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Q-model of electrode reactions: Altering force con-
stants of intramolecular vibrations

Dmitry V. Matyushov∗a and Marshall D. Newtonb

A theory of redox reactions involving electron transfer between a metal electrode and a molecule
in solution is formulated in terms of two types of nuclear coordinates of the thermal bath: electro-
static polarization of the medium and local low-frequency vibrations. The polarization fluctuations
follow Gaussian statistics. In contrast, the vibrational coordinate is allowed to change its force
constant between two oxidation states of the reactant, which is projected onto non-Gaussian fluc-
tuations of the reactant’s electronic states. A closed-form analytical theory for the electrode redox
reactions is formulated in terms of three reorganization energies: the reorganization energy for
the electrostatic polarization of the medium and two internal (vibrational) reorganization energies
for the reduced and oxidized states of the reactant. The theory predicts asymmetry between the
cathodic and anodic branches of the electrode current driven by the corresponding difference in
the vibrational force constants.

1 Introduction
Reactions between the metal electrode and a redox active
molecule in solutions belong to a broad class of problems where
the interaction between the reacting molecule and the surround-
ing medium changes because of a chemical transformation (a
change of the oxidation state for electrochemistry [1]). For many
such problems, the interaction between the reactant and the
medium is of primary importance, while the structure and dy-
namics of the surrounding medium is not affected by the reac-
tion. The medium in this scenario plays a somewhat passive role
of a source of thermal noise allowing the barrier passage. Since
fluctuations of such media typically involve many molecules or
molecular groups, the central limit theorem applies and the ther-
mal noise follows the statistical rules of the Gaussian distribution.

This physics is the focal point of the Marcus theory of electron
transfer. [2] It considers the coupling of the electric field of the
transferring electron to a polarizable medium characterized by
the polarization density P. [3] The medium is allowed to fluctu-
ate, and each fluctuation carries a free energy penalty quadratic in
the polarization field P. Since the structure of the medium is not
affected by the reaction (linear response approximation [4]), the
only effect of the reaction on the system’s energy is in shifting the
equilibrium medium polarization, which minimizes the quadratic
functional describing deviations from equilibrium. [3,5] The re-
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sult of this perspective is the picture of shifted equal-curvature
parabolas with the crossing point specifying the activation barrier
of the reaction.

The Gaussian character of the fluctuations describing many de-
grees of freedom of the medium does not have to extend to local
properties describing the electronic state and nuclear structure of
the reactant. A number of nonlinearities potentially generalizing
the problem from the standard picture of equal-curvature parabo-
las can be identified here. The proposal that local vibrational
frequencies of the molecules participating in the reaction can be
altered by changing electronic state was put forward already at
the very early stages of the progress in the field [6] (e.g., Duschin-
sky rotations of normal modes [7]), when the problem of radia-
tionless transitions in molecules was originally advanced. [8] An-
other possibility of distinct non-linearities comes from linear and
higher-order polarizabilities of the reactants, which allow terms
in the system Hamiltonian of nonlinear orders in the electric field
produced by the medium, as is well recognized in applications
related to non-linear spectroscopies. [9] Some early suggestions
of non-linearities arising from solvation have not received sup-
port by computations, which showed that Gaussian statistics and
linear solvation are very robust for reactions in condensed me-
dia. [10,11]

Despite the general recognition that force constants of in-
tramolecular vibrations depend on the oxidation state, [12–15] no
closed-form solution including such effects and broadly applica-
ble to the analysis of reaction rates has been achieved. [16] A dif-
ficulty in this development is the need for such solutions to sat-
isfy a number of exact constraints discussed below, which signifi-
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cantly limit the space for analytical approximations and function-
alities. We start our discussion below with these general results,
followed by a more specific theory development focused on com-
bining medium polarization with localized intramolecular vibra-
tions whose vibrational force constants (frequencies) are altered
in the course of an electrode reaction.

Electrode reactions have an important advantage for testing
fundamental theoretical concepts compared to redox reactions in
solution due to the fact that the free energy of the reaction (the
negative of the driving force [17]) can be continuously changed
by altering the electrode potential. In this regard, a fundamen-
tal result of standard theories of electrochemistry is the equality
between the activation barrier for the cathodic reaction at the
overpotential η and the activation barrier for the anodic reac-
tion at the overpotential −η . [18,19] In other words, one expects
equal currents when changing the electrode overpotential in ei-
ther positive or negative direction. [1] Nevertheless, a number
of recent observations [20–24] and theoretical developments [25,26]

have pointed to a possibility that this prediction might be violated.
Specifically, Compton and co-workers, [23] inspired by an earlier
model of Marcus, [27] have assigned the violation of the symme-
try between the anodic and cathodic branches to oxidation-state
dependence of force constants of intramolecular vibrations of the
reactants. Here, we address this problem by providing a closed-
form analytical solution for electrode reactions in polar media
involving reactants changing their vibrational force constants.

