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Abstract

Optimal control simulations are performed for orientation and entanglement of two dipole-dipole cou-

pled identical quantum rotors. The rotors at various fixed separations lie on a model non-interacting plane

with an applied control field. It is shown that optimal control of orientation or entanglement represents two

contrasting control scenarios. In particular, the maximally oriented state (MOS) of the two rotors has a zero

entanglement entropy and is readily attainable at all rotor separations. Whereas, the contrasting maximally

entangled state (MES) has a zero orientation expectation value and is most conveniently attainable at small

separations where the dipole-dipole coupling is strong. It is demonstrated that the peak orientation expec-

tation value attained by the MOS at large separations exhibits a long time revival pattern due to the small

energy splittings arising form the extremely weak dipole-dipole coupling between the degenerate product

states of the two free rotors. Moreover, it is found that the peak entanglement entropy value attained by the

MES remains largely unchanged as the two rotors are transported to large separations after turning off the

control field. Finally, optimal control simulations of transition dynamics between the MOS and the MES

reveal the intricate interplay between orientation and entanglement.
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I. INTRODUCTION

With advances in quantum optimal control theory (OCT) [1–3] and efficient monotonically

convergent search algorithms [4–9], optimal control of quantum dynamics has become an active

research field both theoretically and computationally, with a wide range of applications including

chemical reactions [10, 11], molecular focusing [12], high-harmonic generation [13] and quan-

tum information processing[14]. In particular, applications of OCT and monotonically convergent

algorithms to molecular orientation [15–18] have attracted much attention in recent years. For

example, Hoki and Fujimura [15] showed that the orientation of CO molecules can be optimally

controlled by taking into account both the dipole moment and polarizability. Salomon et al. [16]

found that optimal molecular orientation of HCN can be achieved through rotational ladder climb-

ing using an optimal field in the microwave regime. Liao et al. [17] showed that a nearly maximal

degree of orientation of OCS can be achieved by using strong near-single-cycle pulses. Ohtsuki

et al. [18] demonstrated the control of molecular orientation with an optimal combination of THz

and laser pulses. In this regard, many successful experiments on the field-free orientation of polar

molecules have been carried out with various laser setups in the past decade, for example, by com-

bining an intense nonresonant rapidly turned-off shaped laser field with a static electric field [19],

using single-cycle THz laser pulses [20], employing strong picosecond THz laser pulses [21], and

combining a weak static electric field with a moderately intense nano-to-sub-nanosecond-long

nonresonant laser pulse [22]. In addition, enhancement of angular alignment of single quantum

rotors using specially designed pulse sequences have been experimentally realized in optical lat-

tices [23]. However, all of these studies only considered isolated polar molecules.

The dipole-dipole coupled two-rotor system has attracted recent interest. For example, Shima

and Nakayama [24] explored the anomalous dielectric response of two quantum rotors and showed

that the dipole-dipole interaction between the rotors can enhance orientation using ultrashort laser

pulses. Other studies focused on generating entanglement among coupled rotors, since it is an im-

portant feature for implementation of quantum information processing [25]. For example, Hettich

et al. [26] have shown that the strong dipole-dipole interaction between two individual molecules

can create entangled states by applying a differential Stark shift via an inhomogeneous electric

field. Moreover, the entanglement of dipole coupled diatoms under strong laser fields was investi-

gated by Liao et al. [27], showing that entanglement can be enhanced by applying multiple laser

pulses. In addition, Charron et al. [28] proposed effective schemes for quantum phase gate pro-
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duction and entanglement generation between rotational quantum states of two polar molecules

using a sequence of laser pulses that simultaneously excite both molecules. Recently, optimal

control theory has also been applied to coupled polar molecules for implementing basic quantum

logic gates [29, 30]. In the laboratory, dipole-dipole coupled rotors may be adsorbed on a weakly

interacting solid surface [26, 31], trapped in an optical lattice [28, 32, 33], or prepared in deeply

bound ground states using molecular cooling techniques [34, 35].

In this work, we study optimal control of either orientation or entanglement of two planar quan-

tum rotors coupled by the dipole-dipole interaction using gradient-based D-MORPH method [36,

37] to find the control field. The D-MORPH method has proved to be efficient and robust for

finding optimal control fields in diverse applications, including open quantum systems [37], the

nonlinear Schrödinger equation [38], and classical dynamics [39], as well as with temporal and

frequency constraints on the control fields [40]. The orientation and entanglement optimal control

problems represent two contrasting control scenarios. At one extreme, the maximally oriented

state (MOS) completely disentangles the two rotors, while at the other extreme, the maximally

entangled state (MES) [41] possesses a zero expectation value for orientation. The goal of the

present study is to find optimally shaped control fields to reach either the MOS or the MES at a

specified final time τ f . In this regard, there is available state-of-the-art technology for generation

of microwave arbitrary waveform generation [43]. We note that both the orientation and entan-

glement optimization objectives, assuming a pure initial state, can be cast as state-to-state optimal

control problems. This circumstance is important since the latter pure-state objective function-

als correspond to the state-to-state transition probability control landscapes, which are expected

to almost always have no local-traps or saddles [44, 45]. In addition to achieving entanglement

via optimal control, we will also examine if entanglement can be maintained by allowing the two

rotors to be transported to large separations with various speeds after turning off the control field.

Finally, we will also investigate the interplay of optimal control transition dynamics between the

MOS and the MES.

The remainder of this paper is organized as follows. Section II provides a general description

of optimal control of two interacting identical polar rotors, including the model Hamiltonian, the

time-dependent equations for evolution of the wave function, definitions of the MOS and MES,

and the gradient-based D-MORPH method for the optimization of the control. Section III presents

numerical results for optimal control of orientation and entanglement, including field-free evolu-

tion of orientation and transport of entanglement, and optimal transition dynamics between the
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MOS and MES. Concluding remarks are presented in Sec. IV. In addition, Appendices A, B, C

and D provide detailed mathematical analyses complementing the material in the main text.

II. THEORETICAL FOUNDATIONS

A. Model Hamiltonian

Consider two identical, linear polar quantum rotors that lie in a plane at a fixed separation

R and controlled by a linearly polarized time-dependent field ε (t) along the x̂-axis, as shown in

Fig. 1. Within the electric dipole approximation, the total Hamiltonian of such a two-rotor quantum

system can be written as

H (t) ≡ H0 − µ[cosϕ1 + cosϕ2]ε(t), (1)

where

H0 = B
(
L2

1 + L2
2

)
+ W12. (2)

is the field-free coupled rotor Hamiltonian and ϕ1 ∈ [−π, π] and ϕ2 ∈ [−π, π], respectively, are

angles between the dipole moment µ1 and µ2 with (|µ1| = |µ2| = µ) and the electric field ε(t).

Here, L2
j = −~2∂2/∂ϕ2

j ( j = 1, 2) are the angular momentum operators of the individual free planar

rotors, B = 1/2I is the rotational constant, with I the moment of inertia of an individual rotor, and

W12 ≡ W12(R, θ, ϕ1, ϕ2)

=
µ1 · µ2 − 3

(
µ1 · R̂

) (
µ2 · R̂

)
4πε0R3

=
µ2

4πε0R3 ×
[
cos (ϕ1 − ϕ2) − 3 cos (ϕ1 − θ) cos (ϕ2 − θ)

]
(3)

is the dipole-dipole interaction between the two rotors, with ε0 being the vacuum permittivity, R

is the separation between two rotors, and θ ∈ [0, π/2] is the configuration angle lying between the

inter-rotor vector R ≡ RR̂ and the electric field ε(t). In the case of orientation as the goal, the

angle α ∈ [−π/2, π/2] is the designated target orientation for both rotors.

To facilitate the analysis, we choose the dimensionless time τ = B~t and the new energy unit

B~2 in the remainder of the paper. The resultant dimensionless total Hamiltonian in Eq.(1) can

then be cast as (hereafter ~ = 1)

H̃ (τ) =
{(

L2
1 + L2

2

)
+ W̃12

}
+ Ṽ(τ), (4)
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where the dimensionless time is τ = Bt, the dimensionless dipole-dipole interaction is

W̃12 ≡ W̃12(R, θ, ϕ1, ϕ2)

≡
W12(R, θ, ϕ1, ϕ2)

B

= Γ
[
cos (ϕ1 − ϕ2) − 3 cos (ϕ1 − θ) cos (ϕ2 − θ)

]
, (5)

and the dimensionless dipole-control field interaction is

Ṽ(τ) = −
µ

B
× ε(τ) × [cosϕ1 + cosϕ2], (6)

with the dimensionless dipole-dipole coupling parameter

Γ =
ED

B
(7)

denoting the ratio of the dipole-dipole coupling strength ED = µ2
/ (

4πε0R3
)

and the rotational

constant B (which is equal to the energy difference between the lowest and the first excited levels

of each individual free planar rotor).

