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Abstract

A new, highly accurate ab initio ground-state intermolecular potential-energy surface (IPES) for

the CO-N2 complex is presented. Thousands of interaction energies calculated with the CCSD(T)

method and Dunning’s aug-cc-pVQZ basis set extended with midbond functions were fitted to an

analytical function. The global minimum of the potential is characterized by an almost T-shaped

structure and has an energy of −118.2 cm−1. The symmetry-adapted Lanczos algorithm was used

to compute rovibrational energies (up to J = 20) on the new IPES. The RMSE with respect to

experiment was found to be on the order of 0.038 cm−1 which confirms the very high accuracy

of the potential. This level of agreement is among the best reported in the literature for weakly

bound systems and considerably improves on those of previously published potentials.
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I. INTRODUCTION

From the theoretical point of view accurate studies of weakly bound complexes pose a

challenge. Not only are sophisticated methods accounting for electron-correlation effects

required, but also extended basis sets are essential in order to obtain the results that, on

one hand, can be compared with highly accurate experimental data and, on the other,

can be used to make predictions in cases where good quality experimental data are not

available. Furthermore, to obtain reliable intermolecular potential energy surfaces (IPESs)

for complexes with more than 2 intermolecular coordinates the evaluation of thousands of ab

initio interaction energies is inevitable. To compute an accurate spectrum one must, after

obtaining the IPES, solve the rovibrational Schrödinger without making approximations.

The CO-N2 dimer is a simple van der Waals (vdW) complex in which the intermolecular

forces between two isoelectronic molecules, carbon monoxide (barely polar) and nitrogen

(nonpolar), are of significant interest from the experimental and theoretical points of view.

This system is of great relevance in atmospheric chemistry since N2 is one of the primary

atmospheric constituents and CO is an important gaseous pollutant. Precise measurements

and theoretical predictions of the effects of pressure and temperature on the spectrum of

CO perturbed by the dominant atmospheric species, N2 and O2, are indispensable for the

interpretation of atmospheric absorption data.

Spectra of the CO-N2 complex were first reported in 1996, when infrared (IR) spectra

in the region of the CO fundamental band (2146 cm−1) were recorded by Kawashima and

Nishizawa [1] and by Xu and McKellar [2]. In their experimental work Xu and McKellar [2]

recorded the slit-jet IR spectrum of the complex in the 4.7 µm region of the CO stretching

vibration. They obtained a very simple spectrum, that could be interpreted as that of a

(fictitious) system formed by a CO molecule and a rare gas atom of a mass of 28 a.m.u., due

to an almost free rotation of the N2 molecule in the complex. An effective intermolecular

separation of 4.025 Å was deduced. Unfortunately, the results did not provide information

about the angular orientation of the N2 molecule within the complex. The authors pointed

out the need for theoretical calculations in order to predict the energy levels for higher lying

excited states.

Pure rotational spectra of CO-N2 with the 14N and 15N isotopes were observed by

Kawashima et al. [3]. The authors also showed that, regarding the orientation of the N2
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subunit and van der Waals stretching force constant, the CO-N2 dimer is similar to the

Ar-N2 and Kr-N2 complexes.

At the same time, Xu et al. [4] studied the microwave and millimeter wave transitions of

the orthoN2 states of the complex. Nuclear quadrupole hyperfine splittings were resolved and

analysed in order to acquire additional information on the angular anisotropy of the IPES

and the rotational and rovibrational spectra of two additional (13C and 18O) isotopomers

were measured, too. The authors confirmed a planar, approximately T-shaped structure for

the ground state of the complex (K = 0), with N2 as the top, CO as the leg, and with the

O atom on average closer to N2 than the C atom.

In a complementary investigation [5] the rotational and rovibrational spectra of the CO-

paraN2 complex were measured using a microwave spectrometer in the frequency region

from 4 to 26 GHz. The behaviour of the complex could be interpreted neither in terms of

a semirigid rotor model nor in terms of a totally free internal rotor. Therefore, the authors

used several semirigid geometries associated with different K values. They confirmed, as in

Ref. 4, a similar planar, approximately T-shaped structure for the ground state (K = 0) of

the orthoN2 state of the complex with an intermolecular distance of 4.026 Å calculated from

the experimental rotational constants using a pseudodiatomic approximation. The authors

pointed out that N2 undergoes an almost free internal rotation within the complex. The

geometry in the orthoN2 lower K = 1 state is also T-shaped with N2 forming the leg and

CO the top. The two investigated paraN2 K = 1 states correspond to the N2 molecule in

a more nearly perpendicular orientation with respect to the intermolecular axis, whereas in

the K = 0 stack of the first excited bending state the N2 is located parallel to this axis. The

values of the intermolecular distances were also reported for these states.

The IR spectrum of CO-N2 was further studied using a pulsed supersonic slit-jet and

a rapid-scan tunable diode laser [6]. In the case of the CO-paraN2 spin modification, the

previous tentative assignment of just one subband [1, 2] was extended to include over 10

linked subbands in terms of three ground (vCO = 0) state stacks of levels (with K = 0 and

1), and 7 excited state (vCO = 1) stacks (with K = 0, 1 and 2). In the case of the more

abundant form, CO-orthoN2, an excited bending state was observed for the first time for

both vCO = 0 and 1.

The first observation of the bending vibration of the CO-N2 complex in the millimeter

wave range from 130 to 155 GHz was reported in Ref. 7, providing precise information
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about the vibrational frequency and the rotational constants for this state. Six transitions,

P (2), P (1), R(0), R(1), R(2), and R(3), associated with the ground and bending state K = 0

levels of the orthoN2 spin modification, were measured and analysed.

In 2006, Surin et al. [8] carried out new measurements of the CO-N2 rotational transitions,

and in 2015 the studies were completed by reporting new milimeter-wave transitions [9]. The

authors concluded that in the K = 0 state CO-paraN2 has a geometry similar to that in the

lower K = 1 state of CO-orthoN2, with N2 as the leg and CO as the top of the T-shaped

complex, while in the K = 2 state N2 forms the top and CO – the leg. The authors pointed

out the necessity of theoretical research as an essential tool in the interpretation of the

already available highly accurate experimental data.

