

### Comment on "Investigations on HONO formation from photolysis of adsorbed HNO<sub>3</sub> on quartz glass surfaces" by S. Laufs and J. Kleffmann, Phys. Chem. Chem. Phys., 2016, 18, 9616

| Journal:                         | Physical Chemistry Chemical Physics                                                                                                                                                                                                                        |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                    | CP-CMT-07-2018-004497                                                                                                                                                                                                                                      |
| Article Type:                    | Comment                                                                                                                                                                                                                                                    |
| Date Submitted by the<br>Author: | 16-Jul-2018                                                                                                                                                                                                                                                |
| Complete List of Authors:        | Sullivan, Michael ; Wadsworth Center/NYS DOH<br>Chu, Liang T; Wadsworth Center, NYS Health Dept and State Univ of<br>New York-Albany, Environmental Health Sciences<br>Zhu, Lei; Wadsworth Center/NYSDOH and SUNY-albany, Environmental<br>Health Sciences |



# **Physical Chemistry Chemical Physics**

## COMMENT



Comment on "Investigations on HONO formation from photolysis of adsorbed HNO<sub>3</sub> on quartz glass surfaces" by S. Laufs and J. Kleffmann, *Phys. Chem. Chem. Phys.*, 2016, **18**, 9616

Michael N. Sullivan,\*a Liang T. Chu,a,b and Lei Zhu\*a,b

Received 00th July 2018, Accepted 00th July 2018

DOI: 10.1039/x0xx00000x

www.rsc.org/

Laufs and Kleffmann observed HNO<sub>3</sub> surface photolysis rates resemble that of HNO<sub>3</sub> in the gas phase after depositing HNO<sub>3</sub> in air at ~50% relative humidity onto quartz glass surfaces. They questioned the dry HNO<sub>3</sub> coverage  $(1.1 \times 10^{14} \text{ molecules/cm}^2 \text{ after depositing ~15 mTorr HNO<sub>3</sub> on silica at 0% humidity) used to derive our previously published HNO<sub>3</sub> near-UV surface absorption cross sections. We directly determined the HNO<sub>3</sub> coverage on a quartz surface using a quartz crystal microbalance (QCM). A similar HNO<sub>3</sub> monolayer coverage obtained by QCM confirms that our estimated HNO<sub>3</sub> coverage is reasonable. We also obtained an NO<sub>2</sub> quantum yield from the 308 nm HNO<sub>3</sub> photolysis on fused silica. In this Comment, we provide an explanation of the variance in HNO<sub>3</sub> surface photolysis rates by clarifying the effects arising from important differences in the HNO<sub>3</sub> coverage on quartz/silica in the presence of humidity versus those in the absence of humidity.$ 

In an article published in *Physical Chemistry Chemical Physics*<sup>1</sup>, Laufs and Kleffmann reported photolysis rates of nitric acid (HNO<sub>3</sub>) films following deposition of HNO<sub>3</sub> (10 ppbv) in humidified air onto the interior surfaces of a cylindrical guartz reactor and then irradiated the films with UV-Vis lamps. At 50% relative humidity, their observed HNO<sub>3</sub> surface photolysis rates resemble that of HNO<sub>3</sub> in the gas phase. They reported achieving monolayer HNO<sub>3</sub> coverage on quartz. Their results led them to question the HNO<sub>3</sub> coverage used to derive the HNO<sub>3</sub> near-UV surface absorption cross sections published previously by Zhu et al.<sup>2</sup> and Du and Zhu.<sup>3</sup> In our Comment, we provide an explanation of the variance in findings by clarifying the effects arising from important differences in HNO<sub>3</sub> coverages on quartz/silica in the presence of humidity, as studied by Laufs and Kleffmann, versus those in the absence of humidity, as observed in our previous studies.

This journal is © The Royal Society of Chemistry 2018

absorption on silica as a function of the HNO<sub>3</sub> pressure using Brewster angle cavity ring-down spectroscopy. Our measurements were performed by depositing mTorr levels of HNO<sub>3</sub> on fused silica surfaces with an exposure time about minutes in the absence of humidity. We reported near UV absorption cross sections of HNO<sub>3</sub> on fused silica surfaces to be two to three orders of magnitude larger than those in the gas phase. We observed that the HNO<sub>3</sub> surface adsorption reached a plateau at a HNO<sub>3</sub> pressure of about 14–18 mTorr, suggesting monolayer adsorption of HNO<sub>3</sub> on silica, with estimated coverage of 1.1×10<sup>14</sup> molecules/cm<sup>2</sup> using the van der Waals radius<sup>4</sup> of HNO<sub>3</sub>. Since our previous studies assumed that the HNO<sub>3</sub> surface adsorption achieved monolayer coverage, we have elected to directly determine the HNO<sub>3</sub> coverage on a quartz surface by adapting a quartz crystal microbalance (QCM) (Inficon SQM-160 Deposition Monitor and 6 MHz guartz crystal) to our surface-study chamber. We assumed similar coverage of HNO<sub>3</sub> on quartz and on silica. Once HNO<sub>3</sub> is deposited onto the guartz crystal resonator, the frequency shift of the resonator is