The wave function |ψ (τ)〉 of the coupled rotors in the presence of a laser field is governed by

the time-dependent Schrödinger equation

i
∂ |ψ (τ)〉
∂τ

= H̃ (τ) |ψ (τ)〉 , . (8)

To solve Eq. (8), the wave function |ψ(τ)〉 may be expanded as

|ψ(τ)〉 =

(2M+1)×(2M+1)∑
k=1

|Ek〉〈Ek|ψ(τ)〉, (9)

in terms of the eigenstates |Ek〉’s of the field-free coupled-rotor Hamiltonian H̃0, where

H̃0 =
(
L2

1 + L2
2

)
+ W̃12 (10)

and

H̃0|Ek〉 = Ek|Ek〉, k = 1, · · · (2M + 1) × (2M + 1). (11)

Alternatively, the wave function may be expanded as

|ψ (τ)〉 =

M∑
m1=−M

M∑
m2=−M

|m1m2〉 〈m1m2|ψ(τ)〉 (12)
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in terms of the direct products |m1m2〉 ≡ |m1〉 ⊗ |m2〉 of the eigenstates |m1〉 of L2
1 and |m2〉 of L2

2,

where M is a sufficiently integer number for the particular application, and ⊗ denotes the direct

product. The eigenstates
∣∣∣m j

〉
, j = 1, 2, satisfy the equation

L2
j

∣∣∣m j

〉
= m2

j

∣∣∣m j

〉
,m j = −M, · · · − 1, 0, 1, · · · + M, (13)

and the orthonormal relations

〈m j|m′j〉 = δm j,m′j . (14)

Moreover, we may express each eigenstate |m j〉 in terms of the rotor angles ϕ j as

〈ϕ j|m j〉 ≡
1
√

2π
exp

(
im jϕ j

)
, (15)

which immediately leads to the relation

〈m j| cosϕ j|m′j〉 =
1
2

{
δm j,m′j−1 + δm j,m′j+1

}
, (16)

showing that the dipole-field coupling, Eq. (6), only links the nearest adjacent rotational levels.

Finally, it is noted that a two-dimensional (2D) planar rotor is characterized by a revival time equal

to the rotational period Trot = 2π/B (or τrot = BTrot = 2π in the dimensionless time), which is twice

of the rotational period π/B of its three-dimensional (3D) counterpart.

B. Maximally Oriented State

The joint orientation operator of two coupled rotors associated with an arbitrary target angle α,

is given as

Ô (α) ≡ cos (ϕ1 + α) + cos (ϕ2 + α) . (17)

The MOS |ψMOS〉 of the coupled rotors in their finite basis set may be identified as the eigenstate

|λmax(α)〉 associated with the largest eigenvalue λmax = 2 cos
(

π
2M+2

)
(see Appendix A) of the joint

orientation operator Ô(α), i.e.,

|ψMOS〉 ≡ |λmax(α)〉 (18)

and

{cos (ϕ1 + α) + cos (ϕ2 + α)} |λmax(α)〉 = λmax(α)|λmax(α)〉. (19)

In the limit M = ∞ we find λmax = limM→∞ 2 cos
(

π
2M+2

)
= 2. In the optimal control calculations,

we chose M = 8, which yields a maximum eigenvalue λmax = 1.97.
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It is noted that since the operator Ô(α) is a linear summation of single-rotor orientation opera-

tors cos(ϕ1 +α) and cos(ϕ2 +α), the MOS |λmax(α)〉, Eq. (18), of the coupled rotors can be written

as the direct product (see Eqs. (A6) - (A15)):

|λmax(α)〉 =
∣∣∣λ[1]

max(α)
〉
⊗

∣∣∣λ[2]
max(α)

〉
, (20)

where the MOSs
∣∣∣λ[1]

max(α)
〉

and
∣∣∣λ[2]

max(α)
〉

are the eigenstates, respectively, associated with the

largest eigenvalues λ[1]
max = λ[2]

max = cos
(

π
2M+2

)
of the uncoupled rotors 1 and 2, satisfying the

eigenvalue relations (see Eqs. (A1) - (A4))

cos
(
ϕ j + α

) ∣∣∣∣λ[ j]
max(α)

〉
= λ

[ j]
max

∣∣∣∣λ[ j]
max(α)

〉
, j = 1, 2, (21)

with cos (ϕi + α) being approximated as a (2M + 1)× (2M + 1) matrix in the Hilbert space spanned

by the free-rotor eigenstates {|mi〉}. We remark that the MOS |λmax(α)〉 is independent of the rotor-

rotor separation R (i.e., independent of the dipole-dipole coupling W̃12, Eq. (5)), as well as the

dipole moment µ, the rotational constant B, and the control field ε(τ), cf. Eq. (6). Finally, the

process of controlling the joint orientation with an optimal field ε (τ) can be equivalently regarded

as optimizing the transition probability from a given initial state |ψ (0)〉 to the MOS |ψMOS〉. In

this context, the target observable for the orientation optimization can be written as a pure state

projection operator

ÔMOS ≡ |ψMOS〉 〈ψMOS| , (22)

which is expected to be associated with a trap-free control landscape [44, 45].

C. Maximally Entangled State

The degree of entanglement for the coupled rotors can be determined by the von Neumann

entropy S vN (|ψ(τ)〉) defined as [41]

S vN(|ψ(τ)〉) ≡ −Tr {ρ1(τ) ln ρ1(τ)} , (23)

where the reduced density matrix ρ1(τ) is defined as ρ1(τ) ≡ Tr2 {|ψ(τ)〉〈ψ(τ)|}, which is the partial

trace over the rotor 2. Here the index 1 can be equivalently exchanged with 2. The MES of the

system of two coupled identical rotors can be written as [41]

|ψMES〉 =

√
1

2M + 1

M∑
m=−M

|m〉 ⊗ |m〉

=

√
1

2M + 1

|0〉 ⊗ |0〉 + M∑
m=1

[|m〉 ⊗ |m〉 + |−m〉 ⊗ |−m〉]

 , (24)

7
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with the maximal entanglement (von Neumann) entropy

S vN(|ψMES〉) = ln (2M + 1) . (25)

The optimal control goal in this case is to find a properly shaped laser field ε(τ) for steering the

coupled rotors from an arbitrary initial state |ψ (0)〉 to reach the MES |ψMES〉. The target observable

for the entanglement optimization can be conveniently written as the projection operator

ÔMES ≡ |ψMES〉 〈ψMES| . (26)

It is straightforward to prove the following properties: (i) the MES possesses a zero expectation

value of orientation, i.e.,

〈ψMES| Ô(α) |ψMES〉

=
1

2M + 1

∑
m

∑
m′

(
〈m| cos (ϕ1 + α)

∣∣∣m′
〉

+ 〈m| cos (ϕ2 + α)
∣∣∣m′

〉)
δm,m′

= 0, (27)

(ii) in the absence of the control field the MES yields a zero expectation value of the orientation

operator (see Appendix B), i.e.,

〈ψMES (τ)| Ô(α) |ψMES (τ)〉 = 0 (28)

for all τ > 0, where |ψMES (0)〉=|ψMES〉 , and (iii) from Appendix A, all eigenstates
∣∣∣λ[1]

k1
(α)

〉
⊗∣∣∣λ[2]

k2
(α)

〉
, including the MOS |λmax(α)〉 =

∣∣∣λ[1]
max(α)

〉
⊗

∣∣∣λ[2]
max(α)

〉
of the orientation operator Ô(α) are

separable, thus have zero entanglement entropy, i.e.,

S vN

(∣∣∣λ[1]
k1

(α)
〉
⊗

∣∣∣λ[2]
k2

(α)
〉)

= 0 ∀k1, k2 = 1, · · · , 2M + 1. (29)

D. Optimization scheme: the gradient-based D-MORPH method

A general objective of quantum optimal control simulations in this paper is to find a control field

ε (τ) that produces the maximum value of an objective functional J
(
τ f

)
associated with either the

orientation or entanglement of the two coupled rotors at the final time τ f . Specifically, starting

from the initial state |ψ(0)〉, the corresponding optimal control problems can be expressed as

max
ε(τ)

J
(
τ f

)
=

〈
ψ

(
τ f

)∣∣∣∣ Ô ∣∣∣∣ψ (
τ f

)〉
, (30)

8
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where |ψ(τ f )〉 is the final state of the coupled rotors generated by the optimal control field at the

terminal time τ f and Ô is either the joint orientation operator Ô = cos(ϕ1 + α) + cos(ϕ2 + α) for

orientation control, Eq. (17), or Ô = |ψMES〉 〈ψMES| for entanglement control, Eq.(26).

In order to find an optimal field, we utilize the gradient-based D-MORPH method [36, 37].

