Mechanism of thermal decomposition of tetramethylsilane: A flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry and density functional theory study

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Physical Chemistry Chemical Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>CP-ART-04-2018-002626.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>10-Jun-2018</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Liu, Xinghua; China University of Petroleum-Beijing, College of Science Zhang, Jingsong; University of California, Department of Chemistry Vazquez, Alexis; Riverside City College Wang, Daxi; China University of Petroleum-Beijing, College of Science Li, Shuyuan; China University of Petroleum, Beijing,</td>
</tr>
</tbody>
</table>
Mechanism of thermal decomposition of tetramethylsilane: A flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry and density functional theory study

Xinghua Liu, a Jingsong Zhang, b,c Alexis Vazquez, d Daxi Wang a and Shuyuan Li a,e

Thermal decomposition of tetramethylsilane (TMS) was studied over the temperature range of 298-1450 K by combining flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS) and density functional theory (DFT). The initial step of TMS pyrolysis produced methyl radical (Me.) and Me3Si. Me3Si underwent subsequent loss of a hydrogen atom to form Me3Si=CH3 and loss of a methyl radical to form MeSi.: Isomerizations via 1,2-shift and H2 eliminations were major secondary decomposition reactions of Me2Si=CH3 and MeSi:. Among the various isomers, silylene species containing Si-H bond, such as ·Si(H)CH2CH3, ·Si(H)CH=CH2, ·Si(H)CH=CH2 and ·Si(H)CH=CH2, played an important role in H2 elimination reactions. On the other hand, silene species were insignificant in H2 eliminations. Unlike the silylene species, H2 elimination of ·Si=CH2 was energetically unfavorable.

Introduction

Tetramethylsilane (TMS) has been extensively used as a precursor for producing SiC film by various chemical vapor deposition (CVD) techniques, such as low pressure CVD,1-4 metal-organic CVD,5-8 plasma enhanced CVD,9-13 laser induced CVD,14 and hot wire CVD.15, 16 The application of TMS on growing bulk single crystal of SiC has also been reported.17 The main advantages of TMS for producing SiC materials include that the Si-C bond already exists in the precursor molecule and corrosive or poisonous precursors are not used for the deposition processes.7 In addition, the requirement of low growth temperature also favors the usage of TMS.18

The thermal decomposition mechanism of TMS has been studied previously.4, 15, 19, 20 It is widely accepted that Si-C bond cleavage via Channel (1) giving methyl radical and Me3Si· radical is the initial step of TMS decomposition under various experimental conditions.

\[
\begin{align*}
\text{SiMe}_4 & \rightarrow \cdot \text{SiMe}_3 + \cdot \text{Me} \quad (1)
\end{align*}
\]

Two different pathways were proposed for the subsequent secondary reactions. Taylor et al.21 carried out pyrolysis of TMS at temperatures from 716 to 842 °C in a wall-less reactor. They suggested that Me3Si· dissociated rapidly by releasing one methyl radical at each step through Channel (2)-(4).

\[
\begin{align*}
\cdot \text{SiMe}_3 & \rightarrow \cdot \text{SiMe}_2 + \cdot \text{Me} \quad (2) \\
\cdot \text{SiMe}_2 & \rightarrow \cdot \text{SiMe} + \cdot \text{Me} \quad (3) \\
\cdot \text{SiMe} & \rightarrow \text{Si} + \cdot \text{Me} \quad (4)
\end{align*}
\]

Clifford et al.20 performed thermal decomposition of TMS in a flow reactor at 0.1-30 Torr and 810-980 K. They claimed that Me3Si· decomposed by H-atom loss via Channel (5).

\[
\begin{align*}
\cdot \text{SiMe}_3 & \rightarrow \text{Me}_2\text{Si}=\text{CH}_2 + \cdot \text{H} \quad (5)
\end{align*}
\]

The main gaseous end products of TMS decomposition are H2, methane, ethane and other small hydrocarbons. Among them, H2 accounts for comparatively high percentage.9, 22 In addition, the deposition rate of SiC is highly dependent on the partial pressure of H2.7, 23 Hence, to obtain the knowledge of H2 formation mechanism is critical to understanding the TMS decomposition in CVD. However, only a few studies concerned H2 formation mechanism have been published. Lemieux et al.24 studied the pyrolysis of TMS in helium over the temperature range 1060-1470 K by flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS).
TOFMS). They indirectly observed and proposed that H$_2$ was formed by sequential elimination reactions from Me$_2$Si=CH$_2$ through Channel (6). However, the detailed mechanism was not provided.

