

Phase transition and Superconductivity in ReS2, ReSe2 and ReTe2

Journal:	Physical Chemistry Chemical Physics
Manuscript ID	CP-ART-08-2018-005333.R2
Article Type:	Paper
Date Submitted by the Author:	03-Nov-2018
Complete List of Authors:	zhang, Jurong; Jilin University, College of Physics; Sun, Ermiao; Jilin University Feng, Xiaolei; University of Cambridge Liu, Hanyu; Jilin University, State Key Laboratory of Superhard Materials Redfern, Simon; University of Cambridge, Department of Earth Sciences Kanchana, V; Indian Institute of Technology Hyderabad, Department of Physics Liu, Guangtao; Jilin University, State Key Laboratory of Superhard Materials ChangChun Wang, Hongbo; State Key Lab of Superhard Materials, Jilin University

Phase transition and Superconductivity in ReS2, ReSe2 and ReTe2

Jurong Zhang¹, Ermiao Sun¹, Xiaolei Feng^{1, 2}, Hanyu Liu^{3,1}, Simon A. T. Redfern², V. Kanchana⁴, Guangtao Liu^{1*}, Hongbo Wang^{1*}

¹State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China

²Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK

³Innovation Center for Computational Physics Method and Software, College of Physics, Jilin University, Changchun 130012, China ⁴Department of Physics, Indian Institute of Technology Hyderabad, Kandi, Medak 502

285, Telengana, India

*Corresponding author: 07455@163.com;whb2477@jlu.edu.cn

Abstract

Transition metal dichalcogenides have attracted significant attention, due to both fundamental interest as well as their potential applications. Here, we have systematically explored the crystal structures of ReX_2 (X= S, Se, Te) over the pressure range 0–300 GPa, employing swarm-intelligence-based structure prediction methodology. Several new structures are found to be stable at high pressures. The calculated enthalpy of formation suggested that all predicted high-pressure structures are stable against decomposition into elemental end-members. Moreover, we found the simulated X-ray diffraction patterns of ReSe₂ are in good agreement with experimental data. Pressure-induced metallization of ReX₂ has been revealed from the analysis of electronic structure. Our electron-phonon coupling calculations indicate ReSe₂ and ReTe₂ are superconducting phases at high pressures.

Introduction

Transition-metal dichalcogenides (TMX₂) (TM=W, Mo, Re, Rb, Tc etc.; X = S,

1

Se, Te) are mostly layered materials, in which TM atomic layers are sandwiched between two chalcogen atom layers, forming an X-M-X sandwiched structure¹⁻⁵. The X-M-X trilayers then stack together via weak van der Waals (vdW) interactions, resulting in different phases of transition-metal dichalcogenides (TMDs) such as 1T, 1T', 2H_c, 2Ha and 3R^{4,6}. Therefore, the bulk phases of TMDs exhibit a broad spectrum of electronic behaviors ranging from insulators to metals or even superconductors^{4,6,7}.

ReX₂ (X=S, Se, Te) has attracted significant recent attention, with reports of photoluminescent properties, catalytic behavior and promising solar-cell applications⁸⁻ ¹¹. ReX₂ compounds are semiconducting layered transition metal dichalcogenides that exhibit a low-symmetry stable distorted 3R CdCl structure (P-1) at ambient conditions¹²⁻¹⁴, in which Re atoms are surrounded by six chalcogen atoms in trigonal prism coordination at ambient conditions. The effects of pressure in reducing interatomic distances and modifying crystal structures are well known, thus pressure may provide a route to engineer and improve the physical and chemical properties of materials¹⁵. An early experimental study on ReS₂ revealed a high-pressure phase at ~11.3 GPa¹⁶. Recently, Zhou et al.¹⁷ reported that the distorted-3R (P-1) phase, stable at 0 GPa, will transform to a distorted-1T phase, also with P-1 symmetry, at 3 GPa, and then to a non-layered $I4_1/amd$ structure at 90 GPa, which is stable up to at least 200 GPa. Remarkably, the nonlayered $I4_1/amd$ structure of ReS₂ shows superconductivity (with $T_c \approx 2$ K) below 100 GPa. The selenide equivalent, ReSe₂, was found to undergo a phase transition at ~10 GPa using angular-dispersive x-ray diffraction (ADXRD)¹⁸ with a new peak appearing, however, the crystal structure and properties of ReSe₂ of the new phase have not been defined. A similar phase transition in ReSe_2 was also found at ~ 7 GPa by Naumov, as confirmed by Raman spectroscopy which showed the redistribution of Raman peak intensities and a discontinuity in the pressure dependence of the vibration frequencies at this pressure¹⁹. The two experimental works on ReSe₂ therefore support each other. For the telluride, ReTe2, the high-pressure behavior is still completely unknown.