Specifically, the control field ε (τ) is parametrized by a morphing variable s ≥ 0 resulting in

ε (s, τ). Then the D-MORPH differential equation

∂ε (s, τ)
∂s

=
δJ

δε (s, τ)
(31)

is solved, given an initial control field ε (0, τ) , where the gradient δJ/δε (s, τ) can be written as

δJ
δε (τ)

= −
2µ
B
× Im 〈χ (τ)| Ô |ψ (τ)〉 . (32)

with the co-state function |χ (τ)〉 governed by the time-dependent equation

i
∂|χ (τ)〉
∂τ

= Ĥ (τ) |χ (τ)〉, |χ(τ f )〉 = Ô|ψ(τ f )〉. (33)

The D-MORPH equation, Eq. (31), can be integrated from s = 0, in conjunction with Eqs. (8)

and (33), until the objective functional J reaches a maximum, i.e., when the gradient δJ/δε (s, τ)

becomes zero (to some acceptable tolerance). The D-MORPH method is always monotonically

convergent, i.e.,

dJ
ds

=

∫ τf

0

δJ
δε (s, τ)

δε (s, τ)
δs

dτ =

∫ τf

0

[
δJ

δε (s, τ)

]2

dτ ≥ 0. (34)

The optimization solution of the D-MORPH equation, Eq. (31), is determined by the gradient,

Eq. (32), of the underlying control objective functional J(τ f ), Eq. (30). In all our simulations, Eq.

(31) is integrated using an efficient fifth-order Runge-Kutta method [42].

The D-MORPH method, like all other monotonically convergent local optimization meth-

ods [4–8], often exhibits asymptotically slow convergence behavior when approaching the max-

imum, as shown in Fig. 2. All monotonically convergent optimizations generally follow a Sig-

moidal curve. For example, a poorly chosen initial control field (e.g., a field with inadequate

spectral bandwidth or having too weak intensity) will generally render a full Sigmoidal curve (i.e.,

requiring more iterations), while a well chosen initial field will likely result in just having the up-

per portion of the Sigmoidal curve (i.e., exhibiting the need for fewer iterations, which is the case

in all our simulations).

9
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III. NUMERICAL SIMULATIONS

In this work, for illustration, we consider two identical dipole-dipole coupled linear OCS rigid

rotors (each endowed with a rotational constant B = 0.203 cm−1 [46] and a dipole moment µ =

0.709 Debye [47]). The corresponding dimensionless time is τ = Bt, with B−1 ≈ 26.1 ps, thus

producing a rotational period of Trot = 2π/B ≈ 164 ps (corresponding to the fundamental rotation

frequency ≈ 6.09 GHz), for the OCS molecule. For optimal control simulations, the maximal

rotational quantum number M is set to 8 and the initial laser control field ε (0, τ) is given as

ε (0, τ) = f (τ) × ε̃0 (τ) , (35)

which is the product of a Gaussian envelope function

f (τ) = exp
[
− ln 4 × (τ − τ f /2)2

/ (
∆τp

)2
]

(36)

and a time-dependent carrier function (comprising three carrier frequencies)

ε̃0 (τ) = a0 [0.5 cosω1τ + 0.3 cosω2τ + 0.2 cosω3τ] , (37)

where a0, τ f , ω1, ω2 and ω3, respectively, denote the amplitude, pulse length, and carrier fre-

quencies of the initial control pulses ε(0, τ). In addition, the carrier frequencies ω1, ω2 and ω3

are arbitrarily weighted, here with the numbers 0.5, 0.3, and 0.2. The amplitude of all initial

fields is fixed at the value a0 = 0.85625 × 105 V/cm, which is equivalent to an intensity of

∼ 1 × 107 W/cm2, lying within technologically available microwave sources [48]. The tempo-

ral full width at half maximum (t-FWHM) of the Gaussian envelope function f (τ) is chosen as

∆τp = τ f

/(
5
√

ln 4
)
≈ 0.17 × τ f , corresponding to a spectral full width at the half maxim (s-

FWHM) ∆ωp ≈ 0.44 × 2π/∆τp ≈ 2.59 × 2π/τ f . Here, the t-FWHM ∆τp is partiuclarly chosen

such that the Gaussian envelope function f (τ) quickly falls off to near zero at τ = 0 and τ = τ f .

To attain good convergence, different pulse lengths and carrier frequencies may be chosen for

orientation and entanglement control simulations. Here, the pulse length τ f is chosen to be τ f = 50

(i.e., the pulse length t f ≡ τ f /B ≈ 1305 ps and the t-FWHM is ∆tp = ∆τp/B ≈ 222 ps) at all rotor-

to-rotor separations, i.e., R = 1 nm, 2 nm, 5 nm, 10 nm, and 50 nm in all orientation control

simulations, whereas τ f = 50, 100, and 150, respectively, at the separations R = 1 nm, 3 nm,

and 5 nm in entanglement control simulations. These latter pulse lengths give rise to the t-FWHM

∆τp ≈ 8.5, 16.10, and 25.5, corresponding to the narrow s-FWHM values ∆ωp ≈ 0.325, 0.163,

and 0.082, respectively.

10
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In addition, the dipole operators µ cosϕ1 = µ cos(−ϕ1) and µ cosϕ2 = µ cos(−ϕ2) in Eq. (1),

being even functions of ϕ1 and ϕ2, can only couple states of like symmetry (i.e., the state functions

that are either both even, or both odd, functions of individual rotor angles). As a result, the initial

states need to possess the same symmetry as the respective control objectives, Eqs. (18) and (24).

For example, for a successful orientation control simulation for the perpendicular configuration

θ = π/2 and at the zero target angle α = 0, only the state that is an even function of rotor

angles, including the ground state |E1〉 of the coupled rotors and the ground product state |0〉 ⊗ |0〉

of uncoupled rotors, can be considered as the initial state, since the corresponding dipole-dipole

coupling W̃12 and orientation operator cosϕ1 + cosϕ2 are all even function of ϕ1 and ϕ2, see Eqs.

(42) and (43). Similarly, for a successful entanglement control simulation, the initial state also

needs to be an even function of ϕ1 and ϕ2 since the desired MES |ψMES〉 is an even function of

rotor angles, see Eq. (44) below.

Finally, we remark that the evolution of the wave function |ψ(τ)〉 of the coupled rotors, cf. Eq.

(8), is effectively driven by the dimensionless dipole-control field interaction Ṽ(τ) ∼ (µ/B) × ε(τ),

Eq. (6), which is proportional to the ratio µ/B. As a result, physically distinct pairs of rotors (not

simulated in this paper) may experience the same effective dipole-field interaction Ṽ(τ), despite

their different dipole moments and rotational constants [49, 50].

A. Optimal orientation control

Here simulations have been carried out to find optimal control fields that concurrently orient

both rotors toward the same target angle α. Specifically, we seek optimal control fields that maxi-

mize the joint orientation objective functional

JO

(
t f , α

)
=

〈
ψ

(
τ f

)∣∣∣∣ [cos (ϕ1 + α) + cos (ϕ2 + α)
] ∣∣∣∣ψ (

τ f

)〉
, (38)

for different configuration angles θ and target angles α. The main goal is to understand how the

optimization of JO(τ f , α) depends on the configuration angle θ and the target angle α at different

separations between the two rotors. We recall that the dipole-dipole coupling strength between the

two rotors at a fixed separation R is determined by the Γ value (i.e., see Eq.(5)).

First we present the strong dipole-dipole coupling case, Γ = 12.46, at the separation R = 1

nm, starting from the ground state |E1〉 of the field-free coupled-rotor Hamiltonian H0 in Eq. (2),

i.e., |ψ(0)〉 = |E1〉. The initial control field ε(0, τ), Eqs. (35) - (37), is composed of three frequen-
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cies ω1 = 8.1248, ω2 = 7.5543, and ω3 = 6.8751, corresponding to the sequential transitions

|E1〉 → |E7〉 → |E14〉 → |E27〉 between four lowest dipole connected energy eigenstates of the cou-

pled rotors at R = 1 nm. Fig. 2 shows the orientation optimal control results, respectively, for two

configuration angles: (a) θ = π/4 (an oblique configuration) and (b) θ = π/2 (the perpendicular

configuration). For the oblique configuration θ = π/4, Fig. 2(a), it was found that the objective

functional JO

(
τ f , α

)
first increases quickly and eventually converges to the near global maximum

value λmax = 1.97 for both target angles α = 0 and α = π/3. We remark that optimal control fields

were always able to steer from the ground state |E1〉 to the corresponding MOS, |ψMOS〉, whenever

the inter-rotor axial vector R is at an oblique angle with respect to the x̂-axis, i.e., the configu-

ration angle θ , π/2, regardless of the target angle α (see further discussions below). We have

also successfully performed simulations using different initial fields, including ones with much

wider spectral bandwidths (i.e., containing many more than just three frequency components),

confirming much slower convergence for the oblique configuration angles, when compared with

the perpendicular one, as seen in Fig. 2(a) vs Fig. 2(b).