In our studies, we monitored HNO<sub>3</sub> surface

<sup>&</sup>lt;sup>a.</sup> Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, United States

<sup>&</sup>lt;sup>b.</sup> Department of Environmental Health Sciences, University at Albany - SUNY, Albany, New York 12201-0509

#### COMMENT

**Physical Chemistry Chemical Physics** 

related to the mass deposited onto the crystal surface according to the Sauerbrey Equation<sup>5,6</sup>,

$$\Delta \boldsymbol{f} = \left[\frac{-2{f_0}^2}{A\sqrt{p_q\mu_q}}\right] \Delta \boldsymbol{m}$$
 1)

where  $f_0$  is the resonant frequency of the crystal, A is the area of the crystal surface,  $p_q$  is the density of quartz (2.648 g/cm<sup>3</sup>),  $\mu_q$  is the shear modulus of quartz for an AT-cut crystal (2.947 x 10<sup>11</sup> g/cm·s<sup>2</sup>),  $\Delta f$  is the frequency shift of the crystal, and  $\Delta m$  is the mass deposited onto the crystal surface.

High purity HNO<sub>3</sub> was prepared by repeated vacuum distillations, as previously reported<sup>2,3</sup>. Frequency shifts following deposition of HNO<sub>3</sub> on the quartz crystal surface were measured in the 0-20 mTorr range with 2 mTorr increments at a typical exposure time of about 2 mins. Ring-down measurements for the evacuated cavity were made simultaneously to ensure HNO<sub>3</sub> was completely removed from the quartz crystal surface before each deposition experiment. Each set of measurements was repeated daily over a four-day period to ensure they were obtained under conditions of repeatability. The averaged results from these measurements can be seen in Figure 1 below.



Figure 1. Coverage of HNO<sub>3</sub> on QCM as a function

of the  $HNO_3$  pressure at room temperature. Error bars are listed as  $1\sigma.$ 

Figure 1 shows that a monolayer HNO<sub>3</sub> coverage of  $\sim 1 \times 10^{14}$  molecules/cm<sup>2</sup> is reached at a HNO<sub>3</sub> pressure of approximately 16 mTorr and an exposure time of about 2 minutes. The dependence of HNO<sub>3</sub> adsorption on HNO<sub>3</sub> pressure determined by QCM is in excellent agreement with our previous determination of the dependence of the HNO<sub>3</sub> near-UV surface absorption on HNO<sub>3</sub> pressure observed on a silica surface. This is anticipated because the adsorption of HNO<sub>3</sub> on quartz is similar to that on silica. The similar HNO<sub>3</sub> monolayer coverage obtained through QCM measurements further confirms that our previously estimated monolayer 1.1×10<sup>14</sup> HNO<sub>3</sub> coverage of molecules/cm<sup>2</sup> is reasonable.

Based upon our wavelength-dependent HNO<sub>3</sub> near-UV surface absorption cross sections and using a HNO<sub>3</sub> near UV surface photolysis quantum yield of 1, we conclude that the HNO<sub>3</sub> surface photolysis rate is 2-3 orders of magnitude faster than that of HNO<sub>3</sub> in the gas phase. This conclusion is valid for HNO<sub>3</sub> deposition on a silica surface with coverage ~10<sup>14</sup> molecules/cm<sup>2</sup> in the absence of humidity. However, Laufs and Kleffmann's experiments were conducted in the presence of humidity. Both HNO<sub>3</sub> and H<sub>2</sub>O can be deposited on quartz surfaces, and can compete for surface adsorption sites. We have studied the competitive co-adsorption<sup>7</sup> of HNO<sub>3</sub> and H<sub>2</sub>O on silica surfaces, and provided an empirical formula to calculate the HNO<sub>3</sub> fractional coverage on silica in the presence of humidity. At 50% relative humidity (RH), there are about 4 layers of H<sub>2</sub>O on silica surfaces at room temperature.<sup>8-9</sup> It is anticipated that when HNO<sub>3</sub> and H<sub>2</sub>O molecules are co-deposited onto silica surfaces, HNO<sub>3</sub> molecules are incorporated into the H<sub>2</sub>O layers. This is because water vapor is in great excess as we learned from a separate experiment.<sup>10</sup> While the 2<sup>nd</sup>-4<sup>th</sup> H<sub>2</sub>O layers may hold more HNO<sub>3</sub> due to the hydrogen-bonding interactions between  $HNO_3$  and  $H_2O$ , like the solvation of  $HNO_3$  by the surrounding H<sub>2</sub>O molecules, the 1<sup>st</sup> H<sub>2</sub>O layer (i.e.,

**Physical Chemistry Chemical Physics** 

the H<sub>2</sub>O layer in direct contact with the quartz/silica surface) is expected to be occupied by both HNO<sub>3</sub> and H<sub>2</sub>O molecules. Based on our analysis,<sup>7</sup> we expect that the fractional HNO<sub>3</sub> coverage at the H<sub>2</sub>O layer that directly contacts with quartz/silica at 50% RH is approximately two orders of magnitude lower than that on quartz/silica surfaces under nohumidity conditions. Therefore, we conclude that differences in the HNO<sub>3</sub> photolysis rates between our study and that by Laufs and Kleffmann were primarily caused by the difference in the HNO<sub>3</sub> coverage on quartz/silica in the absence versus presence of humidity.

