9HG+.W can be characterized as reactants-like with an intermolecular distance of 2.9 Å. The complex is electrostatically bonded, and it is unlikely that there would be activation barrier to its formation. The rate-limiting steps correspond to two tighter activation barriers TS1·W and TS2 with the maximum barrier height being 1.42 eV above reactants. There is another charge state for the HE products, i.e. 8-OH-G+ + H+, for which the reaction enthalpy is 9.53 eV and thus was not considered further.

The calculated HE endothermicity is consistent with our experimental observation that the HE cross section increases at high E_{col}. The fact that HE is minor even at high energies could be partially contributed to inter-product channel competition, and partially to the suppression by angular momentum conservation.89 The reduced mass for HE products is 20 times lower than that for H/D exchange, thus for a given recoil angular momentum, the centrifugal barrier will be roughly an order of magnitude larger. In other words, it was more difficult for the HE products to escape over the centrifugal barrier than for the H/D products. Because H/D exchange itself is a minor channel at high E_{col}, a factor of 20 suppression would shut down HE for 9MG+, dGuo+ and Guo+.

Our PES for single-water addition to the C8 of 9HG+ agrees with the repulsive reactant interaction reported by Reynisson and Steenken;27 however, we have identified a non-repulsive reaction route when two water molecules are added to the reaction. As shown by the blue lines in Fig. 6, the second water significantly lowers TS1 for C8-water addition (by 1.4 eV) and there is no barrier for water nucleophilic
addition. Videos for the IRC trajectories crossing TS1·W and TS1·2W are available in the Supporting Information, giving intuitive pictures of single- and double-water reactions with 9HG*. TS1·2W features an activation structure where a bond between C8 and a water O atom forms concurrently with the transfer of a water proton towards a neighboring water molecule, and the latter water then transfers a proton to N7. The "second water-assisted C8-water addition" is reminiscent of the counter ion-assisted water addition reported by Schuster and co-worker. In both cases, activation barrier diminishes for a reaction that starts from a configuration where a proton (in our experiment) or a Na+ (in Schuster *et al*’s) resides at or near the N7 of guanine radical cation and evolves through a TS incorporating a proton shuttle mechanism. The formation of 9HG*·2W and TS1·2W provides an explanation for the HE cross section observed at the lowest E_{col} (Fig. 3c), where the combination of long collision time and high D$_2$O pressure made multiple collisions (up to 8%) and thus three-body reactions possible.

Lastly, we have computed two pathways leading from [8-OH-9HG + H]* to 8O-9HG*+: one is consecutive elimination of two H atoms. i.e. [8-OH-9HG + H]* → TS2 → 8-OH-9HG*+ + H → 8O-9HG*+ + 2H, and the other is concerted H$_2$ elimination from C8-H and C8-OH, i.e. [8-OH-9HG + H]* → TS3 → 8O-9HG*+ + H$_2$. Both pathways require high activation energy (>3 eV) and thus are not feasible in the experiment. We have explored the possibility of forming an enol isomer of 8O-9HG*+ (0.47 eV higher in energy than keto) via H$_2$ elimination from N7-H and C8-H of [8-OH-9HG + H]*; however, no TS could be located. Alternatively, the enol-isomer could be interconverted directly from 8O-9HG*+ and the accompanying transition state is 2.29 eV above 8O-9HG*+.

3. The Effects of N9-substitution

9HG*, 9MG*, dGuo*+ and Guo*+ have similar reaction enthalpies and activation barriers. On the basis of the DFT-predicted hydrogen-bonding structures in Fig. 2, one may image that dGuo*+ and Guo*+ would offer the deoxyribose/ribose OH groups for additional hydrogen bonding such as W3’ and W85’, and form more water complexes. The striking observation is that 9HG* seems the most hydrophilic, while all of the N9-substituents inhibit both complex formation and H/D exchange at low energies. The
fact that the low-E_{col} cross sections of 9MG$^+$, dGuo$^+$ and Guo$^+$ are comparable to each other but much lower than that of 9HG$^+$ implies that the hydroxyl groups of deoxyribose and ribose have not participated in hydration, at least not to a significant extent. Related to this observation is that Saigusa and co-workers reported similar mono-hydrated structures of dGuo and Guo, from which they have ruled out the hydration of 2$'$-OH.90 The same group reported that the lowest-energy structure of Guo-H$_2$O is analogous to that of 9MG-H$_2$O.91