\[
\text{Me}_2\text{Si=CH}_2 \rightarrow \text{EtSi(H)=CH}_2 + \text{HCCSi(H)=CH}_2 + 2\text{H}_2 \quad (6)
\]

Shi et al.25 investigated the decomposition of TMS on tungsten filament above 1200 °C in the hot wire CVD process. They found that the first step of H$_2$ elimination was that Me$_2$Si adsorbed on the tungsten surface. Then two C-H bonds broke leading to two H atoms, and the two adsorbed H atoms recombined and desorbed rapidly from metal surface in the form of H$_2$. Madigou et al.6 investigated the pyrolysis of TMS at temperatures of 1200 and 1600 °C. They concluded that H$_2$ was formed via Channel (7) involving two main species CH$_4$ and Si$_\text{vapor}$.

\[
\text{Si}_\text{vapor} + \text{CH}_4 \rightarrow \text{Si}_\text{solid} + 2\text{H}_2 \quad (7)
\]

It has been reported that H$_2$ was produced in the pyrolysis process of other organosilicon compounds as well.$^{25-27}$ Thermal decomposition of mono-methylsilane (MMS) has been studied in shock tube in the temperature range of 1125-1250 K at 4700 Torr by Sawrey.26 The result showed that H$_2$ was formed directly by 1,1-elimination or 1,2-elimination via Channel (8) and (9).

\[
\begin{align*}
\text{MeSiH}_3 & \rightarrow \text{MeSiH:} + \text{H}_2 \quad (8) \\
\text{MeSiH}_3 & \rightarrow \text{H}_2\text{C=SiH}_2 + \text{H}_2 \quad (9)
\end{align*}
\]

Neudorfl et al.27 conducted thermal decomposition of dimethylsilane (DMS) at 40-400 Torr and 440-500 °C. A molecular elimination mechanism was proposed shown as Channel (10).

\[
\text{Me}_2\text{SiH}_2 \rightarrow \text{Me}_2\text{Si:} + \text{H}_2 \quad (10)
\]

Both MMS and DMS contain Si-H bonds, which makes it possible that H$_2$ can be eliminated directly. However, Si is bonded with four methyl groups in TMS, indicating that H$_2$ cannot be generated directly by unimolecular elimination of TMS and H$_2$ must be formed by secondary reactions. Thermal decomposition of methyl silanes gives silene/silylene species, which play a predominant role in secondary decomposition reactions.28 Me$_2$Si=CH$_2$, an intermediate of TMS pyrolysis detected previously, was confirmed to be short-lived and reactive.29,30 Questions may arise on the basis of the above experimental facts. Is there a possibility to introduce a Si-H bond into Me$_2$Si=CH$_2$ or other silene/silylene species produced by pyrolysis of TMS? Can H$_2$ be formed from silene/silylene species by elimination via secondary decomposition reactions?

In order to answer the questions mentioned above, the primary decomposition channels of TMS, the isomerization reactions of silene/silylene species, and the possible formation mechanism of H$_2$ were investigated by flash pyrolysis VUV-PI-TOFMS in combination of the density functional theory (DFT) calculations. The aim of the present study is to obtain some new insight for the mechanism of TMS pyrolysis.

Experimental and computational methods

Thermal decomposition experiment was performed using a vacuum ultraviolet photoionization time-of-flight mass spectrometer, which has been described previously.30,33 TMS (99%) was from Sigma Aldrich and used without further purification. The TMS sample was placed in a glass bubbler and helium was used as the carrier gas. The sample bubbler was immersed in a -41 °C acetonitrile/dry ice bath to produce the TMS sample in a concentration of ~1% in 1 atm He. The 1% TMS in He gas sample was expanded by a pulse valve sonically through a SiC tube (40 mm long, 2 mm O.D., 1 mm I.D.) with a residence time less than 100 µs. The end section (~10 mm) of the SiC tube was heated to 298-1450 K by passing an electric current controlled by a Variac transformer through the tube from two graphite electrodes. The temperature was monitored using a type C thermocouple attached to the outside of the heated section of the SiC tube and calibrated to the internal temperature. The TMS sample underwent pyrolysis in the SiC tube. The conditions of the SiC tube reactor were similar to those fully characterized in the previous studies,32,34,35 where the short residence time and low precursor concentration in inert gas strongly favoured unimolecular reactions and minimized bimolecular and surface reactions. The products and undissociated precursors expanded into a molecular beam and flew into the differentially pumped photoionization region and were photoionized by 118 nm (10.45 eV) VUV radiation produced from frequency tripling of the 355 nm output of a Nd:YAG laser operating at 10 Hz. The ionized species were extracted into the TOF mass spectrometer and detected by a microchannel plate detector. The mass spectra were recorded on a digital storage oscilloscope by signal averaging with 512 laser shots each spectrum.