In a recent paper [10], an analysis of a new broad-band (2135–2165 cm−1) spectrum

of CO-N2 obtained using a tunable continuous-wave quantum-cascade laser and a pulsed

supersonic slit-jet source was presented. Almost 100 new rovibrational levels were assigned

to nine new stacks, of which four are in the excited state of CO-orthoN2, three in the

excited state of CO-paraN2, and two in the ground state (νCO = 0) of CO-paraN2. The

calculated rotational constants for the various rotational level stacks varied from 0.0638 to

0.0768 cm−1 which corresponds to a range of 4.34 to 3.96 Å for the effective intermolecular

center-of-mass distance. However, using these data the authors could not resolve the CO-N2

structure unambiguously and concluded that dynamical calculations of rotational energy

levels are necessary.

The most important theoretical studies on the complex are the most recent. Fǐser and

Polák [11] investigated 11 structures of the complex using the coupled-cluster singles and

doubles including connected triple corrections [CCSD(T)] and Møller-Plesset perturbation

theory up to fourth order (MP4) methods and Dunning’s correlation consistent augmented

polarized valence aug-cc-pVXZ (X= D, T, Q) bases extended with a set of 3s3p2d1f 1g

midbond functions. These results were further complemented with some new data [12].

The authors concluded that the results of the calculations support a considerable non-

rigidity of the complex and the presence of multiple, nearly equally deep minima on the

IPES, separated by barriers of about 1 cm−1 height. The most stable structures were two

distorted T-shaped configurations where the N-atom is pointing towards the C-O bond, with

intermolecular distances of ca. 4.1 Å and CCSD(T)/aug-cc-pVQZ+3s3p2d1f 1g interaction

energies of −118.2 and −117.4 cm−1. The interaction energy value for the first configuration
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was already close to the estimated complete basis-set (CBS) limit of 118.5 cm−1 [12].

The ab initio study of the (N2)nCOm (n = 1–7; m = 1–3) complexes at the MP2 and

CCSD(T) levels of theory with the 6-311+G* basis set showed that the CO-N2 dimer exists in

the form of a series of structurally different but energetically almost equivalent isomers [13].

According to the calculations, the interconversion between the conformers proceeds with the

barriers not exceeding 0.07 kcal mol−1. Therefore, the internal movement of the molecules

in the CO-N2 system is practically free.

The first ab initio IPES obtained for CO-N2 was published by Karimi-Jafari et al. [14]

in 2011. The authors calculated a four-dimensional potential employing the MP4 method

with a basis set obtained from the aug-cc-pVQZ basis set of Dunning and coworkers [15] by

removing all the g and f functions; this basis was further supplemented by a set of 3s3p2d1f

midbond functions [16, 17]. In contrast to previous experimental results the authors found

that the intermolecular potential is characterized by a single, distorted T-shaped minimum

(and its symmetrically equivalent partners) with CO at the top and N2 on the leg of the

T, and an energy of −123.1 cm−1. This structure is similar to that assigned to an excited

state in Ref. 5. The T-shaped ground state structure reported in Ref. 5 is identified on the

MP4 IPES as a saddle point [14]. In order to estimate the correlation method error, the

authors compared their MP4 interaction energies with the CCSD(T) energies calculated with

Dunning’s aug-cc-pVTZ basis set augmented with the 3s3p2d1f set of midbond functions.

The differences were about 5 cm−1 in the proximity of the global minimum but rose to 15

cm−1 for the linear orientations of the complex.

The CO-N2 complex still remains a very attractive object for both theoretical and exper-

imental studies and only very recently two papers [18, 19] concerning this system have been

published.

Liu et al. [18] generated a five-dimensional IPES which accounted for the stretching of the

C-O bond. The IPES was calculated with the explicitly correlated CCSD(T)-F12b method

and the aug-cc-pVQZ basis set. A global minimum with a well depth of −117.417 cm−1 was

found at θ1 = 73.0◦, θ2 = 13.8◦, φ = 0.0◦, R = 4.155 Å (see Ref. 18 for coordinate definition),

corresponding to a distorted T-shaped structure with N2 pointing towards the C-O bond.

The authors reported RMSE discrepancies with respect to experimental data smaller than

0.068 cm−1 in the predicted IR transitions and intensities for the CO-orthoN2 complex as

well as in the calculated energy levels for CO-paraN2. Nonetheless, a considerable number
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of the misprints in the table with the energy levels makes this statement difficult to confirm.

The second ab initio calculated four-dimensional IPES has been reported by Surin et

al. [19]. The calculations were carried out using the CCSD(T) method and the aug-cc-

pVQZ basis set supplemented with midbond functions. The found global minimum of the

IPES corresponds to the structure of θCO = 109.4◦, θN2 = 162.8◦, and ϕ = 0◦ (cf. Ref. 18

for coordinate definition) and Re = 7.86 a0, and has an energy of −117.35 cm−1. Also a

new millimeter-wave survey for the CO-N2 complex in the frequency range of 110–145 GHz

was performed and several transitions not previously observed were detected and assigned.

The computed energy levels were compared with the available experimental data and the

authors found good agreement with experiment for all detected stacks. However, they noted

that a significant number of the detected lines could still not be assigned.

However, it seems that each of the three published potentials suffers from some limita-

tions. The potential for CO-N2 from Ref. 14 is the least reliable. First, the MP4 method

is well-known for overestimating interaction energies. Second, the authors removed from

the basis set a significant portion of the diffuse functions that are responsible for a correct

description of the intermolecular interactions. Third, the number of grid points that the

authors used in their calculations does not seem to be sufficient to properly reproduce the

anisotropy of the interaction, especially in the regions of short intermolecular distances.

The explicitly correlated CCSD(T)-F12 method [20–23], used in the calculations of the

second potential [18], is becoming quite popular since contributions to calculated molecu-

lar correlation energies coming from single and double excitations are well converged with

relatively small orbital bases. However, it seems that in the case of weak intermolecular

interactions the errors introduced by the a/b/* approximations in CCSD-F12 and by a non-

explicitly correlated treatment of perturbative triples (with or without scaling) can become

crucial at this level of accuracy [24]. It was also shown that, on one hand, CCSD(T)-F12

methods tend to perform more poorly for larger basis sets, but on the other, addition of

midbond sets significantly improves the F12 calculated interaction energies. The authors in

Ref. 18 did not test their method neither using larger bases or employing midbond functions,

thus it is impossible to assess convergence.

The third potential [19] was obtained using the conventional CCSD(T) (“gold standard”)

method and the aug-cc-pVQZ basis set further extended with a set of 3s2p1d midbond

functions; however, the authors confirmed significant discrepancies between the calculated
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and experimental rotational states.