The theory developed here combines the standard Gaussian
picture of the Marcus theory for electron transfer in polar me-
dia [3] with a non-Gaussian picture developed within the Q-
model for electronic transitions in molecules [28] and more re-
cently extended to electrode reactions involving polarizable reac-
tants. [25,26] The previous formulations of the model focused on
the effect of the solute polarizability on the energetics of electron-
transfer reaction and the corresponding alteration of the “force
constant” (susceptibility) of the collective solvent coordinate be-
tween two electron-transfer states. In contrast, we address here
changes of force constants of internal molecular vibrations caused
by electronic transitions. We show that the general mathemat-
ical framework of the Q-model can be mapped on this specific
problem of electron-transfer reactions involving changes of force
constants of discrete intramolecular vibrations. The asymmetry
between the cathodic and anodic electrode currents then follows
from the asymmetry of vibrations in two oxidation states and the
non-Gaussian statistics of the corresponding contribution to the
activated transitions leading to the electrode current.

2 Conceptual framework
We start with reviewing the general theoretical framework for
electronic transitions in molecules and exact relations which a
successful theory has to satisfy. These constraints strongly limit
the mathematical solutions applicable to the problem. In fact,
the Marcus model of crossing parabolas [2] and the Q-model of
non-parabolic free energy surfaces [28] are nearly the only exactly
solvable mathematical models established in the field that satisfy
all known constraints.

The modern theory of radiationless transitions in molecules,

and of electron-transfer reactions as a specific application, con-
siders the vertical energy gap, i.e., the difference of energies
at a fixed set of nuclear coordinates, as the best-defined one-
dimensional collective coordinate describing the progress of the
reaction. [8,29,30] It is given by the difference of Hamiltonians (en-
ergies) of the system after (H2(q)) and before (H1(q)) the elec-
tronic transition

X = ∆H(q) = H2(q)−H1(q). (1)

Here, q denotes the entire manifold of nuclear coordinates of the
medium and of the reactant itself affecting its electronic energy
levels. The theory then proceeds to find the free energy required
to establish a specific value X . This is accomplished by identi-
fying the free energy surface for electron transfer Fa(X), where
a = 1 = Ox corresponds to the oxidized form (Ox) and a = 2 = Red
refers to the reduced form (Red) when applications to electrode
reactions are concerned. Below we will mostly use a = 1,2 to sim-
plify notations, but will specifically emphasize which oxidation
states (Ox or Red) is considered to avoid potential confusion. In
some equations for the activation barriers derived below ± or ∓
signs appear. We always follow the convention that the upper sign
refers to the reduction reaction and the lower sign refers to the
oxidation reaction.

The deviation of the partial free energy Fa(X) (at a given X ,
similarly to the Landau functional for phase transitions [31]) from
the thermodynamic free energy F0a can be mathematically ex-
pressed as taking a constrained statistical average

e−βFa(X)+βF0a = A〈δ (X−∆H(q))〉a, (2)

where A is some constant with the unit of energy and

〈. . .〉a = Q−1
a

∫
. . .e−βHa(q)dq. (3)

Further, Qa is the corresponding partition function and the stan-
dard free energy in each oxidation state is F0a = −β−1 ln[Qa];
β = (kBT )−1 is the inverse temperature.

The statistical average in Eq. (2) satisfies the following identity

〈δ (X−∆H(q)〉2 = eβ (∆F0−X)〈δ (X−∆H(q)〉1 (4)

where ∆F0 = F02−F01 is the reaction free energy. Expressed in
terms of the free energies Fa(X) this result transforms to the linear
relationship between the free energy surfaces [32]

F2(X) = F1(X)+X . (5)

This relation, when strictly enforced, severely limits potential
functionalities that can describe free energy surfaces for electron
transfer. The Marcus parabolas

Fa(X)−F0a =
(X−Xa)

2

4λ
(6)

satisfy the linear relation provided that the distance between the
minima of the parabolas Xa is equal to twice the reorganization
energy, |X1 − X2| = 2λ . The free energy surfaces produced by
the Q-model discussed below also satisfy the linear relation. An
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equally accurate formulation is attainable for the binding model
of electron transfer considering local binding/unbinding events
(telegraphic noise [33]) as a part of the fluctuation spectrum of
the medium. [34]

The physical meaning of the linear relation between Fa(X) [Eq.
(5)] is the law of conservation of energy. Since electronic transi-
tions are instantaneous on the nuclear time-scale (Frank-Condon
principle), the configuration and the entropy of the system do not
change in the transition. The difference of free energies at any
given X is, therefore, the energy supplied to allow the transition
between the states (e.g., the energy of a photon), which is the
energy X . When X = 0, the transition is radiationless, and this is
the transition state for the electron-transfer reaction. The rates of
reactions from right to left and from left to right through X = 0
should satisfy the detailed balance, which imposes another exact
constraint between the activation barriers ∆F†

a for the forward
and backward reactions

∆F†
1 −∆F†

2 = ∆F0. (7)

Since for electron transfer the activation barrier is given by the
vertical separation of the activated state and the minimum of the
free energy surface, ∆F†

a = Fa(0)−Fmin,a and F1(0) = F2(0), this
relation also implies

∆Fmin = ∆F0. (8)

This equation implies that the shift [35] between Fmin,a and F0a

should cancel in the difference.