In this work, we have explored the high-pressure behaviors of ReX_2 over the pressure range 0–300 GPa. By using the particle swarm optimization technique²⁰, in

combination with ab initio calculations, we have discovered a number of proposed highpressure candidate structures and analyzed their electronic properties, which reveal pressure-induced metallization in this family of solids.

Computational details

We have studied the structures of ReX₂ using the particle swarm optimization technique implemented in the CALYPSO code^{20,21}. This has been proved to be a reliable method for the successful predictions of high pressure structures for a wide variety of systems^{22,23}. We research the structures of ReX₂ (X=S, Se, Te) system with unit cell sizes ranging from 1 to 4 formulas per simulation cell at 0, 50, 100, 150, 200, 250, 300 GPa. Each generation contained 30 structures, and the first generation was produced randomly with symmetry constraint. The 60% lowest-enthalpy structures of each generation were used to produce the structures in the next generation by local Particle Swarm Optimization (PSO) technique, and the remaining 40% structures were randomly generated within symmetry constraint to enhance the structural diversity. Total-energy calculations and geometrical optimization for these structures were performed in the framework of density functional theory within the Perdew-Burke-Ernzerhof²⁴ parametrization of generalized gradient approximation²⁵ as implemented in the VASP code²⁶. In order to obtain accurate results, the vdW interaction was taken into consideration. The interaction among electrons and ions was simulated by the allelectron projector augmented-wave (PAW) method²⁷ and the 5s²5p⁶6s²5d⁵, 3s²3p⁴, 4s²4p⁴, 5s²5p⁴ electrons were set as valence electrons for the Re, S, Se and Te atoms, respectively. We chose a cutoff energy of 500 eV as the plane-wave kinetic energy cutoff and used Monkhorst-Pack²⁸ k meshes with grid spacing of $2\pi \times 0.03$ Å⁻¹. The dynamical stability of crystal structures was calculated using finite displacement as implemented in the PHONOPY code²⁹. Superconducting properties were calculated within the framework of linear response theory through the Quantum-ESRESSO code³⁰. The plane-wave pseudopotential method of the ultrasoft vanderbilt pseudopotentials within density functional perturbation theory were used to calculate the EPC (electronphonon coupling). We choose 50 Ry for the kinetic energy cutoff of the plane-wave

basis after testing for convergence. The *k*-space and *q*-point integrations over the Brilloiun zone (BZ) were performed on a $28 \times 28 \times 6$ grid and a $14 \times 14 \times 3$ grid of the *P*6₃/*mmc* phase of ReSe₂, a $20 \times 20 \times 6$ grid and $10 \times 10 \times 3$ grid of the *I*4/*mmm* phase of ReSe₂ and a $24 \times 24 \times 6$ grid and $12 \times 12 \times 3$ grid of the *I*4/*mmm* phase of ReTe₂, respectively. The crystal-orbital Hamilton population was calculated using the LOBSTER code³¹ for the binding analysis of ReX₂ (X=S, Se, Te). The EPC spectral function is expressed by the phonon linewidth γ_{qj}^{r} arising from electron-phonon scattering³²⁻³⁴,

$$\alpha^{2}F(\omega) = \frac{1}{2\pi N_{f}} \sum_{q_{i}} \frac{\gamma_{q_{i}}}{\omega_{q_{i}}} \delta(h\omega - h\omega_{q_{i}}) w(q)$$
1.1

where N_f is the electronic density of states/atom and spin at the Fermi level. The linewidth of a phonon mode j at wave vector q^{\prime} , γ_{qj}^{r} , resulting from electron-phonon interaction is as follows:

$$\gamma_{qj}^{r} = 2\pi\omega_{qj}^{r}\sum_{nm}\int \frac{d^{3}\dot{k}}{\Omega_{BZ}} \left|g_{kn,k+qm}^{j}\right|^{2} \delta(\varepsilon_{kn}^{r} - \varepsilon_{F})\delta(\varepsilon_{k+qm}^{r} - \varepsilon_{F}),$$
1.2