Although the HNO<sub>3</sub> near UV surface absorption cross sections are 2-3 orders of magnitude larger than those of the HNO<sub>3</sub> vapor, its coverage is decreased by at least two orders of magnitude compared to those in the absence of humidity. This results in a similar HNO<sub>3</sub> photolysis rate on quartz/silica at 50% RH to that in the gas or liquid phase. Laufs and Kleffmann deposited 10 ppbv of HNO<sub>3</sub> in humidified air (~50% humidity) on the inner surfaces of the quartz flow-reactor. Nitric acid was washed off the quartz surfaces and the HNO<sub>3</sub> determined concentration was using ion chromatography. Using the geometrical surface area of the flow-reactor, they derived an HNO<sub>3</sub> surface concentration of 1×10<sup>14</sup> molecule/cm<sup>2</sup>, which led them to conclude that HNO<sub>3</sub> had saturated the monolayer surface adsorption sites on quartz. However, this method of HNO<sub>3</sub> coverage determination failed to account for the large number of H<sub>2</sub>O molecules that were multilayeradsorbed to the quartz surface (which excluded HNO<sub>3</sub> molecules from occupying the same physical space). The actual HNO<sub>3</sub> fractional surface coverage on the guartz surface at 50% RH is much lower than their claimed coverage of 1.0×10<sup>14</sup> molecules/cm<sup>2</sup>.

We also determined the NO<sub>2</sub> quantum yield from the 308-nm excimer laser photolysis of HNO<sub>3</sub> adsorbed on fused silica using Brewster angle cavity ring-down spectroscopy. The NO<sub>2</sub> surface absorption was found to depend linearly on photolysis fluence, confirming that NO<sub>2</sub> is a product formed from single photon photolysis of adsorbed HNO<sub>3</sub>. The NO<sub>2</sub> quantum yield was 0.62 $\pm$ 0.17, where error quoted represents 1 $\sigma$  standard deviation.

Through this open response to Laufs and Kleffmann's paper, we show that seemingly contradictory results related to HNO<sub>3</sub> surface photolysis in the absence versus presence of humidity can be explained using fundamental concepts of HNO<sub>3</sub>/H<sub>2</sub>O competitive co-adsorption and multilayer adsorption. In this example, a key parameter that changes dramatically following deposition of HNO<sub>3</sub> vapor in the absence versus in the presence of 50% RH is the HNO<sub>3</sub> coverage on quartz/silica. Rather than being viewed as conflicting results, once clarified, each set of findings provides valuable information. In the real atmosphere, many pollutants on the surfaces of the ground, buildings, and aerosols can modify the HNO<sub>3</sub> surface coverage. It is important to determine the HNO<sub>3</sub> surface coverage under different atmospheric conditions so that oxidant formation contribution from adsorbed HNO<sub>3</sub> photolysis corresponding to such coverage can be obtained.

### **Conflicts of interest**

The authors declare no competing financial interest.

### Acknowledgements

We thank Ms. Ji Lin Ye for her assistance in the experiments, Dr. Michel Rossi for discussions, and Drs. Patrick Parsons and Kimberly McClive-Reed for editing the manuscript. We are grateful for support provided by the National Science Foundation (Grant no. AGS-1405610).

#### Notes and references

- 1 S. Laufs and J. Kleffmann, *Phys. Chem. Chem. Phys.*, 2016, **18**, 9616.
- 2 C. Zhu, B. Xiang, L. Zhu, and R. Cole, *Chem. Phys. Lett.*, 2008, **45**, 373.
- 3 J. Du and L. Zhu, Chem. Phys. Lett., 2011, 511, 213.
- 4 A. Bondi, J. Phys. Chem., 1964, **68**, 441.
- 5 G. Sauerbrey, Phys. Verh., 1957, 8, 113.
- 6 G. Sauerbrey, Z. Phys., 1959, 155, 206.
- 7 J. Du, R.G. Keesee, and L. Zhu, J. Phys. Chem. A, 2014, **118**, 8177.

**Physical Chemistry Chemical Physics** 

- 8 A. Verdaguer, C. Weis, G. Oncins, G. Ketteler, H. Bluhm, and M. Salmeron, *Langmuir*, 2007, 23, 9699.
  J. Du, L. Huang, and L. Zhu, *J. Phys. Chem. A*, 2013, 117, 8907.
- 10. H. Yan and L. T. Chu, *Langmuir*, 2008, **24**, 9410.