The case of the perpendicular configuration θ = π/2 deserves a special attention. To facilitate

the analysis, we recast Eq. (38) as

JO

(
τ f , α

)
= cosα × JC

(
τ f

)
− sinα × JS

(
τ f

)
, (39)

where

JC

(
τ f

)
=

〈
ψ

(
τ f

)∣∣∣∣ (cosϕ1 + cosϕ2)
∣∣∣∣ψ (

τ f

)〉
and

JS

(
τ f

)
=

〈
ψ

(
τ f

)∣∣∣∣ (sinϕ1 + sinϕ2)
∣∣∣∣ψ (

τ f

)〉
.

It can be shown analytically that JS (τ f ) = 0 when the ground state |E1〉 is chosen as the

initial state |ψ (0)〉. In this case, both projections of the initial state wave function |E1〉 and

the final state wave function |ψ
(
τ f

)
〉 on to ϕ1, ϕ2 are symmetric functions of ϕ1 and ϕ2, i.e.,

〈−ϕ1,−ϕ2|E1〉 = 〈ϕ1, ϕ2|E1〉 and 〈−ϕ1,−ϕ2|ψ
(
τ f

)
〉 = 〈ϕ1, ϕ2|ψ

(
τ f

)
〉, which implies JS (τ f ) = 0,

noting that sin (−ϕ1) + sin (−ϕ2) = − (sinϕ1 + sinϕ2) . Consequently, the objective functional

JO

(
τ f , α

)
can be written as the product

JO

(
τ f , α

)
= cosα × JC(τ f ), (40)

which is bounded by the maximum value λMOS × cosα = 1.97 × cosα (for M = 8). Accord-

ingly, the gradient of the objective function needed to integrate the D-MORPH equation for the
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perpendicular configuration angle θ = π/2, can be written as

δJO

(
τ f , α

)
δε (τ)

= cosα ×
δJC

(
τ f

)
δε (τ)

, (41)

which has a multiplication factor of cosα. The analysis leading to Eqs. (40) and (41) was numeri-

cally demonstrated in Fig. 2(b), showing that JO

(
τ f , α

)
converges to the maximally allowed value

of 1.97 at the target angle α = 0 (black curve), while JO

(
τ f , α

)
can only reach 0.985 for the target

angle α = π/3 (red curve), cf, Eq. (40). In the remaining discussions, we will only consider the

α = 0 target angle cases, since the simulations showed that all optimal control dynamical behavior

is qualitatively the same at different target angles.

At the zero target angle, α = 0, it is easy to see that the expectation value of the underlying

orientation operator
〈
ϕ1, ϕ2

∣∣∣Ô(α = 0)
∣∣∣ϕ1, ϕ2

〉
, cf. Eq. (17), is an even functions of rotor angles

ϕ1, ϕ2. In particular, for the case of the perpendicular configuration, θ = π/2, the two coupled

rotors are indistinguishable with respect to the polarization (along the x̂-axis) of the control field,

see Fig. 1, since the dipole-dipole interaction in Eq. (5)

W̃12(R, θ = π/2, ϕ1, ϕ2) = Γ {cosϕ1 cosϕ2 − 2 sinϕ1 sinϕ2} , (42)

is symmetric with respect to the x̂-axis, i.e.,

W̃12(R, θ = π/2,−ϕ1,−ϕ2) = W12(R, θ = π/2, ϕ1, ϕ2). (43)

As a result, for optimal orientation control simulations of the coupled rotors, the initial state wave

function 〈ϕ1, ϕ2|ψ(0)〉 must be an even function of the rotor angles ϕ1 and ϕ2 to enable successful

optimal orientation controls when θ = π/2 and α = 0.

Figs. 3 and 4 show optimal control results, with |E1〉 as the initial state, at the rotor-to-rotor

separation R = 1 nm for two different configuration angles: θ = π/4 in Fig. 3 and θ = π/2 in

Figs. 4. Each figure contains three panels, respectively, depicting (a) the temporal orientation

evolution of rotor 1(note that two rotors are identical and possess the same temporal behavior),

(b) the optimal control field and (c) the corresponding power spectrum. It was found that for both

configuration angles θ = π/4 in Fig. 3(a) and θ = π/2 in Figs. 4(a), both expectation values of

orientation show fast beating, due to transitions between the energy levels of the coupled rotors,

and attain the desired numerical maximum 0.985 is attained at the terminal time τ f . The intensities,

∼ 2.46×107 W/cm2 and ∼ 1.81×107 W/cm2, respectively, of two optimal control fields in Figs. 3(b)

and 4(b) are slightly larger than ∼ 1 × 107 W/cm2 for the initial field, cf. Eqs. (35) - (37). The
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corresponding power spectra in Figs. 3(c) and 4(c) resemble each other, containing many small

peaks, a small d.c. component, and three tall, but narrow, peaks over a wide spectral window from

ω = 0 to ω = 40; the three main peaks (labeled as 1, 2, 3) have relative heights approximately of

the ratio 5:3:2, which coincide with the same three frequencies comprising of the initial field. The

slight increases of three initial peaks along with numerous much smaller new peaks of the power

spectra of optimal fields are responsible for optimal constructive quantum interference enabling

the coupled rotors to reach the desired MOS |ψMOS〉 of the coupled rotors.

Naturally, we expect convergence to the desired MOS, regardless of the initial field or state (i.e

provided it has the proper symmetry) due to control landscape expected to be free of traps. Fur-

thermore, below we confirm this expectation with further simulations. For comparison, we have

performed three additional simulations for α = 0 at the R = 1 nm: (A1) The oblique configuration

θ = π/4 starting from the ground state |E1〉, with the initial field frequencies ω1 = 2, ω2 = 6, and

ω3 = 10, corresponding to the sequential transitions |0〉 ⊗ |0〉 → |1〉 ⊗ |1〉 → |2〉 ⊗ |2〉 → |3〉 ⊗ |3〉,

between the product states of the uncoupled rotors. (A2) The perpendicular configuration θ = π/2,

starting from the ground state |E1〉, with the same initial field frequencies ω1 = 2, ω2 = 6, and

ω3 = 10 as in (A1). (A3) The perpendicular configuration θ = π/2, starting from the product state

|0〉⊗|0〉 of uncoupled rotors, with the same three initial field frequenciesω1 = 8.1248,ω2 = 7.5543,

and ω3 = 6.8751 used in Figs. 2 - 4. Simulation (A1) produced a similar strong modulated beat

pattern in the time evolution of optimal orientation (not shown) to that seen in Fig. 3(a), despite

having a very different optimal field (not shown) from that in Fig. 3(b).

For the perpendicular configuration θ = π/2, it was found that the results from the simulation

(A2), Fig. 5, and the simulation (A3), Fig. 6, are quite different from each other, due to distinct ini-

tial fields and different initial states, and from those in Fig. 4, respectively. These latter additional

simulations (A2) and (A3) exhibit very different fast beating patterns in the evolution of orientation

(i.e., compare Figs. 4(a) versus that of Figs. 5(a) and 6(a)). In particular, there is no discernible

rotational modulation appearing in the very early time at τ < τrot = 2π in Figs. 5(a) and 6(a), in

sharp contrast to those found in Fig. 4(a). As expected, there are also distinct differences in the

optimal control fields, of Figs. 4(b), 5(b) and Fig. 6(b). In Sec. III C, similar qualitative distinction

were also found for the optimal control transition from a much more complex initial state |ψMES〉,

Eq. (24), to the final state |ψMOS〉, see Fig. 14(d). Collectively, these numerical simulations show

that the key optimal control principles in general do not depend on different choices of the initial

state or control field, although detailed dynamical distinctions are evident.
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The extensive numerical simulations discussed above for the strongly dipole-dipole coupled ro-

tors at R = 1 nm showed that the optimally reachable M-dependent orientation (and entanglement

later in Sec. III B), with nanosecond GHz pulses (of the pulse length ∼ 1.305 ns), are very close to

their respective upper bounds that can be reached by arbitrarily long pulses. The intensity of the

resultant optimal control fields in these simulations, ranging from ∼ 2 × 107 W/cm2 to ∼ 4 × 107

W/cm2, are of the same order of magnitude as the intensity of the presently available high-power

microwave sources [48]. Moreover, many existing OCT simulations [51] show that weaker and

longer optimal control pulses can be effective. Accordingly, we performed additional simulations

(results not shown) to generate much weaker optimal fields by considering much weaker initial

fields, of the intensity ∼ 1 × 103 W/cm2 for pulse lengths up to t f = 60 ns, but they were consider-

ably more expensive computationally.