In this work we present a new four-dimensional interaction potential that seems to over-

come all the above-mentioned deficiencies. The interaction energies were calculated at the

CCSD(T) level, with the aug-cc-pVQZ basis set further extended with a set of 3s3p2d1f 1g

midbond functions. For several representative geometries of the system we confirmed that

the employed number of grid points is sufficient to correctly reproduce the anisotropy of

the potential. Next, the calculated ab initio interaction energies were fitted to an analytic

expression. Then, the IPES was employed in calculations of the intermolecular states. The

agreement between the calculated and experimental states is remarkably better than that

reported for both of the most recent potentials [18, 19].

The manuscript is organized as follows: In Sec. II the details of the quantum-chemical

calculations are given, then, in Sec. II B the results of the basis set studies are presented. In

Sec. III we describe the analytical fit of the obtained IPES and some of its features, and in

Sec. IV the details of the intermolecular-states studies are reported. Finally, in Sec. V we

summarize and conclude.

II. QUANTUM-CHEMICAL CALCULATIONS OF THE IPES

A. Computational details

The coordinates describing the geometries used in the calculations are as follows. r0 is the

intermolecular distance between the centers of mass of the monomers, θ1 and θ2 are the angles

between each of the molecular axis (1 for CO and 2 for N2) and the intermolecular axis, and

φ2 is the difference between the azimuthal angles. For θ2 set to 180.0◦ (or 0.0◦) the values of

θ1 = 0.0 and 180.0◦ correspond to the linear CO· · ·N2 and OC· · ·N2 geometries, respectively.

In all calculations we fix the CO and N2 interatomic distances to the experimental 1.128323 Å

and 1.09768 Å values [25], respectively. The intermolecular coordinates are depicted in Fig. 1.

Due to the good performance of the methodology employed in our previous studies on ac-

curate calculation of IPESs of other vdW systems (Refs. 26, 27 and references cited therein),

the interaction energies are corrected for the basis set superposition error (BSSE) using the

counterpoise method [28] and are evaluated at the CCSD(T) level with the MOLPRO pro-

gram [29]. In basis set completeness studies, we employed Dunning’s doubly augmented
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correlation consistent basis sets, i.e. x-aug-cc-pVXZ (x= -, d; X= D, T, Q, 5; in the follow-

ing denoted as xaXZ), as well as the core-valence aug-cc-pCVXZ (X= T, Q; denoted here as

aCXZ) basis sets. These bases were extended with a set of 3s3p2d1f 1g midbond functions

(denoted as 33211) with exponents of 0.90, 0.30, and 0.10 for the s and the p functions,

0.60 and 0.20 for the d functions, and 0.30 for the f and g functions, that are placed in the

middle of the van der Waals bond [30–32]. Relativistic effects were assessed using the second

order Douglas-Kroll-Hess Hamiltonian as implemented within the MOLPRO program [29]

B. Basis set study

The results of the basis set study are presented in Tab. I. We chose 13 geometries with

r0 = 4.4980 Å (8.5 a0), θ1 = θ2, and φ2 = 0.0◦. This slice cuts the IPES in the proximity of

the global minimum of the system and allow us to compare the results with those reported

in Ref. 14.

The overall shape of the potential slices is in qualitative agreement with that drawn in

Fig. 1 of Ref. 14. As expected, the interaction energy increases (in absolute value) going

from the aDZ to a5Z basis set. The convergence is faster with addition of midbond functions

to the bases. However, the aQZ+33211 slice is slightly shallower than the aTZ+33211 one

(by ca. 0.8 cm−1 for the lowest energy). This probably results from the fact that the

slice does not pass directly through the global minimum and the topography of the IPES

changes somewhat with basis set size. We further tested the influence of the frozen core

approximation on the calculated interaction energies employing the core-valence aCXZ basis

sets as well as the fully uncontracted ones. This effect is noticeable, but if we compare the

results obtained within the frozen-core approximation with aQZ+33211 and those where all

electrons were correlated with the aCQZ+33211 basis set for the geometry corresponding to

the lowest interaction energy, the difference does not exceed 0.1 cm−1 (see Tab. I).

Further tests showed (cf. Tab. I) that relativistic effects are negligible (significantly

smaller than 0.01 cm−1 in the region of the global minimum) in the case of the CO-N2

complex.

Since an appropriate choice of basis set balances the corresponding accuracy and the total

cost, given the required number of geometries, we decided to carry out the calculations for

the whole surface at the frozen core CCSD(T) level with the aQZ basis set augmented with
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the 33211 set of midbond functions.

C. Choice of the number of grid points

To choose correctly the number of grid points we perform some test calculations for

different orientations of CO-N2. Representative results for a region characterized by a pro-

nounced anisotropy, are depicted in Fig 2. The coordinates of the chosen geometries are

r0 = 3.70426 Å (7.0 a0), θ1 = 90◦, and φ2 = 0.0◦, and the values of θ2 correspond to the

abscissas of n-points Gauss-Lobatto quadrature. Here, we use the Gauss-Lobatto points

since they include also points corresponding to 0 and 180 degrees unlike the Gauss-Legendre

points employed in Ref. 14. The Gauss-Lobatto point distribution is similar to the distribu-

tion of the Legendre points used to compute the spectrum (see Sec. IV A). This ensures that

the IPES is accurate where it is evaluated. The interaction energies are interpolated using

n = 10, . . . , 16 nodes. The ab initio calculated interaction energy values (black circles) em-

ployed in all the interpolations as well as some additionally calculated energies (red circles)

are also presented in Fig 2. It is clear that the interpolated curves yield the correct overall

shape of the exact curve and the accuracy increases with an increase of n. The exceptions

are the regions where θ2 approaches 0 or 180 degrees, namely, in the proximities of the two

T-shape geometries. The performance of the interpolations is worse for all the cases with an

even n, mainly because they do not behave correctly at θ2 = 0 and 180 (cf. Fig 2a and b).

For the 10-point Gauss-Lobatto grid the differences between the interpolated and exact ab

initio values exceed 2 cm−1. The interpolations based on an odd number of points converge

towards the correct shape of the curve; however, for this highly anisotropic orientation of

the system such a convergence is slow. For other orientations of CO-N2 of lower anisotropy

(not shown here) their performance is much more satisfactory.