The reaction free energy is also related to the electrode over-
potential η

∆F0 = eη . (9)

Equation (9) is the Nernst equation [1] connecting ∆F0 to the elec-
trode overpotential and, through detailed balance in Eq. (7), to
the reaction barriers for cathodic and anodic processes. Negative
overpotential η < 0 favors the cathodic (reduction) process, while
the anodic (oxidation) reaction dominates at η > 0. We now turn
to a specific model for electrode reactions in which the manifold
of the nuclear degrees of freedom q is replaced with two nuclear
modes, the vector field of the medium nuclear polarization den-
sity P and a scalar coordinate q representing a low-frequency in-
tramolecular vibrational mode.

3 Theory

We consider a reactant placed into a polarizable medium which
develops the polarization density field P(r) in response to the
electric field of the solute Ea(r). The linear response is given
by the local susceptibility χ, which neglects the non-local micro-
scopic correlations in the liquid. [36] This form is adopted here for
simplicity and can always be lifted to extend the model to more
realistic calculations based on structural properties of polar liq-
uids. [37] In this simplified formulation, the Hamiltonian of the
polarizable medium containing the solute is given by the follow-
ing equation

H(a)
P [P] = Ia−Ea ∗P+

1
2χ

P∗P, (10)

f1
f2

qq1 q2

∆Fq

H(a)
q RedOx

Fig. 1 Schematic representation of the potential energy surfaces [Eq.
(11)] along the vibrational coordinate q (1≡ Ox and 2≡ Red). Indicated
in the plot are the different force constants of vibrations fa, the position
of parabolas’ minima qa =Ca/ fa (Eq. (11)) and the free energy gap ∆Fq
(Eqs. (12) and (13)) vertically separating the minima.

where the asterisk is used to denote both the tensor contraction
and integration of the corresponding fields over the volume oc-
cupied by the polar medium. Further, Ia denotes the gas-phase
energy of the reactant and all solvation free energies due to elec-
tronic polarizability of the solvent. Because of this separation,
the term −Ea ∗P describes the interaction of the reactant with
the nuclear polarization of the medium. [5]

As explained above, we assume that the structure of the
medium is not affected by the electric field of the reactant and the
susceptibility χ does not depend on the reactant’s oxidation state.
On the contrary, the force constant fa of the local low-frequency
(classical) vibration is altered by changing the oxidation state and
thus carries the subscript a in the quadratic term of the vibrational
Hamiltonian

H(a)
q (q) =−Caq+ 1

2 faq2. (11)

The linear and quadratic terms here can be associated with the
corresponding expansion terms of the potential energy U(q) of
the local vibrational coordinate q: U(q) =U(0)+(∂U/∂q)q+ . . . .

The schematic representation of our model of localized in-
tramolecular vibrations is shown in Fig. 1. We thus consider two
parabolic potential energy surfaces H(a)

q (q) with unequal curva-
tures and with minima at qa = Ca/ fa. The minima are vertically
displaced by the difference of free energies corresponding to the
vibrational coordinate

∆Fq = Fq2−Fq1. (12)

Here, we have included the common vibrational entropy term in
the free energy of the vibrational coordinate

Fqa =−C2
a/(2 fa)+ kBT ln[ωa], (13)

where ω2
a ∝ fa is the square of the vibrational frequency. The en-

tropic term of course does not appear in the Hamiltonian function
and instead comes from the statistical average over the coordinate
q discussed below. It is incorporated directly in the vertical shift
of the potential energies for convenience. The corresponding en-
tropic contributions are therefore omitted when performing the
statistical average over the intramolecular vibrations.

Combining the medium polarization and the intramolecular vi-

Journal Name, [year], [vol.],1–10 | 3

Page 3 of 10 Physical Chemistry Chemical Physics



brational mode, the total system Hamiltonian in our model is

Ha[P,q] = H(a)
P [P]+H(a)

q (q). (14)

Correspondingly, the energy gap between the reduced (a = 2) and
oxidized (a = 1) states is a function of two nuclear coordinates
which are constrained to satisfy Eq. (1). One gets

∆H[P,q] = ∆H[P]+∆H(q), (15)

where

∆H[P] = ∆I−∆E∗P,

∆H(q) =−∆Cq+ 1
2 ∆ f q2,

(16)

∆C =C2−C1, ∆ f = f2− f1, and ∆E = E2−E1.

The major distinction of Eqs. (15) and (16) from the standard
Marcus model of internal reorganization [27] appears in Eq. (16)
in the form of the linear-quadratic dependence of ∆H(q) on the
vibrational coordinate q (in contrast to a linear dependence in the
Marcus theory). In the case of multiple normal modes of vibra-
tions, this functionality is isomorphic to Duschinsky effect [7,38] in
which the normal modes of two electronic states of a molecule
are related by a linear shift-rotation transformation.