It should be noted that the ion signal intensities in the mass spectra do not correlate directly with the relative abundances of the fragments as they can have different photoionization cross sections. Corrections with the photoionization cross sections could not be made in this study, as there is little information about the photoionization cross sections of the observed Si-containing intermediate species. Nevertheless, when comparing the relative intensities of the same species at different temperatures, the temperature dependence can still be well established in the following discussion.

DFT method was employed to perform computational studies of the organosilicon compounds.36,37 In the present work, geometries of reactants, transition states, intermediates, and products were calculated at the (U)B3LYP/6-311++G(d,p) level. Transition states with only one imaginary frequency were examined by intrinsic reaction coordinate (IRC) calculation. Energies of all geometries of interest were also calculated at the (U)B3LYP/6-311++G(d,p) level of theory with zero point energy (ZPE) correction. Energy barrier was defined as the electronic energy difference between the transition state and the corresponding reactant with ZPE correction. Bond dissociation energy (BDE) was calculated by the ZPE-corrected electronic energy difference between the sum of two individual fragments formed after the homolysis of the involved bond and the corresponding species before the bond dissociation. All computations were performed using Gaussian 09 program.38
Results and Discussion

Primary decomposition pathways

The pyrolysis of TMS was performed over the temperature range 298-1450 K, and the pyrolysis mass spectra are plotted in Fig. 1. At 298 K, photoionization peaks were found at m/z 88 and m/z 73 corresponding to parent ion and Me₃Si⁺, respectively. The intensity of the Me₃Si⁺ peak was ~3 times larger than that of the parent ion peak. The predominance of Me₃Si⁺ was due to photoionization fragmentation of TMS. The AE (appearance energy) of Me₃Si⁺ is 10.3 eV, less than the 10.45 eV photon energy used in this study. Peaks at m/z 89 and 90 were due to the parent TMS with the Si and C isotopes, and m/z 74 and 75 from the Me₃Si⁺ fragment with the Si and C isotopes. From temperatures 298 to 1090 K, no other peaks were observed under the current experimental conditions. A close inspection showed that the mass spectra at 298-1000 K were essentially identical, indicating no thermal decomposition of TMS in this temperature region.

The TMS peak decreased when the temperature was increased from 1160 to 1450 K (Fig. 1), showing depletion of the parent molecules in this high temperature region. The pyrolysis mass spectra at high temperatures 1160-1450 K are plotted in an enlarged scale in Fig. 2. The first thermal decomposition product peak at m/z 15 representing methyl radical appeared at 1160 K. It is believed that Channel (1) is the primary decomposition channel producing methyl radical and Me₃Si. The mass peak corresponding to Me₃Si formed by thermal decomposition of TMS was overwhelmed by the predominant Me₃Si⁺ peak from photoionization fragmentation of the parent TMS. However, the contribution of the TMS pyrolysis to the Me₃Si⁺ mass peak was evident from the intensity ratio of the Me₃Si⁺ and the parent peak at different temperatures (plotted in Fig. 3). The ratio was nearly a constant from 298 to 1160 K (showing a constant contribution from TMS photoionization fragmentation), while it increased rapidly at temperatures above 1160 K. This increase in the ratio, along with the depletion of the TMS parent molecules, indicated the increased contribution to the Me₃Si⁺ mass peak from thermal decomposition of TMS. Therefore it was evident that thermal decomposition of TMS was initialized via Channel (1) at and above 1160 K.

Four unimolecular decomposition pathways of TMS were calculated. The relative energy profile of decomposition pathways of TMS is plotted in Fig. 4. Homolytic Si-C bond cleavage via Channel (1) has the smallest BDE with a value of 82.5 kcal/mol.
82.5 kcal/mol. The BDE of C-H is 97.3 kcal/mol. The energy barrier of methane elimination via a 4-center transition state from TMS is 89.0 kcal/mol, and the energy barrier of ethane elimination from TMS is 119.1 kcal/mol. The computational and experimental results show that Channel (1) is the initial decomposition reaction in TMS pyrolysis.