Taking into account the above considerations, in the calculations of the IPES we decided

to employ the 13-points Gauss-Lobatto grid for θ1 and θ2. This choice seems to be the op-

timal compromise between the desired accuracy and reliability and available computational

resources. In most calculations we consider 12 intermolecular distances in a0: 5.0, 6.0, 7.0,

8.0, 9.0, 10.0, 11.0, 12.0, 14.0, 18.0, 23.0, 30.0. For some orientations we make additional

calculations for distances of 4.0 and 40.0 a0. The values of φ2 correspond to the abscissas of

9-points Gauss-Lobatto quadrature. Because of the symmetry of the system θ1 and θ2 are
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varied between 0 and 180 degrees (13 grid points for each angle), while φ2 between 0 and 90

degrees (only 5 points are needed to be calculated for this angle). In total, the calculations

are performed for slightly more than 10 100 different geometries of the dimer.

III. FITTING OF THE IPES

Having determined the interaction energies for specific geometries via ab initio methods,

we now turn to constructing an analytical model of the IPES. The analytical expression

will be useful in other applications where a compact form of a potential is indispensable.

Here, we model the IPES as a many body expansion, that is, as a function of the distances

between the atoms in the complex.

The complex consists of two molecules CO and N2, the latter of which we consider made

up of two atoms N and N′. Given a configuration of the complex, we can compute the

following four distances

d1 = d(C,N) (1)

d2 = d(C,N ′) (2)

d3 = d(O,N) (3)

d4 = d(O,N ′) (4)

Define the dimensionless quantities, Di, by

Di = exp(−adi/dref), i = 1, 2, 3, 4, (5)

where the constant dref = 8 a0 is chosen to be the approximate distance between the two

molecules, and the dimensionless constant a, the dilatation, is an adjustable parameter to

be determined.

With four exponents (e1, e2, e3, e4), we define the symmetrized term

T(e1,e2,e3,e4) =
1

2
(De1

1 D
e2
2 D

e3
3 D

e4
4 +De2

1 D
e1
2 D

e4
3 D

e3
4 ) . (6)

Notice that if we exchange the positions of N and N′ (which does not change the shape of

the complex), we interchange the value of d1 and d2 as well as that of d3 and d4. However,

the value of the symmetrized term does not change.
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Our model of the interaction surface V is a linear combination of symmetrized terms [26,

33, 34], so that

V =
∑
e∈E

ceTe (7)

where E is the set of selected exponents, and we have written e = (e1, e2, e3, e4). So if we,

for example, suppose that E = {(1, 0, 0, 0), (2, 1, 0, 1)}, we obtain

V = c1000T(1,0,0,0) + c2101T(2,1,0,1), (8)

where we write e.g. c1000 as a short hand for c(1,0,0,0). Now

T(1,0,0,0) = 1
2

(D1
1D

0
2D

0
3D

0
4 +D0

1D
1
2D

0
3D

0
4) = 1

2
(D1 +D2) (9)

and

T(2,1,0,1) = 1
2

(D2
1D

1
2D

0
3D

1
4 +D1

1D
2
2D

1
3D

0
4) = 1

2
(D2

1D2D4 +D1D
2
2D3) . (10)

Thus

V =
c1000

2

(
D2

1D2D4 +D1D
2
2D3

)
+
c2101

2

(
D2

1D2D4 +D1D
2
2D3

)
. (11)

We pick 79 different symmetrized terms which gives us 80 adjustable parameters: the

dilatation parameter a on which the fitting function depends in a non-linear way, and the

79 coefficients, ce, defining the linear combination (i.e for fixed a, V depends linearly on

the last 79 parameters). Because we do not include the term with exponents (0, 0, 0, 0), the

IPES will necessarily tend to zero when the distances tend towards infinity. We determined

which symmetrized terms to use by heuristically searching for the set of 79 terms giving the

best fit among all terms of degree less than or equal to 6.

After determining the fit, we modified V for small distances. This is to avoid physically

unreasonable behavior when two atoms are close to each other, such as wildly oscillating

interaction energies, or deeply negative energies. More precisely, we set

Vmod = Ebig exp(−kd1d2d3d4) + V (1− exp(−kd1d2d3d4)), (12)

where k is some constant chosen by hand, and Ebig is some large energy. This means that

Vmod is equal to Ebig, when one of the distances di is zero, and very close to V , when none

of the distances d1, d2, d3 and d4 are very small. In practice, we used

k =

(
1

2 a0

)4

(13)
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and

Ebig = 109
µEh. (14)

We considered only geometries where the interaction energy did not exceed 100 µEh leaving

us with 6710 points, and fitted the adjustable parameters to the ab initio data. This gave

us a good fit with an RMS deviation of 0.85 µEh (0.2 cm−1), indicating that the model

is accurate in the region relevant to describing the bound states. Of course, ignoring the

regions where the interaction energy is high, means that there is no reason to expect that

the model performs well there. And indeed, computing the deviation from all the ab initio

interaction energies gives us an RMSE of 31 000 µEh.

Note that the potential is fitted to functions which depend exponentially on the inter-

atomic distances. While the functions are accurate in the region of the global minimum and

its proximities, they do not correctly extrapolate to represent the asymptotic interactions

between the CO and N2 molecules: the dipole-quadrupole and quadrupole-quadrupole inter-

actions and the induction and dispersion interactions, which decay as R−n with n = 4, 5, 6,

and higher. The range of intermolecular distances covered by the ab initio data extends

to rather large R values (40 a0), and the obtained fit is realistic within the range of data

coverage. Subtleties in the long range have negligible effects on the low-lying calculated

rovibrational levels reported here (see Sec. IV). However, it would impact the highest lying

states and also low-temperature scattering cross-sections.

The fitted value of the dimensionless dilation is a = 4.3799, and the rest of the parameters

are given in Tab. II. From the first table entry, we see that c(0,0,1,0) = −32.12 µEh, so the

first term in the sum giving V is

−32.12 µEhT(0,0,1,0) = −32.12µEh

2
(D0

1D
0
2D

1
3D

0
4 +D0

1D
0
2D

0
3D

1
4)

= −32.12µEh

2
(D3 +D4) . (15)

A Fortran subroutine for generating the potential can be obtained from the authors upon

request or downloaded here [35].

Using the analytical expression for the IPES, we find the global minimum to be

−538.47 µEh (−118.2 cm−1), located at r0 = 7.856 a0, θ1 = 111.34◦, θ2 = 159.70◦, and

φ2 = 0◦. Four contour-line graphics of the IPES are shown at Fig. 3. In each graphic the
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other coordinates are fixed at their global minimum values. A 3D view of the IPES for

r0 = 7.856 a0 and φ2 = 0◦ is depicted in Fig. 4. The minimal potential-energy configurations

(all equal by symmetry) are marked with blue dots. A nearly barrierless disrotatory path

permitting a floppy large-amplitude motion of the complex is observed. This result is similar

to that found for the CO dimer [36].