For reductive electrode reactions Ox + e → Red, the final re-
duced state corresponds to the electron localized on the reactant
with the gas-phase energy I2 = IRed and the initial state corre-
sponds to the reactant with the gas-phase energy I1 = IOx and
the electron in the conduction state of the metal with the energy
εk = µ̄m+ε, where µ̄m is the electrochemical potential of the metal
electrons. We therefore have for ∆I in Eq. (16)

∆I = I2− I1− µ̄m− ε. (17)

The offset ε is used below in the calculation of the electrode re-
action rate, where integration over the conduction states of the
metal populated according to the Fermi-Dirac distribution is per-
formed.

We further assume that the fluctuations of the medium polar-
ization are statistically independent from fluctuations of the nu-
clear coordinate q, which essentially implies that ∆E is indepen-
dent of q. [28] The additivity of the Hamiltonian implies that the
Boltzmann factor e−βFa(X) can be cast as the convolution of prob-
abilities along coordinates P and q. Specifically, one writes

〈δ (X−∆H[P,q])〉Pq,a =
∫

∞

−∞

dy〈δ (X− y−∆H[P])〉P,a

〈δ (y−∆H(q))〉q,a.
(18)

The first angular bracket represents the standard Marcus model
[Eq. (6)] and is given by the Gaussian distribution

G(a)
P (X− y) = 〈δ (X− y−∆H[P])〉P,a

∝ exp
[
−β (X− y−〈X〉a)2

4λM

]
,

(19)

where
λM = (χ/2)∆E∗∆E (20)

is the standard Marcus reorganization energy of a polar
medium, [3] the minima are equal to the averages Xa = 〈X〉a (cf.
to Eq. (6)), and

〈X〉a = ∆I +∆FP±λM. (21)

Here, the upper sign (+) and the lower sign (−) refer, respec-
tively, to reduction/oxidation and ∆FP = FP,Red−FP,Ox is the dif-
ference of solvation free energies due to the nuclear polarization
of the medium in the reduced and oxidized states of the reactant.

The second bracket in Eq. (18) represents the novel component
of the present theory, applying the framework of the Q-model to
the energy gap which is linear-quadratic in the nuclear coordinate
q. The statistical average over the nuclear coordinate q depends
on the oxidation state, as reflected by the subscript a. We now
turn our attention to the calculation of this function.

3.1 Intramolecular vibrational mode

Here we address the calculation of the distribution of the com-
ponent of the reaction coordinate relevant to the classical, low-
frequency vibrations of the reactant. The distribution of the vi-
brational component of the energy gap convoluting with the cor-
responding distribution due to the medium polarization in Eq.
(18) is given by the following equation

G(a)
q (y) = 〈δ (y−∆H(q))〉q,a. (22)

This function is conveniently written as the Fourier integral in-
volving the cumulant-generating function Aa(ξ )

G(a)
q (y) = β

∫
∞

−∞

dξ

2π
exp [iξ βy+Aa(ξ )] , (23)

where
eAa(ξ ) =

〈
e−iξ β∆H(q)

〉
q,a

. (24)

The cumulant generating function Aa(ξ ) determines the statis-
tics of the stochastic variable y. This implies that successive cu-
mulants of y are given as the derivatives of Aa(ξ )

〈(δy)n〉a =
(

i
β

)n
∂ nAa(ξ )

∂ξ n

∣∣∣∣
ξ=0

, (25)

where δy = y− 〈y〉a. Only two cumulants, the first, 〈y〉a, and
the second, 〈δy2〉a, are non-zero for the Gaussian statistics of y.
This latter case corresponds to the Marcus treatment of internal
reorganization, when intramolecular vibrations provide an addi-
tional source of Gaussian fluctuations of the energy gap and the
outer and inner reorganization energies simply add up. [27] In the
present model of intramolecular vibrations allowing a change of
the vibrational force constant (frequency), the statistics of y is
non-Gaussian. This is seen directly from performing the statis-
tical average over the variable q in Eq. (24), which leads to the
following cumulant generating function [26]

Aa(ξ ) =−iξ βY0−
βξ κ2

a
ξ − iκa

λqa, (26)
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with parameters defined below.

It is easy to see that an infinite series of derivatives in Eq. (25)
can be produced from Eq. (26), implying an infinite series of
cumulants contributing to Aa(ξ ). One therefore expects a non-
Gaussian form for the function Ga(y), which can indeed be ob-
tained in the closed form [26,28]

G(a)
q (y) =

βe−βκ2
a λqa/2

2sinh(βκ2
a λqa/2)

√
|κa|3λqa

|y−Y0|

× e−β |κa||y−Y0|I1

(
2β

√
|κa|3λqa|y−Y0|

)
.

(27)

Here, I1(x) is the modified Bessel function of the first order. [39]

Before turning to a general theory combining both polarization
and vibrational coordinates into one formalism, we first discuss
the parameters entering Eqs. (26) and (27) and some physical
consequences of altering the force constant of intramolecular vi-
brations.