where the sum is over the first BZ, with Ω_{BZ} as the volume of the BZ, \mathcal{E}_{kn}^{r} is the energy of bands measured relative to the Fermi level at point k, and $g_{kn,k+qm}^{i}$ represent the electron-phonon matrix element. The EPC parameter λ can be expressed as:

$$\lambda = 2 \int_0^\infty \frac{\alpha^2 F(\omega)}{\omega} d\omega \approx \sum_{ij} \lambda_{ij} w(q), \qquad 1.3$$

where w(q) is the weight of a q point in the first BZ. Finally, the superconducting transition temperature T_c can be estimated by the Allen-Dynes modified McMillan

equation³⁵ as

$$T_{C} = \frac{\omega_{\log}}{1.2} \exp\left[-\frac{1.04(1+\lambda)}{\lambda - \mu^{*}(1+0.62\lambda)}\right],$$
 1.4

where ω_{\log} is the logarithmic average frequency, and μ^* is the Coulomb pseudopotential.

Results and discussions

At ambient pressure, the experimentally-observed distorted-3R^{13,14} phase (space group P-1) was accurately shown to be stable by our calculations. The interesting thing is that at high pressure, the P-1 phase transform to the R-3m phase after optimization as shown by dashed line in Fig. 1, which is also a layer phase. The enthalpy curves of candidate structures of ReX₂ relative to $P6_3/mmc$ are presented as a function of pressure in Fig. 1. All of the structural relaxations are based on the optB86b function together with the vdW-DF correction³⁶, which minimize the errors compared to the calculation using GGA-PBE as shown in Table 1. A succession of phase transitions from P-1 (distorted-3R) \rightarrow *P*-1'(distorted-1T') \rightarrow *P*6₃/*mmc* (2H_c) \rightarrow *I*4₁/*amd* \rightarrow *I*4/*mmm*' of ReS₂ was clearly revealed at 3.0 GPa, 96.5 GPa, 99.5 GPa and 248.2 GPa respectively. The P-1' phase and $I_{4/amd}$ phase in this work are consistent with earlier reports in Zhou et al.'s work¹⁷. Two new structures, P6₃/mmc and I4/mmm', were found to be most stable in the pressure range of 96.5–99.5 GPa and > 248.2 GPa, respectively. ReSe₂ also show a complex sequence of phase transitions from P-1 (distorted-3R) $\rightarrow P-1'$ (distorted-1T') $\rightarrow P6_3/mmc$ (2H_c) $\rightarrow I4/mmm \rightarrow I4/mmm'$ at 21.9 GPa, 69.2 GPa, 106 GPa and 231.7 GPa respectively. Fig. 2 shows a comparison of the experimental XRD¹⁸ patterns for ReSe₂ and the simulated XRD patterns of the ambient-pressure structure and the P-1' phase predicted for 10.5 GPa. It can be seen that the peak marked with a star is a "fingerprint" of the new phase¹⁸, and the next three peaks in the experimental data are in good agreement with the XRD of P-1' in our work as well. The strongest peak in the figure is from the P-1 phase for the sample was dominated by P-1 phase¹⁸. Therefore, our result demonstrates that the phase found by Kao et al. is indeed a distorted 1T' phase with P-1 space group. In contrast to ReS₂ and ReSe₂, in ReTe₂, the ground state

of the distorted-3R (*P*-1) structure directly transforms to a *I4/mmm* phase at 50 GPa, which remains the lowest-enthalpy structure of ReTe₂ up to 300 GPa. All the high-pressure structures are stable against decomposition into elemental end-members as shown by the thermodynamic calculations (Fig. 1). The first order phase transitions are indicated by the density increases across each transition, which are ~3%, ~1.9%, ~2.5% for ReS₂, ~15.2%, ~8.3% and ~1.3% for ReS₂, and 4.7 % for ReTe₂, respectively.