At 1160 K, the methyl radical peak at m/z 15 first appeared, which mainly came from Channel (1). A very small peak at m/z 58 also appeared, which could be \(\text{SiMe}_2 \) from secondary decomposition of \(\text{Me}_3\text{Si} \) after a methyl elimination (Channel (2)). Two pathways, Channel (2) and Channel (5), were proposed as the possible decomposition channels of \(\text{Me}_3\text{Si} \). Our DFT calculations indicate that the BDE of a methyl radical loss from \(\text{Me}_3\text{Si} \) is 56.6 kcal/mol, which is 6.4 kcal/mol lower than that of releasing a hydrogen atom. Our calculation result is consistent with the theoretical study employing CBS-QB3 and G4 method reported recently by Peukert et al.43

At 1220 K, the methyl radical peak at m/z 15 increased, and the m/z peak 58 for \(\text{SiMe}_2 \) also grew slightly. Two new peaks, m/z 72 and 68, and a few very minor peaks appeared at m/z 42-44. The peak at m/z 72 was attributed to \(\text{Me}_3\text{SiC} \) from secondary decomposition reaction of \(\text{Me}_3\text{Si} \) via Channel (5). Its detection at 1220 K vs. \(\text{SiMe}_2 \) at 1160 K indicates that Channel (5) occurred at a comparatively higher temperature than Channel (2), consistent with the theoretical calculations. In addition, the new peak at m/z 68 was clearly shown in the mass spectrum; it was the product of successive H\(_2\) eliminations from \(\text{Me}_3\text{SiC} \). The formation mechanism is discussed in the next section.

At 1280 K, the methyl m/z 15 peak further increased. The m/z 68 peak grew significantly, becoming a more important product, while the m/z 72 peak increased slightly. The \(\text{SiMe}_2 \) m/z 58 peak increased slightly, and a minor m/z 56 peak appeared, likely from \(\text{H}_2 \) elimination of \(\text{SiMe}_2 \). The new peak at m/z 42 assigned as \(\text{SiC} \) was clearly identified in the mass spectrum. \(\text{SiC} \) can be formed by methane elimination from \(\text{Me}_3\text{Si} \) or its isomers. A new peak was found at m/z 28. Both ethylene and Si atom could be the source of the m/z 28 peak. However, the ionization energy of ethylene is 10.51 eV,44 which is higher than the 10.45 eV photon energy, while the ionization energy of the Si atom is only 8.15 eV.45 Hence, the Si atom more likely accounted for the presence of peak at m/z 28.

At higher temperatures of 1340-1450 K, the methyl m/z 15 peak continued to increase. The m/z 68 peak grew even more and became one of the main products, while the m/z 72 peak stayed about the same. The \(\text{SiMe}_2 \) m/z 58 peak increased slightly and then stayed about the same at higher temperatures; the m/z 56 peak increased more significantly, and a m/z 54 peak appeared at 1340 K and increased with higher temperatures, likely from sequential \(\text{H}_2 \) elimination of \(\text{SiMe}_2 \). The m/z 42 peak for \(\text{SiC} \) increased slightly over this temperature range, while the m/z 40 peak (presumably due to SiC) appeared at 1340 K and increased with higher temperatures. The m/z 28 peak from the Si atom increased significantly in 1340-1450 K; at 1450 K, a very small peak at m/z 29 representing \(\text{Si} \) appeared as well.

\(\text{H}_2 \) elimination of \(\text{Me}_3\text{Si}=\text{CH}_2 \)

As shown in Fig. 2, peak at m/z 68 representing \(\text{SiC}_2\text{H}_4 \) appeared for the first time at 1220 K. As temperature increased, the intensity of the peak of \(\text{SiC}_2\text{H}_4 \) at m/z 68 increased rapidly. It overcame methyl radical at 1340 K, and reached ~3 times greater than methyl radical in intensity at 1450 K. The large amount of production of \(\text{SiC}_2\text{H}_4 \) shows that it is an important fragment in the process of TMS pyrolysis, and its formation reactions play a significant role in the secondary decomposition reactions. The observation of \(\text{SiC}_2\text{H}_4 \) has been reported in the pyrolysis process of hexamethyldisilane (HMDS) on hot tungsten filament conducted by Shi et al.46 They suggested that \(\text{SiC}_2\text{H}_4 \) was from chamber background. Our previous work on the pyrolysis of TMS indicated that \(\text{SiC}_2\text{H}_4 \) was generated via successive \(\text{H}_2 \) elimination from \(\text{Me}_3\text{Si} \).24

