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The flow of colloidal suspensions is ubiquitous in nature and industry. Colloidal suspensions exhibit a wide range of 

rheological behavior, which should be closely related to the microscopic structure of the systems. With in-situ small-angle 

neutron scattering complemented by rheological measurements, we investigated the deformation behavior of a charge-

stabilized colloidal glass at particle level undergoing steady shear. A short-lived, localized elastic response at particle level, 

termed as transient elasticity zone (TEZ), was identified from the neutron spectra. The existence of the TEZ, which could be 

promoted by the electrostatic interparticle potential, is a signature of deformation heterogeneity: The body of fluids under 

shear behaves like an elastic solid within the spatial range of TEZ but like fluid outside the TEZ. The size of TEZ shrinks as 

the shear rate increases in the shear thinning region, which shows that the shear thinning is accompanied by a diminishing 

deformation heterogeneity. More interestingly, the TEZ is found to be the structural unit that provides the resistance to 

the imposed shear, as evidenced by the quantitative agreement between the local elastic stress sustained by TEZ and the 

macroscopic stress from rheological measurements at low and moderate shear rates. Our findings provide an 

understanding on the nonlinear rheology of interacting colloidal glasses from a micro-mechanical view.

1. Introduction 

Flowing colloidal suspensions are of great importance in our 

life as well as in a wide variety of industrial applications, such 

as pharmaceuticals, polymer processing, cosmetics, and 

transportation technologies. Therefore, there has been much 

interest in understanding the flow behaviors of colloids.
1,2

 The 

simplest form of colloidal suspensions is the suspension of 

hard spheres. Extensive computational,
3,4

 theoretical
5-7

 and 

experimental investigations of scattering
8-10

 and imaging 

techniques,
11-13

 have been performed to study the rheology of 

hard-sphere colloids. These results significantly broadened our 

knowledge on how the microscopic structure and flow of hard-

sphere colloids are determined by the volume fraction of the 

colloidal particles and the shear rate �� . Nevertheless, a large 

amount of colloidal suspensions of everyday and technological 

importance are not hard-sphere systems, but are 

characterized by more complicated interparticle interactions. 

These interactions, such as the electrostatic repulsion and Van 

der Waals attraction, extend far beyond the range of the 

excluded particle volume.
14

 Because of the extended range of 

interaction, their rheological properties are often rather 

different from those of hard-sphere colloidal suspensions at 

the same volume fractions.
2,7

 The microscopic mechanism of 

the flow of interacting colloidal suspensions demands further 

studies. 
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In this work, we investigate the relation between the 

microscopic structure and rheology of a charge-stabilized 

colloidal glass as a model colloidal system with soft repulsive 

interactions. One reason for the current excitement stems 

from the description of flow based on the concept of 

“dynamical heterogeneity” – the spatial inhomogeneity in the 

relaxation dynamics or local configurational 

rearrangements.
15,16

 For example, Yamamoto and Onuki 

illustrated how the heterogeneity in bond breakage influences 

the nonlinear rheology of highly-supercooled liquids.
17,18

 

Particularly, computer simulations suggest that the shear 

thinning phenomenon is a consequence of decreasing 

inhomogeneity of flow due to the increasingly frequent 

configurational fluctuations.
17-20

 In the past several decades, 

there were extensive theoretical and computational studies on 

the effects of local plasticity in developing a microscopic 

description of the flow of amorphous solids.
16,21-26

 The 

localized plastic arrangements and their spatial correlation 

were experimentally examined in colloidal glasses
27-30

 and 

their connection to the shear banding instability was further 

investigated. 
31,32

 On the other hand, the role of local elasticity 

in determining the rheological behavior of soft matters has 

also been discussed.
33,34

 For many soft glasses, such as 

microgels, polymeric materials, foams and emulsions, the 

constitutive particles or molecules are deformable and possess 

significant elasticity. Therefore, the local elasticity can be 

clearly identified, and is found to deeply influence rheological 

behaviors.
35

 For example, polymeric molecules exhibit a strong 

entropic elasticity, which leads to the viscoelastic nature of 

these materials.
36

 For many colloidal suspensions, however, 

the constitutive particles are too hard to contribute any 

measurable elasticity at typical flow rates. In this case, the 

local elasticity should be due to the collective rearrangement 

of particles under deformation, as suggested by a recent 

computational study.
37

 Therefore, experimental identification 

of the local elasticity and its structural basis is crucial to 

understand the rheological behaviors, especially the 

viscoelasticity and the shear thinning phenomenon, of 

interacting colloidal glasses.  