The high-pressure phases and corresponding unit cells of ReX₂(X=S, Se, Te) are depicted in Fig. 3 and the detailed structure information is shown in table 3. The P-1' phase (Fig 3 (a, f)) is a distorted-1T layer structure formed by a shear of the ground state distorted-3R structure. Within each layer, the Re atom is six-fold coordinated by X to form a ReX₆ octahedron. The P6₃/mmc phase of ReX₂ (X=S, Se) corresponds to a ReX₆ triangular prism layer structure (Fig 3 (b, g)), which is a universal ground state in TMX₂ compounds. The I4₁/amd phase (Fig 3 (c, h)) of ReS₂ was previously proposed by Zhou et al.¹⁷ and is a close-stacking structure formed by ReS₆ edge-sharing irregular octahedra. The I4/mmm structure (Fig 3 (d, i)) is composed of face-sharing ReX₈ cuboid layers, with adjacent layers displaced a/2 and b/2 along the x and y axes, respectively. The I4/mmm' structure (Fig 3 (e, j)) consists of layers of close-packed Re₃X₁₈ units which can be considered as the stacking of three face-sharing ReX₈ cubes bonded via two X atoms along the z axis. The adjacent layers are displaced a/2 and b/2 with respect to each other along the x and y axes. As expected from general pressure-coordination trends³⁷, the coordination number of Re atom changes from 6 (P-1', P6₃/mmc, I4₁/amd) to 8 (I4/mmm, I4/mmm'), and the coordination number of X by X atom increases from 2 (P-1) to 3 (P-1', P6₃/mmc, I4₁/amd), and finally to 4 (I4/mmm, I4/mmm'). With increasing of pressure, the Re-X distance is almost unchanged, but the X-X distance decreases significantly and becomes more comparable to the X-Re distance. This suggests that the X-X coordination environment might play an important role in determining the transition sequence. Indeed, it is found that the three phases with X-X coordination number of 3 (P-1', $P6_3/mmc$, $I4_1/amd$) do not appear in the sequence of ReTe₂ and $I4_1/amd$ does not present in ReSe₂. It seems that the X-X coordination number of 3 becomes more unfavorable with increasing of both the atomic radii of X

and pressure.

In order to further explore and verify the structural stability of these structures, the phonon density of states (PHDOS) of all high-pressure phases of ReX_2 (X=S, Se, Te) were calculated using the supercell method (Fig.4). No imaginary phonon frequencies are found across the whole Brillouin zone, demonstrating the dynamical stability of these structures. Because pressure induces an increase in the force constants between atoms, the phonons of ReX_2 move to higher frequency with increasing pressure.

The electronic band structure of *P*-1'of ReS₂ at 60 GPa reveals its semi-conductor characteristics (Fig. 5). With increasing pressure to 80 GPa, however, the bands already cross through the Fermi level and the material acts as a semimetal, with weak metallic properties. Our observations are in line with Zhou's work, which also found metallization in this phase at 70 GPa¹⁷. Similar metallization is also observed in the *P*-1' phase of ReSe₂, which is a semiconductor at 40 GPa and a semimetal at 60 GPa. Naumov et al.¹⁹ also described the metallization of ReSe₂, from resistivity curve analysis. For ReTe₂, the ground state of the *P*-1 phase becomes metallic below 10 GPa according to the bands shown in Fig. 5(e, f). It can be seen, therefore, that pressure induces metallization of ReX₂ (X=S, Se, Te). For all the semimetal states of ReX₂ (X=S, Se, Te), there are two bands through the Feri level: one is an electron-like band, while the other is a hole-like band.

According to the projected electronic density of states (PDOS), the *P*-1' phase of ReS₂ and ReSe₂ are poor metals. As expected, the total DOS at the Fermi level mainly comprises contributions from the orbitals of Re 5d, S 3p, Se 4p, and Te 5p. There are obvious hybridization in *P*-1' and *P*6₃/*mmc* phases of ReSe₂(Fig. 6). Superconducting behavior has been extensively studied in transition metal dichalcogenides such as WTe₂, TaS₂, NbSe₂, MoS₂, ReS₂, among others^{4,6,17,38,39}. From the band and DOS information, ReX₂ (X=S, Se, Te) is metallic at high pressure. In addition, however, we have further studied the superconductivity of ReSe₂ and ReTe₂ below 200 GPa. We note that superconductivity in ReS₂ was reported previously by Zhou et al.¹⁷, therefore we have not repeated those calculations. The Eliashberg phonon spectral function $\alpha^2 F(\omega)$, logarithmic average phonon frequency ω_{log} , and the electron-phonon coupling