Since the hydration of sugar moiety has been ruled out in our reactions and the DLPNO-CCSD(T)/ωB97XD calculations have indicated that the methyl, 2$'$-deoxyribose and ribose groups make little difference on reaction enthalpies and activation barriers. We can therefore use 9HG$^+$ + H$_2$O vs. 9MG$^+$ + H$_2$O as model systems to capture the physics of the collisions and to delineate the dynamics influence of N9-substituents. The reaction E_{col}-dependence and the trajectory simulations have confirmed that low energy reactions are complex-mediated, thus the missing of a W9 structure seems to be the most likely reason for the reduced reactivity of N9-substituted radical cations. By comparing reaction cross sections and product branching of 9HG$^+$ + H$_2$O and 9MG$^+$ + H$_2$O at 0.1 eV, we may estimate that 9HG$^+$.W9 may accounts for ~75% of detected water complexes. On the other hand, the yield of W12a in final products may not be as significant as it has shown in the trajectories (cf Fig. 4c); otherwise we would have expected less decreasing for 9MG$^+$, dGuo$^+$ and Guo$^+$. The implication is that, in addition to complex formation, reactions involve dynamics factors such as complex lifetimes and orientation, etc. In addition, the formation of W16 was found to be modest in the trajectories. In light of this result, we restate that keto-enol isomerization is dominated by a direct mechanism, and the contribution of W16-mediated keto-enol isomerization should be modest.

V. Summary

The guided ion-beam scattering experiment, reaction PES calculations and dynamics simulations were carried out to discover the mechanism and dynamics for the water attack on guanine radical cations in the gas phase where the deprotonation of guanine radical cation is blocked. Various N9-substituted
guanine radical cations were examined including 9HG**, 9MG**, dGuo** and Guo**, in the order of increasing structural complexity. At low E_{col}, the collisions lead to many short-lived complexes with various hydrogen bonds, of which a W9 structure with water hydrogen-bonded to N9-H acts as an important intermediate. The substitution of N9-H blocks the formation of W9, and no hydration of guanosine sugar hydroxyl groups was observed. A combination of these factors results in decreasing reactivity in the order of 9HG** > 9MG** > dGuo** ≈ Guo**. At high E_{col}, water-catalyzed keto-enol isomerization dominates that occurs by a direct mechanism, except that for dGuo** and Guo** where the relatively long-lived W16 complexes may enhance isomerization. Despite being a minor product channel, the most biologically relevant product ions 8-OH-9HG+ (a critical intermediate in the post-ionization conversion of guanine nucleobase into OG) were captured in the reaction of 9HG** with water. It was found that C8-water nucleophilic addition has a high activation barrier in the presence of only a single water molecule, but the barrier vanishes once a second water molecule is added to the reaction as a catalyst. It would be interesting to explore the effects of adding more water molecules to the reaction system. Understanding the dynamics of a multiply-hydrated radical system is more challenging, and thus has more intimate biological relevance since the biological reaction environment presents more complex hydrogen bonding structures. Instead of speculating, we plan to simulate the dynamics of two- and three-water-participating C8-hydroxylation in future work. Two simulation approaches will be utilized: the first is to model the reactions of mono-hydrated 9MG**·H2O + H2O and dihydrated 9MG**·(H2O)2 + H2O, with specific hydrogen bonds in 9MG**·H2O and 9MG**·(H2O)2 reactant ions and one of the water ligands specifically attached to C8-H; and the other is to follow trajectories evolving from TS1·W and TS1·2W that connects reactant and the C8-hydroxylated product, so that more insight can be acquired into the dynamics of the reactions of interest.