The global minimum found in this work is by ca. 0.8 cm−1 deeper than those reported

previously [18, 19]. The corresponding intermolecular distance is similar for all the three

potentials (ca. 7.85–7.86 a0), while our θ1 is slightly larger and θ2 slightly smaller than

those from previous studies [18, 19]. To further check the performance of the analytical

fit, we evaluated some additional CCSD(T)/aug-cc-pVQZ-33211 interaction energies in the

vicinity of the expected global minimum on a grid of points. The lowest interaction energy

of −118.04 cm−1 was found at r0 = 7.8 a0, θ1 = 109.0◦, θ2 = 162.0◦, and φ2 = 0◦. This

result is in concordance with that obtained from the fit.

IV. INTERMOLECULAR STATES

A. Variational calculations

The rovibrational levels of CO-N2 were calculated using a variational method called

DSL [37, 38] which uses a product basis with discrete variable representation (DVR) func-

tions (D) [39] for the stretches and spherical harmonic type functions (S) for the bends and

a symmetry adapted Lanczos eigensolver (L). The bend basis is appropriate for dealing with

large amplitude bending motions. The calculation is carried out with the RV4 code [40]

that implements the DSL method. It uses the polyspherical coordinates (r1, r2, r0, θ1, θ2,

φ2) associated with vector r1 (for CO), vector r2 (for N2), and the Jacobi vector r0, shown

in Fig. 1. Because the intramonomer vibrational frequencies are much higher than their

intermonomer counterparts, it is justified to fix r1 and r2 to their respective ground state

values. In the DSL method, potential energy integrals are computed with Gauss quadra-

ture. Eigenvalues and eigenvectors are determined with the symmetry-adapted Lanczos

(SAL) algorithm [41, 42].

Since a thorough description of the DSL method applied to a similar system (N2O)2 is

reported in Refs. 43, 44, only the computational details specific to the present study are
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given here. Each basis function is a product

fα0(R)uJMP
l1l2m2K

(θ1, θ2, φ2;α, β, γ), (16)

where fα0(R) is a DVR function for the stretch coordinate and uJMP
l1l2m2K

is the parity adapted

bend-rotation function. The latter was expressed as a linear combination of two products

of an associated Legendre function for θ1, a spherical harmonic function for (θ2, φ2), and a

Wigner function for the Euler angles (α, β, γ). K is the projection of total angular momen-

tum J on the body-fixed z-axis aligned with the r0 vector. P = 0 and P = 1 correspond to

even and odd parity, respectively.

In our calculation, we use the full permutation-inversion group of CO-N2, G4. It has

four irreducible representations: A+, B+, A−, and B−. A/B label levels that are symmet-

ric/antisymmetric under permutation of the two N atoms. +/− label even/odd levels. In

our calculation, the levels of the two nuclear spin species are obtained in different symmetry

blocks. CO-orthoN2 levels appear in the A symmetry block and CO-paraN2 levels appear

in the B symmetry block. The lowest level of CO-orthoN2 is lower than the lowest level of

CO-paraN2 because the two levels are associated with jN2 = 0 and 1, respectively.

Because of the large-amplitude motion and the resulting low-lying vibrational states,

rather than using a traditional asymmetric rotor Hamiltonian to fit the levels, spectroscopists

group the rovibrational levels into stacks and fit the levels in each stack. A stack is labelled

by (jCO, jN2 ;K, σ), where σ = e/f corresponds to (−1)J+P = ±1. Each stack of levels is

fitted with a simple rotational energy level expression based on a linear rotor Hamiltonian

with a doubling term that splits the e/f components of K > 0 stacks. See Eq. (1) of Ref. 2

for CO-N2, which has been adopted in all subsequent CO-N2 papers cited in this work. In

our calculations, K can be unambiguously assigned by analysing the wavefunctions [36].

jCO, jN2 are simply obtained by matching computed and experimental levels.

The parameters for computing the intermolecular rovibrational levels using the RV4 code

are all given in Tab. III. The choice of the basis functions for r0 merits further discussion.

Usually a potential-optimized discrete variable representation (PODVR) basis [45, 46] is a

good choice. The PODVR basis is efficient if a good reference potential, usually either a cut

potential or a minimized potential, can be found. It has the advantage of being black-box

because there are no parameters to adjust. For CO-N2, bases obtained from the cut and

minimized potentials are both poor, due to coupling. Owing to the fact that neither the cut
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nor the minimized PODVR basis is good, we use a tri-diagonal Morse (TDM) DVR basis [45].

However, it takes more effort to optimize the four parameters of the TDM DVR basis: De,

ωe, re and α. The first three parameters are optimized by comparing a few of the lowest

J = 0 levels computed with a TDM basis and a set of benchmark levels computed using

120 sine DVR basis. Our final TDM DVR basis parameters are De = 108 cm−1, ωe = 18

cm−1, and re = 8.45 a0. The fourth TDM DVR basis parameter α depends on the other

parameters (α appears in the associated Laguerre polynomial Lαn). As discussed in Ref. 47,

we follow Wei and Carrington’s choice [45], α = A − 2[A/2] = 0 with A = 4De/ωe = 24

so that all the bound states of the Morse Hamiltonian are exactly reproduced by the TDM

basis (the Morse Hamiltonian that corresponds to these parameters has [A/2]=12 bound

states, fewer than the number of basis functions, Nr0 = 30).

B. Existing experimental data

We compare the experimental rovibrational levels on the vCO = 0 ground state of the

two spin species with our calculated levels. The experimental levels are collected from the

millimeter-wave (MMW) study by Surin et al. [8] and the IR study by Rezaei et al. [10].

There are 3 stacks of levels for CO-orthoN2. They are, in the order of increasing energy,

(0, 0, 0e), (1, 0, 1e/f), and (1, 0, 0e) and are labelled as stacks a, b, c. There are 5 stacks

of levels for CO-paraN2. They are, in the order of increasing energy, (0, 1, 0e), (0, 1, 1e/f),

(1, 1, 1e/f), (1, 1, 0e), and (1, 1, 2e/f) and are labelled as stacks a, b, c, d, e (see Tab. IV).