parameter λ , of the P6₃/mmc structure of ReSe₂ at 100 GPa, the I4/mmm structure of ReSe₂ at 150 GPa, and the I4/mmm structure of ReTe₂ at 50 GPa are shown in Fig.7. The resulting values of λ are found to be 0.210, 0.238 and 0.245, respectively. The μ * is Coulomb pseudopotential parameter and it remains challenging to directly derive an accurate μ * from first-principles theory but an upper bound on μ * is estimated to be 0.25^{32} . In the revision, we recalculated the superconducting transition temperatures (Tc) with a typical Coulomb pseudopotential parameter⁴⁰ $\mu^* = 0.13$, and the Tc of the P6₃/mmc structure of ReSe₂ at 100 GPa, the I4/mmm structure of ReSe₂ at 150 GPa, and the I4/mmm structure of ReTe₂ at 50 GPa are 1.0 K, 2.0 K and 1.4 K, respectively. From the PHDOS, Eliashberg EPC spectral function $\alpha^2 F(\omega)$ and the electron-phonon integral $\lambda(\omega)$ (Fig. 7), it is evident that for the P6₃/mmc phase of ReSe₂, the lowfrequency translational vibrations from Se and Re atoms contribute similarly to λ and the high-frequency translational vibrations from Se make more contribution than highfrequency translational vibrations from the Re to λ and the same tendency was also found in I4/mmm phase of ReSe2. In I4/mmm phase of ReTe2, Te atoms vibrations make more contribution than Re atoms vibrations to the overall EPC constant. We have added these analysis in the revision.

We have used crystal orbital Hamilton population (COHP) analysis to determine the strength and nature of the chemical bonding of Re-X (X=S, Se, Te) pairs in all highpressure phases. The averaged COHP of Re-X (X=S, Se, Te) atom pairs are shown in Fig. 8. The negative value (low energy region) of the COHP indicates any bonding character between such Re-X (X=S, Se, Te) pairs. The integrated crystal orbital Hamilton population (ICOHP) was calculated to analyze the strength and nature of chemical bonding between Re atoms and X (S, Se, Te) atoms, as shown in Table 2. For ReS₂, the Re-S bonds in the *P*6₃/*mmc* structure (-3.48) are stronger than the Re-S bonds in the *I*4/*mmm*' structure (-2.74) but similar to those in the *I*4₁/*amd* (-3.74) phase. The ICOHP value of Re-Se bonds of the *P*-1'(-3.54) and *P*6₃/*mmc* (-3.33) phases of ReSe₂ are also similar, however they are all smaller than the ICOHP of *I*4/*mmm* (-2.97) and *I*4/*mmm*'(-2.08) ReSe₂, indicating that the Re-Se bonds in the *P*-1' and *P*6₃/*mmc* phases are stronger than those in the *I*4/*mmm*' phase of ReSe₂. Similarly, the Re-Te bonds of six-fold coordinated Re in P-1' ReTe₂ are stronger than the Re-Te bonds in the I4/mmm phase, as revealed by the ICOHP of P-1 (-3.12) ReTe₂ being larger than that of the I4/mmm (-2.22) phase.

Conclusions

In summary, we have investigated high-pressure behavior of the transition metal dichalcogenide ReX₂ system. Five high-pressure phases, *P*-1', *P*6₃/*mmc*, *I*4₁/*amd*, *I*4/*mmm* and *I*4/*mmm'*, were predicted in the ReX₂ family of compounds and are found to be energetically stable over certain pressure ranges. Thermodynamical calculations revealed that all the high-pressure phase of ReX₂ are stable with respect to elemental decomposition up at least up to 300 GPa. With increasing pressure, the coordinated environment changes from ReX₆ octahedra or trigonal prisms to ReX₈ cuboids. Moreover, our electron-phonon coupling calculations have revealed the superconducting potential of metallic ReX₂ phases. Our simulated X-ray diffraction patterns, from our computed structures for ReSe₂, are in good agreement with previous experimental data.

Notes

The authors declare no competing financial interest.

Acknowledgement

This work was supported by NSAF No. U1530124; National Natural Science Foundation of China under Grants No. 11474128, No. 11774127, No. 11534003 and No. 11764043; the National Key Research and Development Program of China No. 2016YFB0201200, No. 2016YFB0201201, under Grant and No. 2017YFB0701503; the 2012 Changjiang Scholars Program of China supported by Program for JLU Science and Technology Innovative Research Team; the Science Challenge Project No. TZ2016001 and the NSF-CREST Center for Innovation, Research and Education in Environmental Nanotechnology with Grant Number HRD-1736093 and NASA with Grant 17-EPSCoRProp-0032.

References

1 Marezio, M.; Dernier, P.; Menth, A.; Hull Jr, G. J. Solid State Chem. 1972, 4, 425-429.

2 Fang, C.; Wiegers, G.; Haas, C.; De Groot, R. J. Phys.: Condens. Matter 1997, 9, 4411.

3 Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. *Nat. Chem.* 2013, **5**, 263.