We now present the optimal control simulations for the intermediate dipole-dipole coupling

case, Γ = 1.55, at the separation R = 2 nm and the weak dipole-dipole coupling case, Γ = 0.1, at

the separation R = 5 nm; for both cases, the configuration angle is θ = π/2 and the initial state is

|E1〉 of the coupled rotors at their respective separations. The initial field ε(0, τ) is composed of

three frequencies: at R = 2 nm, ω1 = 2.2475, ω2 = 3.5415, and ω3 = 4.6245, corresponding to the

sequential transitions |E1〉 → |E6〉 → |E17〉 → |E28〉 between four lowest dipole connected energy

eigenstates of the coupled rotors, and at R = 5 nm, ω1 = 1, ω2 = 3, and ω3 = 5, corresponding

to the sequential transitions |0〉 → |1〉 → 2〉 → |3〉 of a single rotor. Fig. 7 shows the optimal

control orientation dynamics for rotor 1 (the behavior of rotor 2 is identical to that of rotor 1) at

separations R = 2 nm and R = 5 nm. It was found that at the intermediate separation R = 2 nm, the

temporal behavior of the orientation driven by the optimal control field, Fig. 7(a), is significantly

different from that of the uncoupled rotors driven by the same control field, Fig. 7(b). In contrast,

at the large separation R = 5 nm, the temporal behavior of orientation, Fig. 7(c), is virtually the

same as that of the uncoupled rotors in Fig. 7(d), as expected. Furthermore, the result in Fig. 7(c)

is naturally also very different from the strongly coupled rotors in Figs. 3 - 6. Related behavior is

also evident in Fig. 8 showing the field-free evolution after attaining the MOS: no tangible revival

behavior appears for the intermediate coupling case at R = 2 nm, Fig. 8(a), but very clear revival

peaks are presented for the weak coupling case at R = 5 nm, Fig. 8(b), beginning to resemble

those of a free rotor, Fig. 8(c).

Finally, we present the very weak dipole-dipole coupling case, Γ = 1.24 × 10−2, at the sepa-

ration R = 10 nm and the extremely weak dipole-dipole coupling case, Γ = 9.97 × 10−5, at the
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separation R = 50 nm for the configuration angle θ = π
2 , starting from the ground state |E1〉 of the

coupled rotors at the respective separations. Figs. 9 (a) and (b) show the optimal control orienta-

tion dynamics of rotor 1, as a function of time τ, at two separations R = 10 nm and R = 50 nm,

respectively. The initial field ε(0, τ) is composed of three frequencies: ω1 = 1, ω2 = 3, and ω3 = 5,

corresponding to the sequential transitions |0〉 → |1〉 → 2〉 → |3〉 of a single rotor. The optimal

fields (not shown) were virtually identical, consistent with the near free rotor behavior of both

cases. It was found that the temporal behavior of orientation in the presence of optimal control

fields are virtually the same for both cases over short time, out to τ f = 50. In contrast, Fig. 10

shows the long time field-free evolution of orientation dynamics of rotor 1, after turning off the

optimal control field, at either R = 10 nm, Fig. 10(a), or R = 50 nm, Fig. 10(b). It was also found

that in addition to the highly oscillatory beats reminiscence of the quick rotation of the free rotor,

cf. Fig.8(c), the temporal evolution of the field-free orientation of the coupled rotors at these large

separations exhibits a strikingly unique long-time revival pattern revealed by the envelopes of the

blackened large lobes that arise from slow modulation of the much faster, nearly free rotation.

The long time revival patterns in Fig. 10 can be understood in terms of the small energy split-

tings of degenerate free-rotor product states due to the perturbation brought about by the dipole-

dipole interaction. It is shown in Appendix C that (i) the two-fold degenerate free-rotor prod-

uct states |m,m + 1〉 and |m + 1,m〉 are split into two sublevels, respectively, with energy shifts

−Γ/4 and Γ/4, (ii) the two-fold degenerate free-rotor product states |m,− (m + 1)〉 and |m + 1,−m〉

are split into two sublevels, respectively, with energy shifts −3Γ/4 and 3Γ/4, and (iii) the four-

fold degenerate free-rotor product states |0, 1〉 , |1, 0〉 , |0,−1〉 and |−1, 0〉 are split into four sub-

levels, respectively, with energy shifts −Γ,−Γ/2, Γ/2, and Γ. Moreover, it is shown in Ap-

pendix D that the dipole-like orientation operator only links the dipole-dipole perturbed degen-

erate free-rotor product states to the unperturbed ones. As a result, there are four likely long-

time overlapping revival patterns, corresponding to the periods TL,TL/2,TL/3 and TL/4, with

TL ≡ TL (R) = 4τrot/Γ = 8π/Γ, evident at very large values of R. The longest revival periods

TL (R) , Eq. (D16), which corresponds to the time interval between the largest two consecutive

lobes, are TL (10) = 8π/Γ ≈ 2000 for R = 10 nm, Fig. 10(a), and TL (50) = 8π/Γ ≈ 2.5 × 105 for

R = 50 nm, Fig. 10(b), yielding a ratio of TL (10) /TL (50) = 1/125, which is in agreement with

the relative recurrence times of the largest lobes. The other shorter revival periods, TL/2,TL/3 and

TL/4, each an integer fraction of TL, are responsible for additional lobes of smaller heights be-

tween the largest lobes in Figs. 10. We remark that these long-time revival patterns are completely
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absent for free rotors in the limit R = ∞.

B. Optimal control and field-free transport of entanglement

Here we present the optimal control simulations for creating the MES |ψMES〉 , Eq. (24), of the

two rotors fixed at three different separations R = 1 nm, 3 nm and 5 nm for the configuration angle

θ = π/2, starting from the ground state |E1〉 of the coupled rotors at the respective separations.

It is noted that in the absence of the external field, the coupled rotors are modestly entangled

due to their mutual dipole-dipole coupling, for example, the two-rotor ground-state entanglement

entropies S vN(|E1〉) (for M = 8) are 0.81, 0.25, and 0.02 at these three separations, respectively.

Moreover, it can be shown that the function 〈ϕ1, ϕ2 |ψMES〉 is an even function of the rotor angles

ϕ1 and ϕ2, i.e.,

〈ϕ1, ϕ2 |ψMES〉 = 〈−ϕ1,−ϕ2 |ψMES〉 , (44)

cf. Eq. (24). In the following calculations to create the MES |ψMES〉, the ground state |E1〉 is

chosen as the initial state and the optimal control field is found by maximizing the MES objective

functional

JE(τ f ) = 〈ψ(τ f )|ψMES〉〈ψMES|ψ(τ f )〉. (45)

Here three different pulse lengths τ f = 50 for R = 1 nm, τ f = 100 for R = 3 nm and τ f = 150 for

R = 5 nm of the control field were adopted, since it requires more effort to attain the maximal

entanglement at larger separations due to the rapidly decreasing dipole-dipole coupling between

the two rotors.

Figure 11 depicts time evolution of the entanglement entropy S vN(|ψ(τ)〉) at R = 1 nm,

Fig. 11(a), R = 3 nm, Fig. 11(b), and R = 5 nm, Fig. 11(c), in the presence of (1) the ini-

tial field (red curve), (2) the optimal field (blue curve), and (3) the zero field (black curve). It

was found that the value of optimal field driven entropy (blue curves), after remaining virtually

unchanged in the initial transient period, quickly rises up to reach the expected maximal entan-

glement value, S vN (|ψMES〉) = ln 17 ≈ 2.8332, at all three separations; as expected, it took more

control iterations to obtain optimal fields at larger separations, despite using longer control pulses.

Naturally, in the limit of R → ∞, the dipole-dipole interaction W̃12(R) → 0, and two rotors cease

to be entangled with or without any electric field, which only address individual rotors, cf. Eq. (1).

For these optimal control simulations, as well as those in Sec. III C, the constituent frequencies
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for the initial field ε(0, τ) are : ω1 = 2, ω2 = 6, ω3 = 10 (in units of B), which, respectively,

correspond to the first three transition frequencies |00〉 → |11〉 → |22〉 → |33〉, among all product

states |m1 = m〉 ⊗ |m2 = m〉, m = −M, · · · ,−1, 0, 1, · · · ,+M, that form the desired MES of the

coupled rotors, cf. Eq. (24).