It has been reported that silenes, such as \(\text{Me}_3\text{Si}=\text{CH}_2 \), are unstable and apt to undergo dimerization or cycloaddition reactions.20, 28, 47, 48 In the present study under the short contact time and low concentration conditions, intermolecular reactions were minimized and intramolecular reactions were favored. Silenes can readily converted into silylenes by 1,2-shift, and vice versa.49-51 This unique reaction characteristic could form isomers of \(\text{Me}_3\text{Si} \) containing Si-H bond, from which \(\text{H}_2 \) elimination reaction may take place more easily. \(\text{Me}_3\text{Si} \) and its related isomers were indistinguishable in the TMS pyrolysis mass spectra. Hence, the interconversions among \(\text{Me}_3\text{Si}=\text{CH}_2 \) and its isomers were calculated using the DFT method. The energy diagram of the isomerization pathways is shown in Fig. 5. \(\text{Me}_3\text{Si}=\text{CH}_2 \) isomerizes to \(\text{Si}([\text{Me}]\text{Et})=\text{Si}([\text{Me}]\text{CH}_3\text{CH}_3) \) via pathway 5a with an energy barrier of 51.6 kcal/mol. Another isomerization reaction of \(\text{Me}_3\text{Si}=\text{CH}_2 \) is pathway 5b forming of a three-membered cyclic product \(\text{H}_2\text{C}([\text{Me}]\text{Si})=\text{CH}_3 \), via an energy barrier of 70.0 kcal/mol. Pathways 5c, 5d and 5e are subsequent isomerization reactions of \(\text{Si}([\text{Me}]\text{Et}) \) producing \(\text{CH}_3=\text{Si}([\text{H}]\text{Et}) \), \(\text{MeC}=\text{Si}([\text{H}]\text{Me}) \) and \(\text{H}_2\text{C}([\text{H}]\text{Si})(\text{Si}([\text{Me}]\text{Me})\text{CH}_3) \), respectively. The corresponding energy barriers are all lower than 50 kcal/mol (with respect to...
Me₂Si=CH₂ + Si(H)Pr (Si(H)CH₂CH₂CH₂H) can be produced both by pathway 5f from CH₂=Si(H)Et with an energy barrier of 62.6 kcal/mol and by pathway 5g from H₂C(H)Si(Me)CH₃ with an energy barrier of 55.9 kcal/mol (relative to the energy of Me₂Si=CH₂).

H₂ elimination reactions from these six isomers including Me₂Si=CH₂ were inspected by the DFT method and the results are summarized in Table 1. No H₂ elimination pathway is found from Me₂Si=CH₂, MeCH=Si(H)Me and H₂C(H)Si(Me)CH₃. This suggests that the Si-H bonds on MeCH=Si(H)Me and H₂C(H)Si(Me)CH₃ are rather inert (or the energetics are unfavorable for H₂ elimination from the Si-H bond and an adjacent C-H bond). H₂ elimination from the ethyl group on Si(H)Et has an energy barrier of 90.4 kcal/mol (relative to Me₂Si=CH₂). CH₂=Si(II)Et gives H₂ and CH₃=Si(III)CH=CH₂ with an extremely high energy barrier of 124.0 kcal/mol, in which H₂ is formed by eliminating two adjacent H atoms from the ethyl group on CH₂=Si(II)Et. The inactivity of Si-H bond on silene is evidenced by the high energy barrier of H₂ elimination involving Si-H bond on MeCH=Si(III)Me and CH₃=Si(III)Et. H₂ elimination of Si(H)Pr involves the H atoms in a silylene Si-H bond and a sp³-type C-H bond and is most energy favourable with an energy barrier of only 65.4 kcal/mol, showing that it is much easier to eliminate H₂ from Si(H)Pr than from other isomers of Me₂Si=CH₂. A m/z 70 peak was observed at 1280 K in Fig. 2. It could be assigned as Si-CH₂Et produced by H₂ elimination of Si(H)Pr, which was generated through several isomerization steps starting from Me₂Si=CH₂, with an overall barrier of 65.4 kcal/mol relative to Me₂Si=CH₂ (Fig. 5 and Table 1). Our theoretical work also showed that Si(H)Pr could dissociate to Si atom and propane over an energy barrier of 58.2 kcal/mol (consistent with the observation of Si atom at 1280 K). In addition, our theoretical calculations identified two dissociation channels of Si(Me)Et after isomerization from Me₂Si=CH₂.