Supporting Information

Structures and Cartesian coordinates for 9HG**·(H2O)$_{0-1}$, 9MG**·(H2O)$_{0-1}$, dGuo**·(H2O)$_{0-1}$ and Guo**·(H2O)$_{0-1}$, and for reaction species in Figs. 2, 5 and 6. IRC trajectory videos for TS1·W and TS1·2W.
Acknowledgment

This work was supported by the National Science Foundation (Grant No. CHE 1464171), CUNY PSC-CUNY Award and Queens College Research Enhancement Award.

References

21

70. L. Zhu and W. L. Hase, A general RRKM program (QCPE 644), Quantum chemistry program exchange, Chemistry Department, University of Indiana, Bloomington, 1993.
Scheme 1 Chemical transformations of guanine radical cation.

Abbreviations: FapyG, 2,6-diamino-4-hydroxy-5-formamidopyrimidine; 2Ih, 5-carboxamido-5-formamido-2-iminohydantoin; Iz, 2,5-diaminoimidazolone; OG, 8-oxo-7,8-dihydroguanine; 8-OH-G*, 8-hydroxylated guanine radical; Sp, spirominodihydantoin; Z, 2,2,4-triamino-2H-oxazol-5-one.
Figure Captions

Fig. 1 Lowest-lying keto and enol conformers of 9HG**, 9MG**, dGuo** and Guo**. Atomic numbering schemes are presented. Spin (contour plots) and charge densities (numbers) were calculated at ωB97XD/6-31+G(d,p). Energies (eV) of enols vs. ketos were evaluated at DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-31+G(d,p) with 298 K thermal corrections.

Fig. 2 Mono-hydrates of 9HG**, 9MG**, dGuo** and Guo**. Atom numbering scheme and nomenclature are presented. Hydration sites are indicated by the last two numbers in notations, and hydrogen bonds are depicted by dashed lines with lengths shown in Å. Relative energies (eV, with respect to global minima) and hydration enthalpies were evaluated for all-H systems at DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-31+G(d,p) with 298 K thermal corrections. A D₂O ligand increases hydration enthalpy by ≤ 0.01 eV.

Fig. 3 Product cross sections for the reactions of D₂O with 9HG**, 9MG**, dGuo** and Guo** as a function of center-of-mass collision energy.

Fig. 4 a, b) Representative complex-forming trajectories for 9MG** + H₂O, simulated at $E_{col} = 0.1$ eV. Each set shows the changes of PE and the CM separation between collision partners (right axis), and the formation of hydrogen bonds; and c) formation probabilities of different complex structures in the trajectories of 9HG** + water and 9MG** + water. Distribution probabilities are based on 100 trajectories for each system.

Fig. 5 PES for keto-enol isomerization of 9HG** in the presence and the absence of water. Reaction enthalpies (eV, for all-H species) were determined on the basis of electronic energies at DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-31+G(d,p), and 298 K thermal corrections at ωB97XD/6-31+G(d,p). For TSs, vibrational modes corresponding to imaginary frequencies are indicated by displacement vectors. Numbers in parentheses are reaction enthalpies with D₂O.

Fig. 6 PES for C8-water addition to 9HG**. Reaction enthalpies (eV, for all-H species) were determined by the sum of electronic energies calculated at DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-31+G(d,p), and 298 K thermal corrections at ωB97XD/6-31+G(d,p). Structures of TS2-W and 8-OH-9HG-•-W are similar to their dry analogous except a water bonded to N7-H and C6-O. Trajectories (in MP4 format) for 9HG** + H₂O → TS1-W → [8-OH-9HG + H]• and 9HG** + 2H₂O → TS1-2W → [8-OH-9HG + H]• + H₂O are available in the Supporting Information.
Fig. 1

![Molecular structures of various chemical compounds](image-url)
Fig. 2

9HG''-W12a
0 (E\textsubscript{hydration} = 0.70)

9HG''-W16
0.10 (0.60)

9HG''-W9
0.13 (0.57)

9HG''-W2b
0.20 (0.50)