The aim of this work is to experimentally explore the origin of 

the nonlinear rheology of interacting colloidal glasses from the 

perspective of dynamical heterogeneity and local elasticity. 

Small-angle neutron scattering (SANS) technique is a powerful 

tool to study the microscopic structure of complex fluids at 

length scales from 1 to several hundreds of nanometers.
38

 It 

has been largely employed to investigate the structure of 

sheared colloidal suspensions.
2,8-10,39

 The analysis of our SANS 

data shows that the mechanical response of the charge-

stabilized colloidal glass to the imposed shear is localized in a 

transient elasticity zone (TEZ), which could be promoted by the 

electrostatic interparticle potential. The correlation between 

the TEZ and the mechanical behavior of the sample is 

supported by the agreement between the microscopic stress 

revealed by scattering and the macroscopic stress measured 

by rheometry at low and moderate shear rates. Moreover, the 

size of the TEZ is found to shrink as the shear rate increases in 

the shear thinning region, which demonstrates that the shear 

thinning is accompanied by a diminishing heterogeneity of 

flow. 

2. Experimental 
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2.1 Sample 

The charge-stabilized colloidal glass used in this study is 

composed of charged silica particles suspended in a solvent 

consisting of a mixture of ethylene glycol and glycerol. The 

proton to deuterium ratio of the solvent was carefully adjusted 

to avoid possible multiple neutron scattering.
40

 The volume 

fraction of silica particles is 0.4. At this volume fraction, the 

sample exhibits an evident nonlinear rheological behavior, 

which will be seen in the next section. The Kob-Andersen 

mixture of two kinds of silica particles,
41

 with diameter of 120 

nm and 80 nm in a number ratio of 4:1, was used to avoid 

shear-induced crystallization.
42,43

 The polydispersities of these 

two kinds of particles are 5.6% and 5.7%, respectively. 

2.2 SANS experiment  

The Rheo-SANS technique under the Couette geometry was 

employed to study the microscopic structure of the sheared 

colloids.
44

 Figure 1 (a) shows the schematic representation of 

the SANS experiment. Three principal directions, the flow 

direction (�, denoted as 1), the velocity gradient direction (��, 

denoted as 2), and the vorticity direction (� � � � �, denoted 

as 3), are defined based on the direction of the applied shear. 

Two cross sections of the three-dimensional spectrum, 

namely, the flow-velocity gradient (� 	 �� or 1 	 2) plane and 

the flow-vorticity (� 	 � or 1 	 3) plane, can be measured, as 

illustrated in Fig. 1 (a). Figure 1(b) shows the SANS spectra 

obtained from these two planes for the sheared charge-

stabilized colloids. When subjected to steady shear, the 

scattering profiles present elliptical shapes in both 

configurations. In neither configuration no noticeable 

scattering signature of shear-induced ordering, such as layer 

formation, is observed. A similar development is also observed 

by our complementary Brownian dynamics simulation.
40

 

Trajectory analysis suggests that the origin of the intensity 

variation is the local ordering promoted by the anisotropic 

density fluctuation, instead of the long-range ordering. 

3. Results & discussion 

3.1 Rheological measurements 

The small-amplitude oscillatory shear measurement and the 

steady shear measurement on the charge-stabilized colloidal 

suspension have been done and the results are shown in Fig. 2. 

In the linear viscoelastic regime shown in Fig. 2 (a), the 

dynamic moduli indicate that the sample is an elastic solid in 

the quiescent state. Results of steady shear measurements 

given in Fig. 2 (b) show that the sample exhibits a dramatic 

shear thinning. In following parts, we will provide an 

illustration based on the cooperative rearrangement of 

particles under shear. 