Table 1: Relative energies of possible H₂ elimination from Me₂Si=CH₂ and its isomers.

<table>
<thead>
<tr>
<th>Isomers</th>
<th>Relative energies to Me₂Si=CH₂ (kcal/mol)</th>
<th>Co-product of H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial state</td>
<td>Transition state</td>
</tr>
<tr>
<td>Me₂Si=CH₂</td>
<td>0.0</td>
<td>/</td>
</tr>
<tr>
<td>H₂C(H)Si(Me)CH₃</td>
<td>1.7</td>
<td>/</td>
</tr>
<tr>
<td>Si(H)MeEt</td>
<td>14.7</td>
<td>90.4</td>
</tr>
<tr>
<td>MeCH=Si(H)Me</td>
<td>9.4</td>
<td>/</td>
</tr>
<tr>
<td>CH₂=Si(H)Et</td>
<td>11.0</td>
<td>124.0</td>
</tr>
<tr>
<td>Si(H)Pr</td>
<td>25.2</td>
<td>65.4</td>
</tr>
</tbody>
</table>

The main fragment peak at m/z 68 representing Si₂H₄ can be generated by subsequent H₂ elimination from Si=CH₂. The mechanism based on the theoretical calculations is shown in Fig. 6. Isomerization of Si=CH₂ET yields Si=CH₂CH=CH₂ via pathway 6a. Si=CH₂CH=CH₂ then converts to Si=CH₂CH₂CH₂ via pathway 6b, which contains a sp³-type Si-H bond and an adjacent sp³-type C-H bond. This structure is similar to that in Si(H)Pr. Therefore, as in Si(H)Pr, H₂ elimination of Si(H)CH₂Cl=CH₂ occurs via pathway 6c with a low energy barrier of 39.5 kcal/mol (relative to Si=CH₂Et), leading to the production of Si=CH₂Cl=CH₂.
At this point, the detailed stepwise mechanism for the formation of \(\text{Si=CHCH=CH}_2\) (m/z 68) from \(\text{Me}_2\text{Si}=\text{CH}_2\) (m/z 72) is shown in Fig. 5, Table 1, and Fig. 6. Among the isomers of \(\text{Me}_2\text{Si}=\text{CH}_2\), four species, \(\text{CH}_3\text{Si}=\text{H}\text{ET}\), \(\text{MeCH}=\text{Si}(\text{H})\text{Me}\), \(\text{H}_2\text{C}(\text{H})\text{Si}(\text{Me})\text{CH}_2\) and \(\text{Si}(\text{H})\text{Pr}\) contain a Si-H bond, but only \(\text{Si}(\text{H})\text{Pr}\) has a low energy barrier in \(\text{H}_2\) elimination, demonstrating that silylene is more important than silene species for the \(\text{H}_2\) elimination reactions. \(\text{Si}(\text{H})\text{CH}=	ext{CH}_2\), a silylene derived from \(\text{Si}=	ext{CH}_2\text{ET}\), generates the second \(\text{H}_2\) molecule and \(\text{Si}=	ext{CHCH}=	ext{CH}_2\). The dominance of silylene is in agreement with the study of the decomposition of MMS in hot wire CVD reactor performed by Toukabri et al.\(^{52}\) They concluded that silylene dominated gas phase reaction chemistry. On the other hand, free radicals and silene intermediates did not play a significant role. The noninvolvement of hydrogen atom in \(\text{H}_2\) elimination of \(\text{Me}_2\text{Si}=\text{CH}_2\) and its isomers is confirmed by the absence of the peak at m/z 71 over the entire temperature range.