Note that a correction term 0.0048 cm−1 needs to be added to the (0, 1, 1f) levels of CO-

paraN2 obtained from the MMW study (Tab. 8 of Ref. 8), which was first pointed out by

Rezaei et al. in their IR study [10]. This is because the (0, 1, 1f) stack was not linked to other

stacks in the MMW experiment and the band center of this stack was “floated” or corrected

by Rezaei et al.. In the IR experiment of Rezaei et al. [10], the (0, 1, 1f) stack is linked

with the (0, 1, 0e) stack via transitions to the common upper state (1, 1, 0e) of the vCO = 1

excited state. We note that this correction is confirmed by a new MMW experiment [9]

where the (0, 1, 1f) stack is again linked with the (0, 1, 0e) via transitions to the common

upper state (0, 1, 0e).
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C. Theoretical results

Even and odd levels for both CO-orthoN2 and CO-paraN2 were computed for each J up

to J = 20 and the complete set is included in ESI. Levels up to J = 10 with experimental

assignments are given in Tab. V for CO-orthoN2. Levels up to J = 8 with experimental

assignments are given in Tab. VI for CO-paraN2. A graphical comparison of the experi-

mental and calculated intermolecular levels for CO-orthoN2 and CO-paraN2 is presented in

Figs. 5a and b, respectively. The agreement between theory and experiment is remarkably

good, making assignments straightforward and unambiguous. They were also facilitated by

knowing the symmetry of each of the computed levels, owing to the use of the symmetry

adapted Lanczos procedure and by assigning K to each level using the wavefunctions.

Interestingly the agreement is significantly better for the CO-orthoN2 levels, with an

RMSE over 41 levels of just 0.017 cm−1. Those errors are both positive and negative with

an average close to zero. For the CO-paraN2 levels, the errors are larger (the RMSE for 40

levels is 0.045 cm−1) and more systematic, as the computed levels are below the experimental

ones in all cases. The level of agreement obtained in these results is among the best reported

in the literature for vdWs systems. It could be of interest to explore this further in terms

of the hierarchy of electronic structure methods employed (also going beyond the CCSD(T)

approximation). It remains to be determined whether various terms in high-level composite

energies [48] for this system would be found to be negligible or if the currently adopted

procedure benefits from particularly favourable cancellation of errors.

Variational calculations on ab initio IPESs seldom achieve accuracy as good as 1 cm−1

and accuracy better than 0.1 cm−1 is very rare. The lowest bending vibrational energy level

has been observed for both spin species: 4.666 cm−1 for CO-orthoN2 and 4.496 cm−1 for

CO-paraN2. These two vibrational levels are linked by a red arrow in Fig. 5. For these two

vibrational levels, the calculated minus observed differences are only 0.02 cm−1 and 0.07

cm−1, respectively. It is rare to find this sort of accuracy for a vdW system. Much of the

overall RMSE for the two spin species can be traced to the vibrational errors. Errors in

differences between J levels for a particular stack are typically on the order of 0.001 cm−1

and never larger than 0.01 cm−1 (see e.g. Fig. 5). Errors in differences of rotational levels

are smaller than for the corresponding vibrational levels for many molecules, because the

structure of the molecule predicted by ab initio theory is usually more accurate than the
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shape of the IPES on which the vibrational levels depend.

The lowest two stacks, stack a (K = 0) and b (K = 1) of CO-paraN2 are closely spaced and

strong Coriolis interaction between them was observed experimentally [5]. After analysing

the wavefunctions, we have also found that some levels in these two stacks have two dominant

K components. These levels are labelled as 01 or 10 in the K column of Tab. VI. 01

(10) means the K = 0 (K = 1) contribution is slightly larger than the K = 1 (K = 0)

contribution (see Tab. VI). The same coupling was also discussed in the theoretical study

of Surin et al. [19].

When compared to the results from the two most recent investigations [18, 19], our poten-

tial gives significantly better agreement with experimental data. In Ref. 18 the differences

between the reported theoretical and the available experimental intermolecular energy levels

are as large as 0.27 cm−1, while in Ref. 19 these differences are considerably smaller. Here

we further improve the results for the CO-N2 complex, by evaluating an accurate IPES, with

the potential minimum close to the exact CCSD(T) result and with a better performance

regarding the evaluation of the intermolecular states, lowering the RMSE from 0.1 to 0.038

cm−1. This is clearly seen in Fig. 5 where the theoretical levels of Ref. 19 are compared with

our theoretical levels and the experimental levels.

V. SUMMARY AND CONCLUSIONS

An accurate IPES for the CO-N2 dimer was constructed using the high-level ab initio

CCSD(T)/aug-cc-pVQZ+33211 method and more than 10 000 interaction energies were

calculated, 6710 of which were fitted to an analytical function. A symmetrized fitting ap-

proach yields an RMSE of 0.2 cm−1 representing the data in the low energy regions relevant

to the rovibrational levels computed in this study. Using the analytical fit of the IPES,

we have found the global minimum with an energy of −538.47 µEh (−118.2 cm−1) located

at r0 = 7.856 a0, θ1 = 111.34◦, θ2 = 159.70◦, and φ2 = 0◦. The nominally T-shaped

structures of the complex were confirmed, although a low-energy channel permitting floppy

large-amplitude motion was observed.

The symmetry-adapted Lanczos method was used in highly converged rovibrational vari-

ational calculations. Stacks of rovibrational levels for both CO-orthoN2 and CO-paraN2

were computed up to J = 20. The accuracy of the IPES is remarkable, with an RMSE
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of only 0.038 cm−1 over 81 experimentally assigned levels. This new potential improves on

those previously evaluated for the complex, also the most accurate available [19], providing

exceptionally good agreement between the calculated and the experimental intermolecular

states.
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[5] Y. Xu and W. Jäger, The dynamics of the CO–N2 interaction: Strong Coriolis coupling in

CO-paraN2, J. Chem. Phys. 113, 514–524 (2000).

[6] C. Xia, A. R. W. McKellar, and Y. Xu, Infrared spectrum of the CO-N2 van der Waals

complex: Assignments for CO-paraN2 and observation of a bending state for CO-orthoN2,

J. Chem. Phys. 113, 525 (2000).

[7] L. A. Surin, H. S. P Müller, E. V. Alieva, B. S. Dumesh, G. Winnewisser, and I. Pak, Detection

of the bending vibration of the CO-orthoN2 complex, J. Mol. Struct. 612, 207 (2002).

[8] L. A. Surin, A. V. Potapov, H. S. P. Müller, V. A. Panfilov, B. S. Dumesh, T. F. Giesen, and

S. Schlemmer, Millimeter-wave study of the CO-N2 van der Waals complex: new measure-

ments of CO–ortho-N2 and assignments of new states of CO–para-N2, J. Mol. Struct. 795,

198 (2006).