3.2 SANS results 

To address the connection between the spatial correlation 

functions and the flow behavior of the fluids, we adopt a 

spherical harmonic expansion (SHE) approach for the SANS 

data analysis. The pair distribution function (PDF) ��� of a 

sheared fluid can be expressed by SHE as:
45-52

 

��� � ∑ �������� �����,� ,                             (1) 
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where ������ are the tesseral (real basis) spherical harmonic 

functions and ����� are the expansion coefficients. ����� can 

be determined from SANS experiments by expanding the 

structure factor, ����, as: 

���� � ∑ ��������� �����,� ,                            (2) 

which allows us to transform the reciprocal space structural 

coefficients ������ to the real space coefficients ����� using 

the spherical Bessel transformation:
53

 

����� � � !"#$ %������&������!d�,                    (3) 

where ( is the number density of the particles and &��)� is the 

spherical Bessel function. Due to the symmetry imposed by 

shear, !*!��� is the most relevant coefficient that connects 

the shear-induced structural distortion to the macroscopic 

properties.
9,54,55

 The way of obtaining !*!���  from SANS 

spectra can be found in Appendix, more details are included in 

Supplementary Information. For an elastic solid undergoing an 

affine deformation, !*!��� is proportional to the derivative of 

the quiescent PDF ��� when the shear strain � is sufficiently 

small.
56,57

 Namely, 

!*!��� � 	 +
√-. � /0���/� .                                    (4) 

In Figs. 3(a) to (d) we plot both of !*!��� and 	�d���/d� 

determined from the SANS experiment at �� � 3, 10, 30 and 100  s
-1

, respectively.  It is seen that the characteristic 

variations of these two functions are generally in phase within 

the shear thinning regime, which qualitatively agrees with the 

prediction of Eq. 4. This observation suggests that the system 

is essentially elastically deformed at these shear rates, even 

when the system is flowing. Such deformation coherency is 

also observed in a simulation study on a model metallic 

liquid.
37

  

In a random stacking of particles, the local configurational 

environment is known to differ widely from one tagged 

particle to another. As a result, it is expected that the constant 

strain picture given by Eq. 4 does not provide a complete 

description about the microscopic deformation.  To further 

elucidate the structure of the flowing elasticity, we introduce 

the dependence of � on the spatial range over which the 

elastic deformation is sustained:
37

 

���� ≡ 	√15	!*!���/ 6� /0���
/� 7,                            (5) 

In Figs. 4(a) to (d) we present the ���� for the charge-stabilized 

colloidal suspension at �� � 3, 10, 30 and 100 s
-1

, respectively. 

We would like to point out that the extraction of ���� does not 

involve any model fitting but only Bessel transforms and data 

binning. A region of effectively nonzero ���� with a spatial 

range of several particle diameter 8  is observed for all 

measured �� . We name this region transient elasticity zone 

(TEZ): Within the spatial range of this region, the local 

structure undergoes an elastic deformation with an average 

strain given by ���� when the system is under steady shear. 

Beyond this region, the particle motion is dominated by liquid-

like random displacements. This localized elastic response 

survives only for a certain lifetime before it relaxes by flow and 

diffusion. The existence of TEZ suggests the dynamical 

heterogeneity in the mechanical response of the system to 
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applied shear. ���� can be considered as a correlation function 

that describes a cooperative region characterized by 

mechanical coherency in the flow. Based on the previous 

simulation study,
37

 a Gaussian function is used to model the 

landscape of ����: 

���� ≈ �:exp 6	 ��*>�#!?@AB# 7,                                  (6) 

where C is the peak position, DEFG is the standard deviation of 

the Gaussian distribution, and �:  is the average maximum 

strain of the TEZ. The fit curves with Eq. 6 are also shown in 

Figs. 4(a) to (d). Accordingly, a specific length scale HEFG � C +√2ln2DEFG is defined to represent the correlation length of 

the cooperatively elastic deformation in the steady flow.  It is 

seen that 2HEFG denotes the “full width at half maximum” of 

the TEZ, and can be considered as the size of TEZ. Its shear-

rate dependence is shown in Fig. 4(e).
58

 A decrease of elastic 

coherency is revealed by the shrink of the TEZ size from about 68  to 48  as ��  increases from 1 to 300  s
-1

. Meanwhile, an 

increase in �:  from approximately 0.045 to 0.11 is also 

revealed.  

From Fig. 4 it is seen that at � > ~38, the values of ���� are 

with large uncertainties and the dependence of ����  on � 

becomes irregular. Numerically this is due to the division 

between two small numbers. As evidenced by Fig. 3, at � > ~38 , both !*!���  and �d���/d�  are small, which 

suggest the loss of structural order and correlation at far 

distances. In this case, the local elastic coherency is no longer 

significant. 