Figures 12(a) and 12(b), respectively, show the optimal control field (with an intensity equal

to ∼ 3.6 × 107 W/cm2) and the corresponding power spectrum for the entanglement control sim-

ulations at the rotor-to-rotor separation R = 1 nm. It was found that when comparing the results

from the orientation control simulations for θ = π/2 and α = 0 at the R = 1 nm, starting from the

same ground state |E1〉 and the same initial field, the strong beating pattern of the resultant opti-

mal control field in Fig. 12(a) qualitatively resembles its counterpart in Fig. 5(b) despite the large

difference in the control objectives, i.e., entanglement, Fig. 11(a) vs orientation, Fig. 5(a). The

effect of this difference in control objectives can be clearly seen in the respective power spectra in

Fig. 5(c) and Fig. 12(b), as manifested in several more visible small peaks in Fig. 12(b) besides

the three dominant peaks at ω1 = 2, ω2 = 6, ω3 = 10 (labeled as 1, 2, 3) associated with the three

frequency components in the initial field.

We also show the field-free evolution of the entropy for the MES as the two rotors are moved

away from each other at various speeds, including both in the adiabatic limit (i.e., slow separation)

and in the sudden limit (i.e., rapid separation). Specifically, we have solved the corresponding

time-dependent coupled equation, Eq. (8), with a time-dependent parameter R(τ) in the dipole-

dipole interaction W̃12, Eq. (5), after the optimal control was terminated. Fig. 13 shows the field-

free evolution of the entanglement entropy by allowing the separation R to change at different rates

according to the linear relation

R (τ) = R0 + kτ, (46)

where R0 = 1 nm, k = 0.01, 0.1, 1, 10 and 100. Starting with the maximal value S vN (|ψMES〉) ≈

2.8332, it was found that (1) for k = 0.01 the value of entropy oscillates rapidly at small sepa-

rations and converges to 2.4188 at the large separation, Fig. 13(a), (2) for k = 0.1 the value of

entropy oscillates moderately at small separations and eventually converges to 2.3219, Fig. 13(b),

(3) for k = 1 the value of entropy drops to about 2.4 suddenly at small separations and converges

to 2.5507, Fig. 13(c), (4) for k = 10 the value of entropy at first falls off with a gentle modulation

and converges to 2.8204, Fig. 13(d), and finally (5) for k = 100 the value of entropy simply falls

off smoothly and converges to 2.8331 (i.e., it changes very little from its initial value), Nonethe-

less, Fig. 13(e). Figs. 11 and 13 demonstrated not only that the MES can be easily obtained
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using an optimally tailored control field at separations when the dipole-dipole coupling between

two rotors is sufficiently large, but the resultant maximal entanglement entropy remains basically

unchanged where the two rotors are moved apart in the sudden limit (corresponding to k = 100),

and drops only moderately in the adiabatic limit (corresponding to k = 0.01), regardless the speed

of separation.

C. Optimal control transition dynamics between the MOS and the MES

Here we present the interplay of optimal control transition dynamics between the MOS and

MES of the coupled rotors for the perpendicular configuration angle θ = π/2 in the strong dipole-

dipole interaction limit at separation R = 1 nm. Specifically, we have performed optimal control

simulations for the transition |ψMES〉 → |ψMOS〉 and for the transition |ψMOS〉 → |ψMES〉. In both

optimal control simulations, we used the same initial field (i.e., composed of three frequency

components ω1 = 2, ω2 = 6, ω3 = 10, in units of B) as in Sec. III B.

Figure 14 shows the optimal control transition dynamics for |ψMES〉 → |ψMOS〉. In this case, an

optimal control field is obtained under the circumstance that two rotors initially possess a zero ori-

entation expectation value and are coupled via a very strong dipole-dipole interaction R = 1 nm.

Specifically, the time evolution of the entanglement entropy S vN (|ψ(τ)〉), and that of the expec-

tation value of orientation
〈
Ô1 (τ)

〉
= 〈ψ(τ)| cosϕ1|ψ(τ)〉 are shown for both initial and optimal

fields. We note that initially S vN (|ψ(0)〉) ≈ 2.8332 and
〈
Ô1 (0)

〉
= 0. It was found that (1) with

the initial field, the entropy first decreases to ∼ 1.5 at the midpoint of the pulse length, then rises

up to just below 2 at the terminal time τ f , Fig. 14(a), and (2) with the optimal field, the entropy

slowly reduces and then rapidly plunges to zero at the terminal time τ f , Fig. 14(b). On the other

hand, we find that, (3) in the presence of the initial field, the expectation value of the orientation

JO(τ) oscillates modestly around the zero value throughout the evolution, Fig. 14(c), and (4) with

the optimal field, it oscillates modestly until a sudden jump to the optimal target value of 0.985

(for one rotor) at the very end of the control pulse, Fig. 14(d). In the absence of any field, the ex-

pectation value of the orientation (not shown) remains at the zero value throughout, see Appendix

B. Also, it was found that the resultant optimal field and power spectrum (not shown) qualitatively

resemble those shown in Fig. 5(b) and 5(c), despite the large difference in the initial states, i.e.,

|ψMES〉 vs. |0〉 ⊗ |0〉.

Figure 15 shows the time evolution of entropy and orientation for optimal control transition
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|ψMOS〉 → |ψMES〉, which is the opposite of the optimal control transition in Fig. 14. For this

optimal control process, S vN (|ψ(0)〉) = 0 and
〈
Ô1 (0)

〉
= 0.985. It was found that (1) the entropy

remains just above 1 throughout when the initial field was on, Fig. 15(a), (2) the entropy first

increases gradually, then jumps suddenly to its optimal value of 2.83 at the terminal time τ f when

the optimal field was on, Fig. 15(b), and (3) the expectation value of orientation
〈
Ô1 (τ)

〉
drops

rapidly with either the initial or optimal fields, and then oscillates only modestly with an almost

zero amplitude throughout, Figs. 15(c) and (d). As expected, the corresponding expectation value〈
Ô1 (τ)

〉
becomes zero when the optimal control field reaches τ f = 50, Fig. 15(d). Finally, it was

found that the resultant optimal field and power spectrum (not shown) resemble those shown in

Fig. 12(a) and 12(b), despite the large difference in the initial states, i.e., |ψMOS〉 vs. |0〉 ⊗ |0〉.

IV. CONCLUSION

We have performed optimal control simulations for maximizing orientation and entanglement

of two coupled quantum rotors that lie in a plane at a wide range of fixed separations. The re-

sultant optimal fields leading to maximal orientation and entanglement, respectively, are in the

microwave [43, 52] range of the spectrum, corresponding the rotational transition spectra of the

coupled rotors. It was found that the maximal orientation of the two rotors can be achieved re-

gardless of the separation between the rotors. Of special interest is, at vary large separations, the

orientation peak expectation value recurs with a very long period proportional to the cubic power

of the separation R. The calculations showed that the optimal control dynamics are distinct at

different separations. Moreover, it was shown that the maximally entangled state can be most ef-

ficiently created at sufficiently small separations. Importantly, it was observed that the maximally

entangled state of the coupled rotors remained largely unchanged in the sudden limit when the

rotors are quickly transported to large separations and only decreases moderately in the adiabatic

limit when they slowly moved apart. Finally, optimal control simulations easily found fields to

steer a maximally entangled state having a zero averaged orientation to a maximally orientated

state having a zero entanglement and vice versa.

The optimal controlled dynamics studied in this paper, in principle, can be realized at the sur-

face of appropriate solids [26]. Although the current work is limited to pure state optimal orien-

tation/entanglement controlled dynamics of two identical planar polar molecules, much of results

and analysis may be useful as a basis to understand the future studies of three or more identical ro-
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tors. The same techniques can be extended to optimal orientation/entanglement control problems

for non-identical rotors and for coupled rotors in thermal ensembles or mixed states.
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APPENDIX A: MAXIMALLY ORIENTED STATES

Consider the eigenvalue problems for the (2M+1)×(2M+1) dimensional matrix representation

of the orientation operators Ô1 (α) ≡ cos (ϕ1 + α) and Ô2 (α) ≡ cos (ϕ2 + α) given by the following

eigenvalue equations:

Ô j(α)
∣∣∣∣λ[ j]

k (α)
〉

= λ
[ j]
k

∣∣∣∣λ[ j]
k (α)

〉
, k = 1, · · · , 2M + 1 and j = 1, 2. (A1)

It can be shown that the operator cos(ϕ j + α) for each rotor, here j = 1, 2, can be explicitly

represented by a (2M + 1) × (2M + 1) dimensional Hermitian tridiagonal Toeplitz matrix

cos(ϕ + α) =



0 1
2 exp(iα) 0 0 · · · 0 0

1
2 exp(−iα) 0 1

2 exp(iα) 0 · · · 0 0

0 1
2 exp(−iα) 0 1

2 exp(iα) · · · 0 0

0 0 1
2 exp(−iα) 0 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 0 1
2 exp(iα)

0 0 0 0 · · · 1
2 exp(−iα) 0



, (A2)

which is known [53] to possess eigenvalues and eigenvectors in closed form, i.e.,

λ
[ j]
k = cos

(
kπ

(2M + 2

)
, k = 1, · · · , 2M + 1, (A3)
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and

∣∣∣λ[ j]
k (α)

〉
=

1
√

Nk



exp(iMα) × sin
(

kπ
2M+2

)
...

exp(iα) × sin
(

Mkπ
2M+2

)
sin

(
(M+1)kπ

2M+2

)
exp(−iα) × sin

(
(M+2)kπ

2M+2

)
...

exp(−iMα) × sin
(

(2M+1)kπ
2M+2

)



, k = 1, · · · , 2M + 1, (A4)

where

Nk ≡

2M+1∑
`=1

sin2
(

`kπ
2M + 2

)

=
1
2

2M+1∑
`=1

{
1 − cos

(
`kπ

M + 1

)}

=
2M + 1

2
−

1
2

(−1)k
sin

(
(2M + 1) kπ

2M+2

)
sin

(
kπ

2M+2

) (A5)

is the normalization factor. Note that all eigenvalues λ[ j]
k , Eq. (A3), of the single rotor orientation

operator cos(ϕi+α) are independent of the target angle α, while the associated eigenstates
∣∣∣λ[ j]

k (α)
〉
,

Eq. (A4), are α-dependent.