[9] L. A. Surin, A. Potapov, H. S. P. Müller, and S. Schlemmer, A new millimeter-wave observation

of the weakly bound CO-N2 complex, J. Mol. Spectrosc. 307, 54 (2015).

[10] M. Rezaei, K. H. Michaelian, N. Moazzen-Ahmadi, and A. R. W. McKellar, A new look at

the infrared spectrum of the weakly bound CO-N2 complex, J. Phys. Chem. A 117, 13752

(2013).
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FIG. 1: The intermolecular coordinates r0, θ1, θ2 and φ2
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FIG. 4: CO-N2 IPES for r0 = 7.856 a0 and φ2 = 0◦. The minimal potential energy (−538.47 µEh =

−118.2 cm−1) configuration is marked with blue dots. Right panel: note the reversed energy scale
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FIG. 5: A comparison of experimental (red) and calculated (black) intermolecular levels for CO-

orthoN2 in panel (a) and CO-paraN2 in panel (b). Two sets of calculated levels are given: from

this study and from Ref. 19 (italics). For each stack labelled by K, levels are given for J = K,

K + 1, · · · from the bottom up and the maximum J is 2. The zero of panel (b) for the calculated

levels is at 2.7365 cm−1 relative to the scale of panel (a)

E
/ 
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TABLE II: Parameters of the fit V . We write e1e2e3e4 as an abbreviation for (e1, e2, e3, e4), e.g.

(0, 0, 1, 0) simply becomes 0010

e ce/µEh e ce/µEh e ce/µEh

0010 −32.12 0020 42 713.23 0101 −90 922.33

2000 45 622.21 0011 −43 921.71 0110 94 044.83

1100 −47 238.94 0003 −94 238.97 1020 222 526.29

0201 −151 150.54 3000 23 820.70 0012 99 515.71

1011 −151 182.26 0210 49 958.19 0120 −87 836.88

1110 113 802.42 1200 −27 029.72 0040 134 244.43

0103 −261 135.27 2020 270 883.97 0301 −309 531.19

4000 161 306.19 0031 −143 021.61 0112 −57 524.72

2011 27 878.69 3001 179 528.32 0121 344 483.45

2002 −226 068.08 1201 553 579.66 3100 −534 808.10

1111 −86 760.14 2101 −427 291.73 2200 377 662.86

0050 −38 254.79 0302 128 635.65 0401 −68 503.93

5000 −26 919.29 0014 −28 092.38 1031 332 771.36

0212 −243 575.99 3011 −56 721.87 0023 69 469.78

1022 −339 359.60 2012 346 112.63 0320 −93 145.80

2003 −33 678.04 1130 114 684.93 1202 −583 925.14

3110 469 398.51 1112 −189 641.53 2111 124 011.68

1310 86 557.42 2102 486 416.22 2201 −480 243.41

3200 20 583.83 0006 12 990.26 0105 −12 025.49

2040 6503.89 0501 −27 982.02 6000 27 639.18

0015 −12 989.92 2031 −62 247.86 0312 56 617.25

5001 6922.38 2022 92 503.82 0321 −76 139.61

4002 −4820.57 1023 −8329.71 0231 −75 468.23

3003 30 006.87 0141 20 848.49 1140 −7453.07

1203 34 335.28 4110 18 736.81 1500 −59 868.76

1122 44 846.43 1230 −38 456.68 2400 57 833.68

3300 −22 747.36
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TABLE III: Parameters for CO-N2. For TDM DVR parameters see Refs. 47 and 45

B0(CO) = 1.9225125 cm−1 [49]

B0(N2) = 1.98950 cm−1 [50]

m(N) = 14.0030740052

m(O) = 15.9949146221

r0(CO) = 2.13201 a0 [25]

r0(N2)= 2.07397 a0 [25]

l1x = l2x = m2x = 37

Nθ1 = Nθ2 = 38, Nφ2
= 80

DVR parameters

De = 108 cm−1, ωe = 18 cm−1, re0 8.45a0, α = A− 2[A/2] = 0

Nr0 = 30

Nbas = 279870 (even parity and even l2 for CO-orthoN2)

Vceil = 2098.4 cm−1.
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TABLE IV: Stack labels for the CO-orthoN2 and CO-paraN2 observed vCO = 0 states. The stacks

are labelled in the order of increasing energy. The order of stacks for CO-orthoN2 follow that of

the vCO = 1 state [10] because more stacks are observed.

CO-orthoN2 label (jCO, jN2
,K, e/f) Ref.

a (0, 0, 0e) 8

b (1, 0, 1e/f) 8

c (1, 0, 0e) 8

d (2, 0, 2e/f)

e (2, 0, 1e/f) 19

f (2, 0, 0e/f)

g (1, 2, 0e)

h (1, 2, 1e/f)

CO-paraN2 label (jCO, jN2 ,K, e/f)

a (0, 1, 0e) 8

b (0, 1, 1e/f) 8

c (1, 1, 1e/f) 8

d (1, 1, 0e) 10, 19

e (1, 1, 2e/f) 10, 19
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TABLE V: Comparison between the theoretical and the ex-

perimental J ≤ 10 energy levels of CO-orthoN2 (in cm−1).

Stack labels are defined in Tab. IV. All levels are relative to

the ZPE of CO-orthoN2 -76.1252 cm−1. PI group symmetry

and spectroscopy parity e/f are also indicated.

J = 0, A+(e) J = 0, A−(f)

cal. obs. K stack cal. obs. K stack

0.0000 0.0000 0 a 16.0601 0

4.6863 4.6663 0 c 23.7748 0

J = 1, A+(f) J = 1, A−(e)

cal. obs. K stack cal. obs. K stack

3.6333 3.6093 1 b 0.1480 0.1486 0 a

8.8514 8.8780 1 e 3.6249 3.6009 1 b

13.5885 1 4.8246 4.8057 0 c

15.4695 1 8.8425 8.8691 1 e

J = 2, A+(e) J = 2, A−(f)

cal. obs. K stack cal. obs. K stack

0.4439 0.4457 0 a 3.9262 3.9034 1 b

3.9010 3.8781 1 b 9.1155 9.1425 1 e

5.1013 5.0845 0 c 9.9916 2

9.0893 9.1161 1 e 11.3735 2

J = 3, A+(f) J = 3, A−(e)

cal. obs. K stack cal. obs. K stack

4.3652 4.3441 1 b 0.8875 0.8910 0 a

9.5128 9.5402 1 e 4.3146 4.2934 1 b

10.4358 2 5.5162 5.5026 0 c

11.8065 2 9.4616 9.4890 1 e

J = 4, A+(e) J = 4, A−(f)

cal. obs. K stack cal. obs. K stack
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1.4785 1.4843 0 a 4.9497 4.9310 1 b