9MG''-W12a
0 (E\textsubscript{hydration} = 0.68)

9MG''-W16
0.10 (0.58)

9MG''-W2b
0.20 (0.48)

9MG''-W8
0.31 (0.37)

dGuo''-W12a
0 (E\textsubscript{hydration} = 0.65)

dGuo''-W16
0.09 (0.56)

dGuo''-W2b
0.19 (0.46)

dGuo''-W3'
0.32 (0.33)

dGuo''-W85'
0.36 (0.29)

Guo''-W12a
0 (E\textsubscript{hydration} = 0.64)

Guo''-W16
0.08 (0.56)

Guo''-W2b
0.20 (0.44)

Guo''-W3'
0.25 (0.39)

Guo''-W85'
0.36 (0.27)

Guo''-W23'
0.36 (0.26)
Fig. 3

(a) Formation of water-complex
- 9HG^{-+}
- 9MG^{-+}
- Guo^{-+}
- dGuo^{-+}
- Guo^{-+}

(b) H/D exchange and water-assisted keto-enol isomerization

(c) $9\text{HG}^{-+} + \text{D}_2\text{O} \rightarrow 8\text{-OD}-9\text{HG}^{-+} + \text{H}$

Cross Section (Å^2)

Collision Energy (eV)
Fig. 4

(a) PE (Hartree) vs Trajectory Time (fsec) for W12a-W and W16-W. Peptide backbone resonance peaks are shown in red and black at 253 and 256 cm⁻¹, respectively. The black line represents the average PE, and the shaded area represents the standard deviation. (b) Bond Length (Å) vs Trajectory Time (fsec) for W12a-W and W16-W. The CM Distance (Å) vs Trajectory Time (fsec) for W12a-W and W16-W is also shown. (c) Complex-forming % for W12a, W16, W8, W9, W2b, and precursor. The black bar represents 9HG⁻⁺ + H₂O, and the red bar represents 9MG⁻⁺ + H₂O. The precursor dissociates before the end of trajectories.
Fig. 5

Potential Energy (eV)

-0.60 (-0.61)

9HG+_keto W16

-0.07 (-0.07)

water-assisted TS

0.00

TS (no water) 1.69

0.07 (0.06)

9HG+_enol W6

-0.51 (-0.52)

9HG+_enol + H\textsubscript{2}O

9HG+_keto + H\textsubscript{2}O
Fig. 6

[Diagram showing potential energy levels and reaction pathways for the conversion of 8-OH-9HG to 9HG. The reaction pathways involve bond dissociation energy (BDE) calculations at the DLPNO-CCSD(T)/aug-ccpVTZ//ωB97XD/6-31+G(d,p) level of theory. Key points include:

- 9HG\(^{+}\) + H\(_2\)O → 9HG\(^{+}\) + H\(_2\)O with a BDE of 0.0 eV.
- 8-OH-9HG\(^{+}\) + H → 8-OH-9HG\(^{+}\) + H\(_2\)O with a BDE of 1.00 eV.
- 8-OH-9HG\(^{+}\) + H\(_2\) → 8-OH-9HG\(^{+}\)(enol) + H\(_2\)O with a BDE of 0.08 eV.
- 8-OH-9HG\(^{+}\) + H → 8-OH-9HG\(^{+}\) (enol) with a BDE of 0.69 eV.
- 8-OH-9HG\(^{+}\) (enol) + H\(_2\)O → 8-OH-9HG\(^{+}\) (enol) + H\(_2\) with a BDE of 0.15 eV.
- 8-OH-9HG\(^{+}\) (enol) + H → 8-OH-9HG\(^{+}\) (enol) with a BDE of 0.39 eV.
- 8-OH-9HG\(^{+}\) (enol) + H\(_2\)O → 8-OH-9HG\(^{+}\) (enol) + H\(_2\) with a BDE of 0.08 eV.

Various transition states (TS) are also indicated, such as TS1-W, TS2, TS3, and TS1-2W, with corresponding energies as shown in the diagram.]