Now, consider the eigenvalues and eigenvectors of the composite coupled-rotor orientation

operator

Ô (α) = Ô1 (α) + Ô2 (α) = cos (ϕ1 + α) + cos (ϕ2 + α) , (A6)

defined in the Hilbert space spanned by (2M + 1)2 two-rotor product states |m1〉 ⊗ |m2〉, with

m1,m2 = −M, · · · ,−1, 0,+1, · · · ,M. Since the composite operator Ô (α) is a simple summation

of individual single rotor operators Ô1 (α) and Ô2 (α), all of its eigenvectors can be written as the

product states
∣∣∣λ[1]

k1
(α)

〉
⊗

∣∣∣λ[2]
k2

(α)
〉
, respectively, associated with the eigenvalues

λ[1]
k1

+ λ[2]
k2

= cos
(

k1π

2M + 2

)
+ cos

(
k2π

2M + 2

)
, (A7)

satisfying the eigen-relations

Ô (α)
{∣∣∣λ[1]

k1
(α)

〉
⊗

∣∣∣λ[2]
k2

(α)
〉}

=
(
λ[1]

k1
+ λ[2]

k2

) {∣∣∣λ[1]
k1

(α)
〉
⊗

∣∣∣λ[2]
k2

(α)
〉}
, (A8)

where k1, k2 = 1, · · · ,M − 1,M,M + 1, · · · , 2M + 1. By identifying∣∣∣λ[1]
max(α)

〉
≡

∣∣∣λ[1]
k1=1

〉
(A9)

22

Page 22 of 49Physical Chemistry Chemical Physics



and ∣∣∣λ[2]
max(α)

〉
≡

∣∣∣λ[2]
k2=1

〉
, (A10)

respectively, as the maximally oriented eigenstates (for uncoupled single rotors) associated with

the largest eigenvalues

λ[1]
max = λ[1]

k1=1 = cos
(

π

2M + 2

)
(A11)

and

λ[2]
max = λ[2]

k2=1 = cos
(

π

2M + 2

)
, (A12)

we can obtain the maximal orientation (for coupled rotors)

λmax = λ[1]
max + λ[2]

max = 2 cos
(

π

2M + 2

)
(A13)

corresponding to the maximally oriented product eigenstate

|λmax(α)〉 =
∣∣∣λ[1]

max(α)
〉
⊗

∣∣∣λ[2]
max(α)

〉
, (A14)

where

∣∣∣λ[ j]
max(α)

〉
=

1
√

N1



exp(iMα) × cos
(

Mπ
2M+2

)
...

exp(iα) × cos
(

π
2M+2

)
1

exp(−iα) × cos
(

π
2M+2

)
...

exp(−iMα) × cos
(

Mπ
2M+2

)


=

1
√

N1

|0〉 +
M∑

m j=1

cos
( m jπ

2M + 2

)
×

[∣∣∣m j

〉
eim jα +

∣∣∣−m j

〉
e−im jα

] , (A15)

with j = 1, 2 and

N1 =
2M + 1

2
+

1
2

sin
(
(2M + 1) π

2M+2

)
sin

(
π

2M+2

) . (A16)

By invoking Eqs. (15) and (A15), we immediately obtain〈
ϕ j

∣∣∣λ[ j]
max(α)

〉
=

1
√

2N1π

1 + 2
M∑

m j=1

cos
( m jπ

2M + 2

)
× cos

(
m j

(
ϕ j + α

)) , j = 1, 2, (A17)

which is an even function of the rotor angle ϕ j ∈ [−π, π] when α = 0. As a result, we arrive at

〈ϕ1, ϕ2 |λmax(α = 0)〉 = 〈−ϕ1,−ϕ2 |λmax(α = 0)〉 , (A18)

which is an even function of both rotor angles ϕ1 and ϕ2.
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APPENDIX B: ZERO EXPECTATION VALUE OF ORIENTATION FOR MAXIMALLY EN-

TANGLED STATES - PROOF OF EQ. (28)

The canonical maximally entangled state of two coupled identical planar rotors is given as [41]

|ψMES〉 =
1

√
2M + 1

M∑
m=−M

|m1 = m〉 ⊗ |m2 = m〉 . (B1)

The corresponding field-free Hamiltonian H̃0, Eq. (2), is separable in the coordinates ξ1 =

(ϕ1 + ϕ2) /2 and ξ2 = (ϕ1 − ϕ2) /2, i.e.,

H̃0 = H̃ξ1 + H̃ξ2 , (B2)

where

H̃ξ1 = −
1
2
∂2

∂ξ2
1

+
3Γ

2

[(
1 − 2 cos2 θ

)
cos (2ξ1) − sin (2θ) sin (2ξ1)

]
(B3)

and

H̃ξ2 = −
1
2
∂2

∂ξ2
2

−
Γ cos 2ξ2

2
. (B4)

The separation indices 1 and 2 may be exchanged due to the identical nature of the rotors. The

canonical maximally entangled state |ψMES〉 in Eq. (B1) can be projected on to ϕ1 , ϕ2, resulting in

the relation

〈ϕ1, ϕ2|ψMES〉 =
1

√
2M + 1

M∑
m=−M

〈ϕ1|m1 = m〉〈ϕ2|m2 = m〉

=
1

2π
√

2M + 1

M∑
m=−M

exp
[
im (ϕ1 + ϕ2)

]
=

1

π
√

2M + 1

M∑
m=1

{
1
2

+ cos
[
m (ϕ1 + ϕ2)

]}
(B5)

=
1

π
√

2M + 1

M∑
m=1

{
1
2

+ cos (2mξ1)
}

= 〈ξ1|ψMES〉, (B6)

which only depends on the new angular variable ξ1, but not ξ2. From Eq. (B2), the free-evolution

propagator associated with H̃0 can be written as

U0 (τ, 0) = Uξ1 (τ, 0) Uξ2 (τ, 0) , (B7)

where

Uξ1 (τ, 0) = exp
(
−iH̃ξ1τ

)
(B8)
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and

Uξ2 (τ, 0) = exp
(
−iH̃ξ2τ

)
. (B9)

As a result, the free evolution of the canonical maximally entangled state can be expressed as

〈ξ1|ψMES (τ)〉 = 〈ξ1|Uξ1 (τ, 0) |ψMES (0)〉 , |ψMES (0)〉 = |ψMES〉 . (B10)

In addition, the orientation operator of the two identical planar rotors can be recast as

Ô (α) ≡ cos (ϕ1 + α) + cos (ϕ2 + α) = 2 cos (ξ1 + α) cos ξ2, (B11)

noting that ϕ1 = ξ1 + ξ2 and ϕ2 = ξ1 − ξ2. From Eqs. (B10) and (B11), we find that, in the

absence of the control field, the free evolution of the expectation value of the orientation operator

associated with the canonical maximally entangled state of the two identical polar planar rotors

can be simply computed as follows:

〈ψMES (τ)| cos (ϕ1 + α) + cos (ϕ2 + α) |ψMES (τ)〉

=

∫ 2π

0
dϕ1

∫ 2π

0
dϕ2〈ψMES (τ) |ϕ1, ϕ2〉

[
cos (ϕ1 + α) + cos (ϕ2 + α)

]
×〈ϕ1, ϕ2|ψMES (τ)〉

= 2
∫ 2π

0
dξ1

∫ π

−π

dξ2〈ψMES (τ) |ξ1〉 cos (ξ1 + α) cos ξ2〈ξ1|ψMES (τ)〉

= 2 〈ψMES (τ)| cos (ξ1 + α) |ψMES (τ)〉
∫ π

−π

dξ2 cos ξ2

= 0 ∀τ ≥ 0. (B12)