\(\text{H}_2\) elimination of \(\text{Me}_2\text{Si}\):

The first sign of the appearance of \(\text{Me}_2\text{Si}\): at m/z 58 was found at 1160 K, and this product, from methyl elimination of \(\text{Me}_2\text{Si}\), increased over the temperature (Fig. 2). The m/z 56 and 54 peaks, from sequential \(\text{H}_2\) elimination of \(\text{Me}_2\text{Si}\), were observed at 1280-1450 K and increased with the temperature (Fig. 2). The mechanism of sequential \(\text{H}_2\) elimination of \(\text{Me}_2\text{Si}\) from the theoretical calculation is shown in Fig. 7. \(\text{Me}_2\text{Si}\): isomerizes into \(\text{MeSi}(\text{H})=\text{CH}_2\) via pathway 7a with an energy barrier of 36.1 kcal/mol. Then \(\text{MeSi}(\text{H})=\text{CH}_2\) converts to \(\text{Si}(\text{H})\text{ET}\) by 1,2-methyl shift via pathway 7b, with an energy barrier of 48.0 kcal/mol (relative to \(\text{Me}_2\text{Si}\):). \(\text{Si}(\text{H})\text{ET}\) contains a sp\(^3\)-like Si-H bond and an adjacent sp\(^3\) C-H bond. Similar to \(\text{Si}(\text{H})\text{Pr}\) and \(\text{Si}(\text{H})\text{CH}_2\text{CH}=\text{CH}_2\), \(\text{Si}(\text{H})\text{ET}\) eliminates a \(\text{H}_2\) molecule with an energy barrier of 56.4 kcal/mol to give \(\text{Si}=	ext{CHMe}\) (m/z 56). For sequential \(\text{H}_2\) elimination from \(\text{Si}=	ext{CHMe}\), it is necessary to introduce a Si-H bond in it. It can be realized by 1,3-H shift via pathway 7d producing \(\text{Si}(\text{H})\text{CH}=\text{CH}_2\). The \(\text{H}_2\) elimination from \(\text{Si}(\text{H})\text{CH}=\text{CH}_2\) occurs by breaking the Si-H bond and its adjacent C-H bond through pathway 7e with an energy barrier of 44.1 kcal/mol (relative to \(\text{Me}_2\text{Si}\):), forming the counterpart product \(\text{Si}=	ext{CH}_2\). The peak of \(\text{Si}=	ext{CH}_2\) at m/z 54 was clearly detected at 1340 K after the appearance of \(\text{SiMe}_2\) (m/z 58) at 1160 K and that of \(\text{Si}=	ext{CHMe}\) (m/z 56) at 1280 K.

\(\text{H}_2\) elimination of \(\text{SiMe}_2\):

\(\text{Si}=\text{CH}_2\) formed in the pyrolysis of TMS was firstly reported by Leclercq.\(^{53}\) In our experiment, the peak at m/z 42 representing \(\text{Si}=	ext{CH}_2\) was first found at 1280 K and increased in intensity with increasing temperature. This could stem from methane elimination of \(\text{SiMe}_2\) with a calculated energy barrier of 56.6 kcal/mol. A peak at m/z 40 was observed at 1340-1450 K following the appearance of \(\text{Si}=	ext{CH}_2\). The energy barrier of \(\text{H}_2\) elimination of \(\text{Si}=	ext{CH}_2\) is calculated to be 126.0 kcal/mol. A Si-H bond can be introduced to \(\text{Si}=	ext{CH}_2\) by isomerization. Isomerization of \(\text{Si}=	ext{CH}_2\) has been investigated previously.\(^{36,37}\) \(\text{HSi}=\text{CH}\) isomer of \(\text{Si}=	ext{CH}_2\) can be produced by 1,2-H shift of \(\text{Si}=	ext{CH}_2\) with an energy barrier of 40.5 kcal/mol. The most stable structure of \(\text{HSi}=\text{CH}\) is nonlinear with a trans-bent structure; attempts to locate the cis-bent structure of \(\text{HSi}=\text{CH}\) were failed.\(^{55,56}\) The trans-bent structure of \(\text{HSi}=\text{CH}\) could hinder the \(\text{H}_2\) elimination from the structure point of view. The peak at m/z 40 may have other origin, as direct \(\text{H}_2\) elimination of \(\text{Si}=	ext{CH}_2\) needs to overcome a large energy barrier. An alternative mechanism for interpreting the peak at m/z 40 is the sequential \(\text{H}_2\) elimination of propylene, which could be produced from \(\text{Si}(\text{H})\text{Pr}\). The Si atom elimination of \(\text{Si}(\text{H})\text{Pr}\) could generate propylene and Si atom with a calculated energy barrier of 58.2 kcal/mol. The Si atom at m/z 28 was found at temperatures above 1280 K. The peak of propylene was not detected because of its high ionization energy (11.0 eV).\(^{57}\) \(\text{H}_2\) elimination of propylene gives propylene, which may account for the peak at m/z 42. The energy barrier of this reaction is 114.8 kcal/mol. The \(\text{H}_2\) elimination of propylene produces allene with an energy barrier of 104.3 kcal/mol. The \(\text{H}_2\) elimination from propylene can also produce propyne via a two-step mechanism proposed by Homayoon.\(^{58}\) The first step is propene isomerization to give \(\text{Me}_2\text{C}=\text{C}\), and the second step is \(\text{H}_2\) elimination of \(\text{Me}_2\text{C}:\) to produce propyne. The energy barrier is 72.1 kcal/mol for the first step and 106.8 kcal/mol (relative to propyne) for the second step based on our DFT calculation. Therefore, the peak at m/z 40 may be attributed to \(\text{H}_2\) elimination of propyne or \(\text{Si}=	ext{CH}_2\).