3.3 Discussion 

The above analysis reveals a micro-mechanical picture for the 

deformation of the charge-stabilized colloidal glass. In this 

system, the changes of the momentum and position of a 

particle can instantaneously influence surrounding particles 

through the extended-range electrostatic interaction. 

Consequently, the particles within a certain spatial range 

undergo elastic coherent deformation in response to the 

imposed shear. During this process, a reference particle retains 

its original neighbors until the stress generated by shear is 

sufficient to cause local configurational rearrangement. The 

deformation and yielding of the TEZ are ubiquitous and 

persistently successive at the particle level. Note that, there 

should be a structural unit that can store and release elastic 

energy in viscoelastic materials. Thus, the observation of TEZ is 

conceptually important for understanding the strong 

viscoelasticity exhibited by the charge-stabilized colloidal 

suspension.
59

  

In the above mechanism, the interparticle electrostatic 

repulsion acts like a free energy barrier to resist the applied 

strain. Therefore, it is crucial in forming the local elasticity in 

the flow of charge-stabilized colloids. In fact, at the volume 

fraction of 0.4, it is known that the hard-sphere colloidal 

suspension is highly fluid, which suggests the absence of TEZ. 

The hard-sphere suspension exhibits evident elasticity only 

when the volume fraction is higher than about 0.58, in which 

case the excluded volume effect is significant.
7
 

Having established the picture of transient local elasticity from 

SANS experiment, we now proceed further to explore the role 

of the TEZ in the nonlinear rheological behavior of interacting 

colloidal suspensions. In the flowing charge-stabilized colloids, 

the elastic stress sustained by TEZ is estimated as PEFG �Q′�: , where Q′ is the modulus of the local elasticity that is 

similar to the storage modulus given in Fig. 2(a).
60

 As given in 

Fig. 5(a), the microscopically determined stress PEFG is seen to 

be in a quantitative agreement with the macroscopic shear 

stress PSS  ( PSS � T�� ) determined from rheometry when �� ≤ 10 s
-1

. This agreement is remarkable considering that the 

two approaches of measuring stress are completely different. 

It clearly reveals that the elasticity of the TEZ causes the high 

shear stress, or equivalently the viscosity, in the flow of the 

charged-stabilized sample. At higher shear rates (�� ≫ 10 s
-1

), PEFG  considerably deviates from PSS , manifesting the 

increasing fluidization. 

It is known that Brownian and hydrodynamic effects 

contribute to the viscosity of colloidal suspensions.
4,5

 The 

Brownian viscosity contribution TW  can be calculated from ��� 5,61,62
 and the result is shown in Fig. 5(b). The 

hydrodynamic viscosity contribution, estimated with the 

approximation given in Ref. 61, is found to be well below 0.1 

Pa·s. This value is small since the electrostatic repulsion can 

suppress the hydrodynamic effect by reducing the near-

contact lubrication.
61

 The viscosity contribution from the TEZ 

(TEFG � PEFG/�� ) is plotted in Fig. 5(b). The viscosity of the 

sample TSS  measured by rheometry is also shown in Fig. 5(b) 

for comparison. It is seen that for the flowing charge-stabilized 

colloids, TEFG  is much larger than the Brownian viscosity 

contribution TW . This result agrees with the theoretical 

prediction that in charge-stabilized colloids the potential 

viscosity contribution is much stronger than the Brownian 

viscosity contribution.
61

 Summarizing these results, we confirm 

that TEZ plays a key role in the nonlinear rheology of the 

sheared charge-stabilized colloids. This is very different from 

the hard-sphere colloids, in which the shear thinning is mainly 

attributed to the Brownian effect.
4,11,61

  