The most important parameter in the theories of activated
electron-transfer reactions is the reorganization energy. The Q-
model predicts a major change from the Marcus model in this
regard since, instead of a single reorganization energy charac-
terizing both oxidation states, two intramolecular (vibrational)
reorganization energies λa = β 〈δy2〉a/2 appear in Eq. (26)

λq1 =
1
2 ( f 2

2 / f1)∆q2, λq2 =
1
2 ( f 2

1 / f2)∆q2, (28)

where ∆q = q2−q1 is the separation between the parabolas’ min-
ima along the q-coordinate (Fig. 1). Further, in Eq. (27), the
parameters

κa = fa/∆ f (29)

quantify the relative change in the vibrational force constants;
κa → ∞ corresponds to ∆ f = 0 and the return to the Gaussian
statistics of the variable y.

Figure 2 illustrates the results of the model. It shows the free
energy surfaces ga(y) =−β−1 ln[Ga(y)] along the vibrational com-
ponent of the energy gap y. They obtained by an asymptotic ex-
pansion of Ga(y) in Eq. (27) at values of y sufficiently far from Y0

and given by the relation

ga(y)−Fqa =

(√
|κa||y−Y0|−

√
κ2

a λqa

)2
, (30)

where Fqa is given by Eq. (13).

The free energy surfaces are obviously non-parabolic, with a
linear tail at one side of the minimum ya and a limiting value Y0

(fluctuation boundary) on the other side of the minimum. The
latter is given by the expression

Y0 = ∆Fq−
f1 f2
2∆ f

∆q2. (31)

The appearance of this parameter in the theory is related to the
linear-quadratic dependence of y on the vibrational coordinate q:
y =−∆Cq+(1/2)∆ f q2. Because of the parabolic form of this func-
tion, possible values of y are restricted from above by parabola’s
maximum at ∆ f < 0 and from below by parabola’s minimum at

 !"

 !#

 ! 

$
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+
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Fig. 2 ga(y) =−β−1 ln[G(a)
q (y)] calculated from Eq. (27) at λq1 = 0.3 eV,

λq2 = 0.6 eV, and ∆Fq = 0. The vertical dashed line marks the position of
the fluctuation boundary Y0 in Eq. (31). The probability of reaching
y > Y0 is identically zero in the Q-model.

∆ f > 0. Based on this constraint, we have

y < Y0 at ∆ f < 0,

y > Y0 at ∆ f > 0.
(32)

Since the regions of y outside these intervals cannot be reached,
one gets an infinite value of the free energy at Y0 and zero proba-
bility G(a)

q (y) = 0 for reaching the forbidden regions

ga(Y0) = ∞. (33)

Despite a number of parameters used for algebraic convenience
in Eqs. (27), (30), and (31), the free energy surfaces ga(y), and
all corresponding observables, depend on three parameters only:
two reorganization energies λqa and the free energy difference
∆Fq (Fig. 1). This needs to be contrasted with the standard Mar-
cus formulation, such as in Eq. (6), which depends on two pa-
rameters: the free energy difference and a single reorganization
energy. The complication of altering vibrational force constant
thus adds one additional theory parameter, the second reorgani-
zation energy. In turn, the reorganization energies are expressed
in terms of the vibrational force constants by Eq. (28). Further,
the parameters κa, given in terms of the force constants by (29),
can be also fully specified in terms of λqa by the following equa-
tion

κ
−1
1 = (λq1/λq2)

1/3−1, κ2 = κ1 +1. (34)

In the numerical examples and figures below we, therefore, dis-
tinguish vibrations in different oxidation states by specifying the
corresponding reorganization energies instead of force constants.
Along the same lines, the parameter Y0 in Eq. (31) can be rewrit-
ten as

Y0 = ∆Fq− sign(∆ f )
[
λq1λq2κ1κ2

]1/2
. (35)

When κa→∞, the fluctuation boundary shifts to infinity, |Y0|→∞,
and becomes irrelevant.

The free energy surfaces ga(y) are plotted in Fig. 2 at λq1 6=
λq2 and ∆Fq = 0. We use a hypothetical example of λq1 = 0.3 eV
and λq2 = 0.6 eV, which corresponds to ∆ f < 0 and Y0 = 1.8 eV.
The functions ga(y) are clearly non-parabolic, while satisfying the
fundamental constraints given by Eqs. (5) and (7). The average
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values 〈y〉a satisfy the relation

〈y〉a = ∆Fq±λqaκa/(κa±1), (36)

where κa are given through Eq. (34) or, alternatively, in terms of
the vibrational force constants in Eq. (29). Further, similarly to
Eq. (21), +/− refer, respectively, to reduction/oxidation. Because
the free energy surfaces are asymmetric in respect to mirror re-
flections about their minima, the minima ya are distinct from the
averages 〈y〉a.

The difference of the average values 〈y〉a, an analog of the
Stokes shift in spectroscopy, carries a clear physical meaning of
the internal reorganization energy characterized by the mean vi-
brational force constant

λ̄q =
1
2 |〈y〉1−〈y〉2|=

1
2 f̄ ∆q2 (37)

where f̄ = ( f1+ f2)/2. Alternatively to this definition, an effective
“symmetric” internal reorganization energy

λi = [( f1 f2)/( f1 + f2)]∆q2 (38)

was suggested by Marcus [27] and Kuznetsov [40] to incorporate
the alteration of the vibrational frequencies. This form of the in-
ternal reorganization energy, which is distinct from the standard
Marcus reorganization energy of the polarizable medium λM [Eq.
(20)], does not appear in the exact solution presented here. In-
stead, λ̄q plays the role of an effective vibrational (internal) reor-
ganization energy in our formulation.