4.8652 4.8464 1 b 10.0439 10.0725 1 e

6.0693 6.0600 0 c 11.0262 2

9.9611 9.9896 1 e 12.3833 2

J = 5, A+(f) J = 5, A−(e)

cal. obs. K stack cal. obs. K stack

5.6792 5.6634 1 b 2.2163 2.2250 0 a

10.7099 10.7403 1 e 5.5519 5.5363 1 b

11.7615 2 6.7606 6.7565 0 c

13.1033 2 10.5890 10.6200 1 e

J = 6, A+(e) J = 6, A−(f)

cal. obs. K stack cal. obs. K stack

3.1003 3.1127 0 a 6.5527 6.5406 1 b

6.3738 6.3623 1 b 11.5114 11.5446 1 e

7.5900 7.5921 0 c 12.6406 2

11.3467 11.3808 1 e 13.9657 2

J = 7, A+(f) J = 7, A−(e)

cal. obs. K stack cal. obs. K stack

7.5694 7.5616 1 b 4.1300 4.1466 0 a

12.4489 12.4862 1 e 7.3298 7.3234 1 b

13.6627 2 8.5574 8.5664 0 c

14.9699 2 12.2348 12.2715 1 e

J = 8, A+(e) J = 8, A−(f)

cal. obs. K stack cal. obs. K stack

5.3043 5.3257 0 a 8.7279 8.7250 1 b

8.4187 8.4184 1 b 13.5227 13.5652 1 e

9.6626 9.6795 0 c 14.8269 2

13.2537 13.2885 1 e 16.1147 2

J = 9, A+(f) J = 9, A−(e)

cal. obs. K stack cal. obs. K stack
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10.0270 10.0294 1 b 6.6222 6.6488 0 a

14.7331 1 9.6391 9.6461 1 b

16.1324 2 10.9052 10.9311 0 c

J = 10, A+(e) J = 10, A−(f)

cal. obs. K stack cal. obs. K stack

8.0825 8.1140 0 a 11.4650 11.4725 1 a

10.9897 11.0050 1 b 16.0800 1

12.2848 12.3208 0 c 17.5785 2
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TABLE VI: Comparison between the theoretical and the

experimental J ≤ 8 energy levels of CO-paraN2 (in cm−1).

Stack labels are defined in Tab. IV. The ZPE of CO-paraN2

is 2.7365 cm−1 higher than that of CO-orthoN2. PI group

symmetry and spectroscopy parity e/f are also indicated.

J = 0, B+(e) J = 0, B−(f)

cal. obs. K stack cal. obs. K stack

0.0000 0.0000 0 a 6.4110 0

4.4205 4.4955 0 d 15.1054 0

J = 1, B+(f) J = 1, B−(e)

cal. obs. K stack cal. obs. K stack

0.1979 0.2324 1 b 0.0887 0.1002 01 a

3.4397 3.4781 1 c 0.2420 0.2655 10 b

6.5472 0 3.4398 3.4784 1 c

7.4532 1 4.5625 4.6382 0 d

J = 2, B+(e) J = 2, B−(f)

cal. obs. K stack cal. obs. K stack

0.3200 0.3360 01 a 0.4970 0.5324 1 b

0.5751 0.5962 10 b 3.7040 3.7445 1 c

3.7043 3.7453 1 c 5.8264 5.8816 2 e

4.8465 4.9234 0 d 6.8191 0

5.8265 5.8818 2 e 7.7598 1

J = 3, B+(f) J = 3, B−(e)

cal. obs. K stack cal. obs. K stack

0.9453 0.9822 1 b 0.6932 0.7128 0 a

4.1011 4.1445 1 c 1.0476 1.0684 1 b

6.2848 6.3405 2 e 4.1016 4.1461 1 c

7.2258 0 5.2724 5.3510 0 d

8.2201 1 6.2854 6.3411 2 e
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J = 4, B+(e) J = 4, B−(f)

cal. obs. K stack cal. obs. K stack

1.2080 1.2313 0 a 1.5426 1.5813 1 b

1.6588 1.6803 1 b 4.6314 4.6789 1 c

4.6320 4.6812 1 c 6.8943 6.9509 2 e

5.8397 5.9208 0 d 7.7662 0

6.8961 6.9526 2 e 8.8340 1

J = 5, B+(f) J = 5, B−(e)

cal. obs. K stack cal. obs. K stack

2.2883 2.3295 1 b 1.8644 1.8916 0 a

5.2955 5.3481 1 c 2.4074 2.4305 1 b

7.6535 7.7114 2 e 5.2962 5.3511 1 c

8.4395 0 6.5482 6.6324 0 d

9.6013 1 7.6578 7.7155 2 e

J = 6, B+(e) J = 6, B−(f)

cal. obs. K stack cal. obs. K stack

2.6618 2.6935 0 a 3.1818 3.2259 1 b

3.2924 3.3177 1 b 6.0942 6.1527 1 c

6.0945 6.1562 1 c 8.5608 8.6204 2 e

7.3975 7.4855 0 d 9.2448 0

8.5695 8.6288 2 e 10.5216 1

J = 7, B+(f) J = 7, B−(e)

cal. obs. K stack cal. obs. K stack

4.2224 4.2701 1 b 3.5997 3.6365 0 a

7.0277 7.0933 1 c 4.3121 4.3406 1 b

9.6134 9.6758 2 e 7.0274 7.0969 1 c

10.1823 0 8.3872 8.4797 0 d

11.5940 1 9.6302 9.6915 2 e

J = 8, B+(e) J = 8, B−(f)

cal. obs. K stack cal. obs. K stack
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4.6774 4.7199 0 a 5.4090 5.4609 1 b

5.4652 5.4976 1 b 8.0966 8.1703 1 c

8.0951 8.1734 1 c 10.8068 10.8743 2 e

9.5167 9.6145 0 d 11.2540 1

10.8387 10.9021 2 e 12.8170 1
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The table of contents entry: We present a highly accurate ab initio intermolecular

potential-energy surface and rovibrational spectrum for the CO-N2 complex.

θ2/
◦

θ1/
◦

φ2/
◦
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