Conclusions

Flash pyrolysis of TMS was investigated over 298-1450 K using the VUV-PI-TOFMS and DFT method. The main thermal decomposition reactions of TMS are summarized in Scheme 1. As suggested in the previous studies, Channel (1) giving methyl radical and \(\text{Me}_2\text{Si}:\) was confirmed as the initial step of the pyrolysis of TMS. The main pyrolysis fragments observed directly in the mass spectra were \(\text{Me}_2\text{Si}\) at m/z 73, \(\text{Me}_2\text{Si}=\text{CH}_2\) at m/z 72, \(\text{Si}=	ext{CHET}\) at m/z 70, \(\text{Si}=	ext{CHCH}=\text{CH}_2\) at m/z 68, \(\text{SiMe}_2\) at m/z 58, \(\text{Si}=	ext{CHMe}\) at m/z 56, \(\text{Si}=	ext{CH}_2\) at m/z 54, \(\text{Si}=	ext{CH}_3\) or propene at m/z 42, \(\text{Si}=	ext{C}:\) (or allene, or propyne) at m/z 40, \(\text{Si}\) at m/z 28 and methyl radical at m/z 15.
Channel (2) and Channel (5) are the main decomposition reactions of Me₂Si⁺ based on the experimental and computational results in this work, consistent with the proposed mechanism by Taylor et al.²¹ and by Clifford et al.²⁰ Therefore, Me₂Si⁺ decomposed via two main decomposition reactions: SiMe₂ + methyl radical and Me₂SiCH₂ + H. The isomerizations and H eliminations of Me₂SiCH₂ and SiMe₂ were studied. Isomerizations of Me₂SiCH₂ and SiMe₂ formed isomers containing Si-H bond. Among all isomers, silene species were relatively inactive, while silylene species possessing a Si-H bond were critical for H₂ elimination reactions and enable this type of reaction at comparatively low energy barriers. This conclusion provides an alternative interpretation for the H₂ eliminations of Me₂SiCH₂ through Channel (6) claimed by Lemieux,²¹ where H₂ eliminations only involve C-H bonds on 4Me₂Si=CH₂ and its isomers. Me₂SiCH₂ = Si(H)Pr, Si(H)CH₂CH=CH₂, Si(H)Et and Si(H)CH=CH₂ were important intermediates for the H₂ eliminations of Me₂SiCH₂ and SiMe₂, respectively. H₂ eliminations of SiMe₂ and propene were the only possible sources of CH₄ and propene. Subsequent loss of methyl radical from SiMe₂ was not a significant decomposition pathway of SiMe₂, different from the previously proposed mechanism by Taylor et al.²¹ The Si atom could be produced directly from dissociation of Si(H)Pr after isomerization from Me₂Si=CH₂ in the early stage of TMS pyrolysis.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the US National Science Foundation (NSF CHE-1566636). X. Liu acknowledges the support from the program of China Scholarships Council (No. 201606440042). A. Vasquez was supported by MacREU, an NSF Research Experience for Undergraduate Students site funded under NSF DMR 1359136.

References

Silene/silylene conversion via 1,2-shift plays an important role in H₂ elimination in the process of the thermal decomposition of tetramethylsilane.