3.2 Free energy surfaces

The convolution of the probability densities G(a)
P,q along the coordi-

nate y in Eq. (18) can be calculated numerically or, alternatively,
approximated analytically by assuming a Gaussian shape for the
function G(a)

q . In the latter case, the convolution of two Gaus-
sian functions is given by a Gaussian function. The resulting free
energy surfaces do not exactly satisfy the linear relation in Eq.
(5), but nevertheless provide a reasonable numerical solution of
the problem with two classical nuclear modes activating electron
transfer. They are given by the relation similar to Eq. (6), where
the curvature of the free energy surface gains a dependence on
the oxidation state through the corresponding dependence of the
vibrational reorganization energies in Eq. (28)

Fa(X)−F0a =
(X−Xa)

2

4λa
. (39)

In this equation,
λa = λM +λqa (40)

and
Xa = 〈X〉a + 〈y〉a. (41)

Here, 〈X〉a and 〈y〉a are given by Eqs. (21) and (36), respectively.
Combining these equations, we obtain

Xa(η) = eη±λM±λqaκa/(κa±1), (42)
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Fig. 3 Free energy surfaces for electron transfer calculated from the
direct numerical convolution in Eq. (18) (solid lines) and from the
effective Gaussian approximation leading to Eq. (39) (dashed lines).
The reorganization energies adopted in the calculations are: λM = 0.3
eV, λq1 = 0.3 eV, and λq2 = 0.6 eV; ∆F0 = 0.

where eη = ∆F0 = ∆I +∆FP +∆Fq is the total reaction free energy
[Eq. (9))] including the free energy due to internal vibrations
and the free energy of solvation by both electronic and nuclear
polarization of the medium.

Combining Eqs. (21) and (37), we conclude that half of the
separation between the minima of the free energy surfaces is the
sum of the Marcus reorganization energy for the medium polar-
ization and the reorganization energy λ̄q given in terms of the
mean vibrational force constant [Eq. (37)]

1
2 |X1−X2|= λM + λ̄q. (43)

On the contrary, the curvatures of the effective parabolas are
given by λa specified by Eqs. (40) and (28).

One expects that inaccuracies introduced by replacing the ex-
act G(a)

q (y) with its Gaussian approximation in the convolution
integral are insignificant when reorganization due to solvent po-
larization dominates. On the other hand, when λM ≈ λqa non-
quadratic shape of the free energy surfaces ga(y) can affect Fa(X).
This less favorable for our approximation case is shown in Fig.
3 where we use λM = λq1 = 0.3 eV and λq2 = 0.6 eV, as adopted
in Fig. 2. This extent of deviation between the internal reorgani-
zation energies in different oxidation states was reported for the
Cr(edta)−/2− redox pair. [12] Even in this case of relatively low λM,
the effective Gaussian approximation used in deriving Eq. (39) is
still quite accurate, in particular in the region between the min-
ima Xa, [41] which is of primary significance for determining the
activation barrier.

3.3 Electrode currents

A significant advantage of the effective Gaussian solution in Eq.
(39) is that it allows one to use the standard set of tools devel-
oped over the years to calculate the electrode currents from the
picture of crossing parabolas. [2,18,42] In the limit of weak elec-
tronic coupling between the reactant and the conduction elec-
tronic states of the metal, the rate constant is found by inte-
grating the golden-rule transition rates to individual conduction
states with the Fermi-Dirac distribution of the conduction elec-
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trons [18,42–46]

ka(η) =
∆

h̄

(
β

πλa

)1/2 ∫ ∞

−∞

e−β∆F†
a (η−ε/e) fF (±ε)dε. (44)

Here, fF (ε) = [exp(βε)+1]−1 is the Fermi-Dirac population func-
tion and ∆ = πV 2ρF ; [25,47,48] V is the electron-transfer matrix
element between the electronic state on the reactant and a single
electronic state in the metal and ρF is the density of states at the
metal’s Fermi level. Further, ∆F†

a = Fa(0)−F0a in Eq. (44) is the
activation barrier

∆F†
a (η) = [Xa(η)]2 /(4λa), (45)

where Xa(η) is from Eq. (42) and λa is from Eq. (40). Finally,
similarly to Eqs. (21) and (36), a = 1,+ and a = 2,− refer, respec-
tively, to reduction and oxidation. The rate constants in Eq. (44)
are therefore assigned to the following half reaction

Ox(1)+ e−
k1⇀↽
k2

Red(2). (46)

The linear shift in the function Xa(η − ε/e) with the offset en-
ergy ε in Eq. (44) originates from the corresponding shift of the
energy of the conduction electron from the electrochemical po-
tential of the metal in Eq. (17). When ∆ f → 0, κa→∞ [Eq. (29)],
one arrives at the standard Marcus solution

∆F†
M,a(η) = (eη±λ )2/(4λ ), (47)

where
λ = λM + λ̄q (48)

is the total reorganization energy due to classical nuclear modes
including the medium polarization (λM) and intramolecular vi-
brations (λ̄q). The latter is equivalent to λi in Eq. (38) in this
limit.