4 Lu, P.; Kim, J.-S.; Yang, J.; Gao, H.; Wu, J.; Shao, D.; Li, B.; Zhou, D.; Sun, J.; Akinwande, D. *Phys. Rev. B* 2016, **94**, 224512.

5 Brown, B. E. Acta Crystallogr. 1966, 20, 268-274.

6 Kohulák, O.; Martoňák, R. Phys. Rev. B 2017, 95, 054105.

7 Wang, X.; Chen, X.; Zhou, Y.; Park, C.; An, C.; Zhou, Y.; Zhang, R.; Gu, C.; Yang,
W.; Yang, Z. Sci. Rep. 2017, 7, 46694.

8 Broadbent, H. S.; Slaugh, L. H.; Jarvis, N. L. J. Am. Chem. Soc. 1954, 76, 1519-1523.

9 Wheeler, B. L.; Leland, J. K.; Bard, A. J. J. Electrochem. Soc 1986, 133, 358-361.

10 Koffyberg, F.-P.; Dwight, K.; Wold, A. Solid State Commun. 1979, 30, 433-437.

Lin, Y.-C.; Komsa, H.-P.; Yeh, C.-H.; Bjorkman, T.; Liang, Z.-Y.; Ho, C.-H.;
Huang, Y.-S.; Chiu, P.-W.; Krasheninnikov, A. V.; Suenaga, K. *ACS nano* 2015, 9, 11249-11257.

12 Jariwala, B.; Thamizhavel, A.; Bhattacharya, A. J. Phys. D: Appl. Phys. 2016, 50, 044001.

13 Larchev, V.; Popova, S. Inorg. Mater. 1976, 12, 1130-1132.

14 Lamfers, H.-J.; Meetsma, A.; Wiegers, G.; De Boer, J. J. Alloys Compd. 1996,241, 34-39.

15 Zhang, L.; Wang, Y.; Lv, J.; Ma, Y. Nat. Rev. Mater. 2017, 2, 17005.

Hou, D.; Ma, Y.; Du, J.; Yan, J.; Ji, C.; Zhu, H. J. Phys. Chem. Solids 2010, 71, 1571-1575.

17 Zhou, D.; Zhou, Y.; Pu, C.; Chen, X.; Lu, P.; Wang, X.; An, C.; Zhou, Y.; Miao,

- F.; Ho, C.-H. npj Quantum Materials 2017, 2, 19.
- 18 Kao, Y.-C.; Huang, T.; Lin, D.-Y.; Huang, Y.-S.; Tiong, K.-K.; Lee, H.-Y.; Lin,
 J.-M.; Sheu, H.-S.; Lin, C.-M. J. Chem. Phys. 2012, 137, 024509.
- Naumov, P.; ElGhazali, M.; Mirhosseini, H.; Süß, V.; Morosan, E.; Felser, C.;
 Medvedev, S. J. Phys.: Condens. Matter 2017, 30, 035401.
- 20 Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Phys. Rev. B 2010, 82, 094116.
- 21 Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Comput. Phys. Commun. 2012, 183, 2063-2070.(
- Wang, H.; John, S. T.; Tanaka, K.; Iitaka, T.; Ma, Y. *Proc. Natl. Acad. Sci. U.S.A.*2012, **109**, 6463-6466.
- 23 Liu, H.; Naumov, I. I.; Hoffmann, R.; Ashcroft, N.; Hemley, R. J. *Proc. Natl. Acad. Sci. U.S.A.* 2017, **114**, 6990-6995.
- 24 Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh,
- D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.
- 25 Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
- 26 Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
- 27 Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
- 28 Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
- 29 Togo, A.; Oba, F.; Tanaka, I. Phys. Rev. B 2008, 78, 134106.
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.;
 Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. *J. Phys.: Condens. Matter* 2009,
 21, 395502.
- Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. *Chem.* 2016, 37, 1030-1035.
- 32 Allen, P. B.; Silberglitt, R. Phys. Rev. B 1974, 9, 4733.
- 33 Allen, P. B. *Phys. Rev. B* 1972, **6**, 2577.
- 34 Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Phys. Rev. 1957, 108, 1175.
- 35 Allen, P. B.; Dynes, R. Phys. Rev. B 1975, 12, 905.
- 36 Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. *Phys. Rev. Lett.* 2004, **92**, 246401.
- 37 Gao, G.; Hoffmann, R.; Ashcroft, N. W.; Liu, H.; Bergara, A.; Ma, Y. Phys. Rev.