The concept of dynamical heterogeneity was introduced for 

the first time to explain the dramatic increase of the viscosity 

in the glass transition of supercooled liquids or the colloidal 

glass formation.
63-65

 Numerous computational and theoretical 

studies
66,67

 and recent experiments
68

 have shown that the 

drastic increase in viscosity is accompanied by the growth of 

cooperatively rearranging regions in fluids during the 

supercooling process. Yamamoto and Onuki generalized this 

thinking to the flowing supercooled and glassy liquids: With 

computer simulations, they demonstrated that the size of the 

region characterizing the collective bond breakage events 

shrinks during the shear thinning.
17,18

 Experimentally, we 

found that the size of the TEZ decreases with increasing the 

shear rate (Fig. 4(e)), implying the observed shear thinning 

behavior is accompanied by diminishing deformation 

heterogeneity. This result is consistent with the previous 

computational investigations. 
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4. Conclusions 

In summary, using SANS and rheometry, we identify a 

transient elasticity zone (TEZ) in a charge-stabilized colloidal 

glass undergoing steady shear. This TEZ, which manifests the 

local elasticity in flow, is a many-body effect sustained by the 

electrostatic interparticle repulsion. We show that the TEZ acts 

as the micro-structural unit that resists the shear from the 

agreement between the microscopic elastic stress determined 

by SANS and the macroscopic stress measured by rheometry 

at low and moderate shear rates. The spatial range of TEZ 

spans over a distance of a few particle diameters. It is found to 

shrink with increasing the shear rate, suggesting that the shear 

thinning is associated with the weakening of the dynamical 

heterogeneity in the flow. Our findings shed new light on 

understanding the nature of nonlinear rheology and 

viscoelasticity of interacting glasses and highly supercooled 

liquids. 

Appendix 

In this part, we will give a description of obtaining !*!��� from 

the SANS spectra. First of all, we need to obtain �!*!��� from 

the spectra. The structure factor of the sheared colloids, ����, 

can be expanded by spherical harmonic functions: 

���� � ∑ ∑ ��������� ������X*�Y�XZ ,                  (A1) 

where ������ are the real basis spherical harmonic functions 

defined as: ������ � ����[, \�  

�
]̂
_
^̀√2a�2b + 1� ��*|�|�!��e|�|�!f�|�|�cos[�sin�|k|\�			�k < 0�

√2b + 1f�Z�cos[�			�k � 0�
√2a�2b + 1� ��*��!��e��!f���cos[�cos�k\�			�k > 0�

  (A2) 

where f���)� are the associated Legendre polynomials, [  is 

the angle with respect to the 3 axis, \ is the polar angle with 

respect to the 1 axis. In three-dimensional space the spherical 

harmonic functions are mutually orthogonal: 

% d���������m�m��� � 4nD��mD��m.                  (A3) 

Each function has a well-defined parity: 

����[, \� → ����n 	 [, n + \� � �	1������[, \�.      (A4) 

Within the accessed range of shear rate, the contribution from 

terms with b � 3,… ,∞ to spectra should be small compared 

with the several leading terms. This approximation can be 

justified from the fact that the measured strain of the TEZ is 

only around 0.1 or even less. Therefore, Eq. A1 can be 

approximated as: 

���� ≈ ∑ ∑ ��������� ������X*�!�XZ .                (A5) 

Under the geometry of shear flow, it is seen that ���� satisfies 

the conditions ���, [, \� � ���, n 	 [,\�  and ���, [, \� ����, [, \ + n�. These conditions can be justified from Fig. 1(b). 

Therefore, only terms with even b and k survive, which leads 

to the following expression: 

���� ≈ �ZZ����ZZ ���� + �!*!����!*! ���� + �!Z����!Z ����  

+�!!����!! ����.   (A6) 

In the 1 	 2 plane, we can define the following quantity: 

	�!,*!rs ��� � -!" % � ��, [ � "! , \� �!*! �[ � "! , \� d\!"Z   

� -!" % � ��, [ � "! , \� √-.! sin�2\�d\!"Z .               (A7) 

Since ���, [ � n/2,\�  can be measured from the SANS 

experiment (see Fig. 1(b)), 	�!,*!rs ��� can be obtained easily 

from the measured spectra in the 1 	 2 plane. Combining with 

Eq. A6, it is straightforward to show that: 

�!*!��� � t-. �!,*!rs ���,                            (A8) 

With �!*!��� , !*!���  can be obtained by spherical Bessel 

transformation: 

����� � � !"#$ %������&������!d�.                 (A9) 

The calculation of �ZZ���  from SANS spectra needs the 

information on the 1 	 3 plane. The detail can be found in 

Supplementary information. 
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