Integration over the conduction electrons can be performed nu-
merically in Eq. (44) or through a number of analytical approxi-
mations. [44,48] When βλa� 1, the Fermi-Dirac population fF (ε)
can be taken at zero temperature, [47,49] yielding the rate in terms
of the complementary error function [39]

ka(η) =
∆

h̄
erfc

(
[β∆F†

a (η)]1/2
)
. (49)

As is shown by the blue lines in Fig. 4, this approximation is very
reasonable for typical parameters encountered in electrochem-
istry (exact integration in Eq. (44) is shown by the black lines).

Figure 4 shows the cathodic and anodic currents calculated
from Eq. (44) for the reorganization parameters used in Fig. 3
(solid lines). It is clear that the model leads to asymmetry be-
tween the cathodic and anodic branches with respect to the sign
change η→−η . Formal Tafel slopes are calculated as the deriva-
tives of ∆F†

a with respect to ±eη (equivalent to Eqs. (9.4) and
(9.5) in Ref. 47). The transfer coefficient at η = 0 can be alterna-
tively calculated as the first-order coefficient in the series expan-
sion of ∆F†(η) in Eq. (45) in the powers of η . The result is given
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Fig. 4 Cathodic (left) and anodic (right) currents vs the electrode
overpotential η calculated from Eq. (44) (black lines) and from Eq. (49)
(blue lines). The red dashed straight lines are extensions of the linear
curves found at small |η |, corresponding to the transfer coefficients
αc = α1 = 0.53 and αa = α2 = 0.42 for the cathodic and anodic currents,
respectively [Eq. (50)]. The reorganization parameters are the same as
in Fig. 3. The vertical and horizontal dotted lines are drawn to visualize
the asymmetry of cathodic anodic current branches.

by the following equation

αa(η = 0) =
1
2
∓

λqa

2λa

1
κa±1

, (50)

where, for guidance, upper and lower signs are combined with
a = Ox and a = Red, respectively. The values obtained, which are
distinct for reduction and oxidation, define the slopes for small
deviations from η = 0, as indicated in Fig. 4. A higher reorgani-
zation energy in the reduced state (λq2 = 0.6 eV) compared to the
oxidized state (λq1 = 0.3 eV) leads to an effectively lower trans-
fer coefficient for the anodic current. We note that the condition
αOx(0)+αRed(0) = 1 is not exactly satisfied in Eq. (50) because of
the approximation used in solving the convolution over the coor-
dinate y in Eq. (18). Direct integration in Eq. (18) leads to fully
consistent results since both the Gaussian solution for the polar-
ization coordinate P and the Q-model for the coordinate q are
exact.

Compton and co-workers, [23] motivated by earlier work of
Marcus, [27] have proposed a correction to the activation bar-
rier caused by changes in intramolecular vibrational force con-
stants. Their definition of the intramolecular reorganization en-
ergy is based on the Marcus expression in Eq. (38), while only
the mean λ̄q given by Eq. (37) appears in our theory. Follow-
ing previous work, [23,27] we define the asymmetry parameter
γ = (λ̄q/λ )∆ f/(2 f̄ ), in which λ is given by Eq. (48). Note that
our γ is the negative of the parameter used in Ref. 23 since the
convention ∆ f = f2 − f1 = fRed − fOx is adopted here. The pa-
rameter in Ref. 23 also does not involve the sign alteration in the
Marcus parameter [27] ls = ( fr− fp)/(2 f̄ ) (“r” and “p” are for the
reactant and products, respectively), which changes sign depend-
ing on whether reduction or oxidation reaction is considered. In-
dependently of the definition, the first-order expansion of the ac-
tivation free energy is linear in ∆ f ∝ γ ∝ ls. In order to calculate
this linear term, we expand our solution for the activation barrier
in Eq. (45) in series of powers of κ−1

a assuming that the relative
change of the vibrational force constant is small, ∆ f � fa. When
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the expansion is truncated after the first order in γ, we obtain

∆F†
a (η) = ∆F†

M,a(η)∓ γ
(eη±λ )(3eη±λ )

4λ
, (51)

where ∆F†
M,a(η) is the Marcus solution given by Eq. (47).

The first-order expansion term is different from the Compton
et al result, [23] which should read in our notation −γ(eη/4)[1−
(eη/λ )2]. Our expansion in Eq. (51) shares, however, a problem
present in their solution: the activation barrier becomes negative
in some limits (e.g., when “−” at η → ∞ is taken in Eq. (51)), as
identified by Bazant and co-workers. [16] This difficulty does not
appear in our solution given by Eqs. (44) and (45). The integral
over the energies of the conduction electrons of the metal in Eq.
(44) is well-defined. It is also important to note that the term
of the first-order in γ disappears from the formula by Compton
et al, [23] at η = 0 (similarly through first order in γ to Eq. (A13)
in Ref. 27). This disappearance of the first-order in γ ∝ ∆ f cor-
rection implies no skewness (asymmetry in respect to reflection
about the minimum) of the free energy surfaces at η = 0. This
outcome is not shared by the present exact solution since skew-
ness is present in the Q-model (Fig. 2). The first-oder correction
to the Marcus result is non-vanishing and is equal to ∓(γ/4)λ at
η = 0 [Eq. (51)].