B 2013, **88**, 184104.

38 Boaknin, E.; Tanatar, M.; Paglione, J.; Hawthorn, D.; Ronning, F.; Hill, R.; Sutherland, M.; Taillefer, L.; Sonier, J.; Hayden, S. *Phys. Rev. Lett.* 2003, **90**, 117003.

39 Sipos, B.; Kusmartseva, A. F.; Akrap, A.; Berger, H.; Forró, L.; Tutiš, E. *Nat. Mater.* 2008, **7**, 960.

40 Peng, F.; Sun, Y.; Pickard, C. J.; Needs, R. J.; Wu, Q.; Ma, Y. Phys. Rev. Lett. 2017, **119** (10), 107001.

Figure Caption:

Fig. 1. The enthalpies (relative to the $P6_3/mmc$ structure) as a function of pressure of ReS₂(a), ReSe₂(b), ReTe₂(c). We adopt the hP2 structure of Re; the hP3 (Se-I) phase, Se-III phase, β -Po phase, and bcc phase, and the fcc phase of Se; Te-I, β -Po phase, the bcc phase, the fcc phase of Te; oF128 phase, hP9 phase, S-II phase and the β -Po phase of S as the reference phases in their own stable pressure ranges.

Fig. 2. Comparison of the experimental XRD data for ReSe_2 with a simulated XRD pattern for the ambient-pressure structure and predicted *P*-1' phase at 10.5 GPa. The XRD data from experiment at 10.5 GPa are shown as a black line and the simulated XRD curves of *P*-1 phase and *P*-1' phase at 10.5 GPa are given by blue and red lines, respectively. The peak marked with an asterisk is the new peak found in experiment.

Fig. 3. The crystal structure of the *P*-1' (a), $P6_3/mmc$ (b), $I4_1/amd$ (c), I4/mmm(d) and I4/mmm' (e) phases of ReX₂ and the local coordination environment of Re (f)-(j); The gray and green balls represent Re and X (X = S, Se, Te) atoms, respectively.

Fig. 4. The atom-projected PHDOS of *P*6₃/*mmc* of ReS₂ at 97 GPa (a), *I*4₁/*amd* of ReS₂ at 100 GPa (b), *I*4/*mmm*' of ReS₂ ta 300 GPa (c), *P*-1 of ReTe₂ at 0 GPa (d), *I*4/*mmm* of ReTe₂ at 50 GPa (e), *P*-1 of ReSe₂ at 0 GPa (f), *P*-1' ReSe₂ at 40 GPa (g), *P*6₃/*mmc* of ReSe₂ at 100 GPa (h), *I*4/*mmm* of ReSe₂ at 150 GPa (i), *I*4/*mmm*' of ReSe₂ at 300 GPa (j).

Fig. 5. The band structure of the *P*-1' phase of ReS_2 at 40 GPa (a) and 80 GPa (b), the *P*-1' phase of ReS_2 at 40 GPa (c) and 60 GPa (d), and the *P*-1 phase of ReT_2 at 0 GPa (e) and 10 GPa (f).

Fig. 6. The total and partial (or orbital-projected) DOS of the $P6_3/mmc$ phase of ReS₂ at 97 GPa (a), the *I*4/*mmm'* phase of ReS₂ at 300 GPa (b), the *P*-1' phase of ReSe₂ at 40

GPa (c), the $P6_3/mmc$ phase of ReSe₂ at 100 GPa (d), the I4/mmm phase of ReSe₂ at 150 GPa (e), the I4/mmm' phase of ReSe₂ at 240 GPa and (f), the I4/mmm' phase of ReTe₂ at 50 GPa (g).

Fig. 7. The calculated projected phonon density of states (lower panels), Eliashberg EPC spectral function $\alpha^2 F(\omega)$ and its integral $\lambda(\omega)$ (upper panels) of (a) the *P*6₃/*mmc* phase of ReSe₂ at 100 GPa, (b) the *I*4/*mmm* phase at 150 GPa and (c) the *I*4/*mmm* phase of ReTe₂ at 50 GPa.