4 Discussion
Activation of chemical reactions occurs by rare events of barrier
crossing promoted by fluctuations of the thermal bath. The rare
character of such fluctuations implies that many particles should
be involved in the delivery of the thermal energy and one might
anticipate that central-limit theorem should apply. The result is
the dominance of Gaussian statistics describing activated events.
This indeed turns out to be the case for electron-transfer reactions
driven by fluctuations of the medium polarization. The statistics
of these collective fluctuations is well described by the Gaussian
distribution, as successfully captured by the Marcus theory. The
probability of reaching the activation barrier much higher than
kBT is governed by the fast decaying Gaussian tail. This picture,
while quite reasonable from the basic principles, could be detri-
mental for the design of artificial and natural systems transporting
electrons through molecular arrays: the activation barrier grows
too fast with the driving force when moving away from the top
activationless rate. One therefore wonders if there are potential
mechanisms to counter the design deficiencies associated with the
Gaussian statistics and to produce “fat tails” deviating from the
fast probability decay of the Gaussian distribution.

A potential recipe applicable to the transfer of electron in
molecular systems is to replace the noise produced by a collective
Gaussian bath with a set of local variables, which do not have
to follow the central-limit theorem. The standard formulation
of the theory convolutes the collective medium polarization with
the long-ranged electrostatic field of the solute. Even though one
might think of such variables as local, the long range character
of both the electric field and the medium polarization combine
into Gaussian fluctuations of the electron-transfer vertical energy
gap viewed as the reaction coordinate. An alternative approach
is to “localize” the response even stronger by adding the polariz-
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Fig. 5 Gaussian (black) and Q-model (red) distributions P(y) along the
reaction coordinate y. ln[P(y)] has a harmonic ∝ y2 (Gaussian)
asymptote at y� 1, while the Q-model has a linear asymptote ∝ y. The
calculations for the Q-model are done at κ = 1.5; κ → ∞ corresponds to
the Gaussian distribution.

ability of the solute, as was recognized in the construction of the
Q-model. This alteration of the physical model makes the verti-
cal energy gap a non-Gaussian variable with a physically distinct
statistics of fluctuations: the probability of reaching a large value
of the energy gap decays exponentially with the driving force,
instead of the quadratic exponential decay of the Gaussian distri-
bution (Fig. 5). This advantage applies mostly to the inverted re-
gion of electron transfer, but it also changes the energetics of the
model, requiring now two reorganization energies instead of one
in the standard models. However, the main fundamental accom-
plishment of the new perspective is in changing the statistics of
the energy gap fluctuations and producing much higher probabili-
ties of rare events (linear decay in place of the Gaussian quadratic
decay).

The strategy of introducing local nuclear modes and elec-
tronic energies nonlinear in bath coordinates to defeat the central
limit theorem must be a general principle. Obviously, local low-
frequency vibrations are a good candidate in this general design
scheme. This possibility is explored here, where we have ana-
lyzed a fairly old suggestion that a change in the frequencies of
localized vibrations can occur upon electron transfer. The vertical
energy gap between the reactant electronic states then becomes a
linear-quadratic function of the vibrational coordinate described
by the Q-model.

As we have mentioned in the text above, deviations from the
standard Gaussian picture of crossing parabolas have appeared in
the literature. [20–24] Among possible candidates for the theory
application is oxygen reduction, currently actively studied, [50]

particularly in application to Li-air batteries. [51] Electrochemical
reduction of oxygen in ionic liquids shows high asymmetry be-
tween the cathodic and anodic branches. [52] In addition, anoma-
lously low transfer coefficients were reported for oxygen reduc-
tion. [52,53] The electrode reduction occurs to a chemisorbed oxy-
gen molecule with altered bond distance and potential change
of the force constant depending on the oxidation state. [54] The
quantum character of oxygen vibration precludes, however, a di-
rect application of the present theory, which is limited to the clas-
sical domain of frequencies.

The theory proposed here employs a convolution of the Gaus-
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sian statistics of the standard models with the non-Gaussian
statistics linked to localized vibrations. The result is an analyt-
ical model predicting the activation barrier of electrode reactions
based on three reorganization energies: the reorganization en-
ergy of the Gaussian bath (medium polarization here) and two
reorganization energies describing the non-Gaussian statistics of
the Q-model type (local vibrations here). It is obvious that the
physical meaning of these two types of nuclear modes does not
constrain the formalism and the model can be extended to any
problem where a combination of a Gaussian and non-Gaussian
components of the thermal bath affecting electronic transitions
need to be involved.
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