Fig. 8. The COHP of Re-S pairs for the $P6_3/mmc$ structure at 97 GPa (a), $I4_1/amd$ at 100 GPa (b), I4/mmm' at 300 GPa (c); Re-Se pairs in the *P*-1' phase at 40 GPa (d), $P6_3/mmc$ at 100 GPa (e), I4/mmm 150 GPa (f), I4/mmm' at 240 GPa(g) and Re-Te pairs in the I4/mmm phase at 50 GPa (h). The Fermi level is at the energy origin.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Table Caption:

Table 1 Comparison of the calculated lattice parameters and volumes at 0 GPa using the GGA-PBE functional and optB86b functional with vdW-DF correction with experimental values.

Table 2 The ICOHP value of new predicted phases of $ReS_2 ReSe_2$ and $ReTe_2$.

Table 3 Structural information of new phases of $ReS_2 ReSe_2$ and $ReTe_2$.

	ReS ₂ (<i>P</i> -1)		ReSe ₂ (<i>P</i> -1)			ReTe ₂ (<i>P</i> -1)			
	PBE	optB86b	expt	PBE	optB86b	expt	PBE	optB86b	expt
a (Å)	6.396	6.364	6.352	6.648	6.616	6.597	7.259	7.219	7.180
b (Å)	6.501	6.466	6.446	6.770	6.738	6.710	7.073	7.048	6.548
c (Å)	13.489	12.724	12.779	7.197	6.728	6.721	7.839	7.369	7.512

Table 1

ICOHP PHASE	ReS2 (Re-S)	ReSe2 (Re-Se)
<i>P</i> -1′		-3.54 (40 GPa)
P6 ₃ /mmc	-3.48 (97 GPa)	-3.33 (100 GPa)
I4 ₁ /amd	-3.74 (100 GPa)	
I4/mmm		-2.97 (150 GPa)
I4/mmm'	-2.70 (300 GPa)	-1.34 (240 GPa)
	-2.78 (300 GPa)	-2.81 (240 GPa)

Table 2

systems	Pressure	Space group	Lattice Parameter (Å, °)	Atom	Atomic co	Atomic coordinates (fractional)		
					x	x y z		
ReS ₂	97 GPa	P6 _y mmc	a=b=2.734,c=10.128	Re(2d)	1) 0.667 0.333		0.250	
			α=β=90, γ=120	<u>S(4f)</u>	0.667	0.333	0.913	
	140GPa	I4 ₁ /amd	a=b=4.230,c=6.698	Re(4a)	1	-0.5	0.75	
				S(8e)	0.5	0	0.587	
	300 GPa	I4/mmm'	a=b=2.560,c=22.376	Re(4e)	0	0	0.5	
			α=β=γ=90	Re(4e)	0.5	0.5	0.116	
				S (4e)	0.5	0.5	0.325	
				S(4e)	0.5	0.5	0.442	
				S (4e)	0	0	0.277	
ReSe ₂	40 GPa	P-1'	a=6.341, b=6.081, c=6.066	Se(2i)	0.182	0.746	0.57	
			α=116.340, β=75.508, γ=75.219	Se(2i)	0.370	0.218	0.359	
				Se(2i)	0.693	0.280	0.013	
				Se(2i)	0.142	0.301	0.066	
				Re(2i)	0.487	0.220	0.708	
				Re(2i)	0.933	0.806	0.331	
	80 GPa	P6 ₃ /mmc	a=b=2.832, c=11.286	Re(2d)	0.667	0.333	0.25	
			<i>α</i> =β=90, γ=120	Se(4f)	0.667	0.333	0.907	
	120 GPa	I4/mmm	a=b=2.707,c=9.7406	Re(2b)	0	0	0.5	
			α=β=γ=90	Se(4e)	0.5	0.5	0.845	
	240 GPa	I4/mmm'	a=b=2.681,c=25.324	Re(2a)	0	0	0	
			α=β=γ=90	Re(4e)	0	0	0.109	
				Se(4e)	0.5	0.5	0.173	
				Se(4e)	0.5	0.5	0.196	
				Se(4e)	0	0	0.663	

ReTe ₂ 6	eTe ₂ 60 GPa <i>14/mmm</i>		a=b=2.976,c=11.000	Re(2b)	0	0	0.50
			α=β=γ=90	Te(4e)	0.5	0.5	0.352

Table 3

Table of Contents

Synopsis: Five energetically stable phases of P-1', $P6_3/mmc$, $I4_1/amd$, I4/mmm and I4/mmm' were predicted in for ReX₂ compounds at high pressures. The coordination environment of Re atom changes from ReX₆ octahedra or trigonal prisms to ReX₈ cuboid coordination with increasing pressure. The high-pressure metallic phases of ReX₂ show superconductivity.