APPENDIX C: PERTURBATION TREATMENT OF DIRECTLY DIPOLE-DIPOLE COUPLED

DEGENERATE FREE-ROTOR PRODUCT STATES AT LARGE SEPARATIONS

Here we consider the situation that the strength of the dipole-dipole interaction W12, Eq. (3),

between two polar rotors is much smaller than the rotational constant B such that from Eq. (5) we

have

W̃12 ∼ Γ =
µ2

4πε0R3B
� 1 (C1)

which occurs when the distance between two rotors R is sufficiently large, i.e. R � 1 nm. It

can be shown that the field-free degenerate product states |m〉 ⊗ | ± (m + 1)〉 and |m + 1〉 ⊗ | ± m〉,

m = −M, · · · ,−1, 0,+1, · · · ,M − 1 (for M ≥ 2), can be grouped into 2-, 2-, and 4-fold irreducible

degenerate subspaces (with the degenerate energy equal to (2m2 + 2m + 1)B, see below). These
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degenerate energy levels, belonging to 2-, 2-, 4-fold subspaces, respectively, are split (as a result

of the perturbation due to the direct dipole-dipole interaction W12) into 2, 2, and 4 sublevels (of

energy differences on the order of Γ ∼ 1/R3, which is much smaller than 1, cf. Eq. (C1) ) at

large separations. These nearly degenerate sublevels determine the extreme long time field-free

recurring patterns of the field-free orientation of the weakly coupled rotors, for example, at R = 10

nm and R = 50 nm displayed in Fig. 10. All other field-free degenerate product states are not

directly coupled by the dipole-dipole interaction W̃12.

1. The perturbed two-fold degenerate subspaces

S
[2]
1 (m) ≡

{
|m, (m + 1)〉 , |(m + 1),m〉

}
, (C2)

associated with the eigenvalue
(
2m2 + 2m + 1

)
B, where

m = −M, . . . ,−2,+1, · · · ,M − 1,

in turn form a (2(2M − 2))-dimensional subspace

S
[2(2M−2)]
1 = S

[2]
1 (−M) ⊕ · · · ⊕ S[2]

1 (−2) ⊕ S[2]
1 (+1) ⊕ · · · ⊕ S[2]

1 (+M), (C3)

where ′⊕′ denotes the direct product of subspaces. The 2 × 2 dipole-dipole coupling matrix

w[2]
1 (m) between the two degenerate states of the subspace S[2]

1 (m) can be written as

w[2]
1 (m) =

 〈m + 1,m|W12 |m + 1,m〉 〈m + 1,m|W12 |m,m + 1〉

〈m,m + 1|W12 |m + 1,m〉 〈m,m + 1|W12 |m,m + 1〉


=

1
4

Γ ×

 0 −1

−1 0

 . (C4)

It can be shown that by diagonalizing the 2 × 2 matrix w[2]
1 (m), the initially degenerate

levels within each subspace S[2]
1 (m) split into two non-degenerate sublevels, respectively,

corresponding to energy shifts

−
1
4

Γ, +
1
4

Γ. (C5)

2. The perturbed two-fold degenerate subspaces

S
[2]
2 (m) ≡

{
|m,−(m + 1)〉 , |(m + 1),−m〉

}
, (C6)
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associated with the eigenvalue
(
2m2 + 2m + 1

)
B, where

m = −M, . . . ,−2,+1, · · · ,M − 1.

form a 2(2M − 2)-dimensional subspace

S
[2(2M−2)]
2 = S

[2]
2 (−M) ⊕ · · · ⊕ S[2]

2 (−2) ⊕ S[2]
2 (+1) ⊕ · · · ⊕ S[2]

2 (+M). (C7)

The 2 × 2 dipole-dipole coupling matrix w[2]
2 (m) between the two degenerate states of the

subspace S[2]
2 (m) can be written as

w[2]
2 (m) =

 〈m,−(m + 1)|W12 |m,−(m + 1)〉 〈m,−(m + 1)|W12 |m + 1,−m〉

〈m + 1,−m|W12 |m,−(m + 1)〉 〈m + 1,−m|W12 |m + 1,−m〉


=

1
4

Γ ×

 0 −3 exp(i2θ)

−3 exp(−i2θ) 0

 . (C8)

It can shown that by diagonalizing the 2 × 2 matrix w[2]
2 (m), the initially degenerate lev-

els within each subspace S[2]
2 (m) split into a pair of non-degenerate sublevels, respectively,

corresponding to energy shifts

−
3
4

Γ, +
3
4

Γ. (C9)

3. The perturbed four-fold degenerate subspace:

S
[4]
3 ≡

{
|−1, 0〉 , |0,−1〉 , |0, 1〉 , |1, 0〉

}
, (C10)

associated with the eigenvalue B. The 4×4 dipole-dipole coupling matrix w[4]
3 between these

four degenerate states can be written as

w[4]
3 =

1
4

ED ×



0 −1 −3 exp(i2θ) 0

−1 0 0 −3 exp(i2θ)

−3 exp(−i2θ) 0 0 −1

0 −3 exp(−i2θ) −1 0


(C11)

within the degenerate subspace S[4]
3 . It can be shown that the the matrix w[4]

3 possesses

four distinct eigenvalues −Γ, − 1
2Γ, 1

2Γ, and Γ, indicating a slight splitting of the initially

degenerate levels into four non-degenerate sublevels, respectively.
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4. The unperturbed [(2M + 1)2 − 4(2M − 1)]-dimensional subspace

S
[(2M+1)2−4(2M−1)]
∅

≡
{
|m1〉 ⊗ |m2〉 < S

[4M−4]
1 ⊕ S

[4M−4]
2 ⊕ S

[4]
3

}
(C12)

is a Hilbert space spanned by all other field-free product states that do not belong to the

degenerate subspaces S[2(2M−2)]
1 , S[2(2M−2)]

2 , and S[4]
3 .

APPENDIX D: THE FIELD-FREE OF LONG-TIME REVIVAL PATTERN OF THE ORIENTA-

TION PEAKS

In the absence of the control field and at large separations where

W̃12 ∼ Γ =
µ2

4πε0R3B
� 1 (D1)

it is advantageous to cast the corresponding time-dependent state wave function of the field-free

coupled rotors as

|ψ0(τ)〉 = exp
(
−i

[
L2

1 + L2
2

]
τ
)
|ψ0

I (τ)〉. (D2)

Substituting Eq.(D2) in Eq.(8) leads to the governing time-dependent equation

i
∂
∣∣∣ψ0

I (τ)
〉

∂τ
= W I

12(τ)
∣∣∣ψ0

I (τ)
〉
, |ψ0

I (0)〉 = |ψ(0)〉, (D3)

in the interaction representation, where

W I
12(τ) = exp

(
i
[
L2

1 + L2
2

]
τ
)
× W̃12 × exp

(
−i

[
L2

1 + L2
2

]
τ
)
. (D4)

It can then be shown that Eq. (D3) may be further approximated as

i
∂

∂τ

∣∣∣ψ0
I (t)

〉
≈ W

I
12

∣∣∣ψ0
I (τ)

〉
, (D5)

analogous to dropping the highly oscillatory terms in the rotating wave approximation [54], where

the effective time-average dipole-dipole coupling W
I
12(τ) is given as

W
I
12 ≡

1
2π

∫ 2π

0
W I

12(τ)dτ. (D6)

The matrix elements of the time-average dipole-dipole interaction W
I
12 can be written as〈

m1m2

∣∣∣∣W I
12

∣∣∣∣ m′1,m′2〉
=

〈m1m2|W̃12|m1 ± 1,m2 ± 1〉 for m′1 = m1 ± 1,m′2 = m2 ± 1, ,

0 otherwise,
(D7)
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after substituting Eq. (D4) into Eq. (D6). Note that Eq. (D5) has been derived by invoking the

integral relation

1
2π

∫ 2π

0
exp

(
−i

[(
m′21 + m′22

)
−

(
m2

1 + m2
2

)]
τ
)

dτ =

1 for
(
m′21 + m′22

)
−

(
m2

1 + m2
2

)
= 0

0 for
(
m′21 + m′22

)
−

(
m2

1 + m2
2

)
, 0,

(D8)

for effectively removing highly oscillatory components, relative to the dipole-dipole interaction Γ,

of two free rotors. Consequently, we arrive at the approximation for the field-free wave function

|ψ0(τ)〉 ≈ exp
(
−i

[
L2

1 + L2
2

]
τ
)
× exp

(
−iW

I
12τ

)
|ψ(0)〉, (D9)

and find that the evolution of orientation (here for rotor 1) may be approximated as

〈cosϕ1〉(τ) ≡
〈
ψ0(τ)

∣∣∣∣cosϕ1

∣∣∣ψ0(τ)
〉

=

〈
ψMOS

∣∣∣∣∣exp
(
+iW

I
12τ

)
× exp

(
+i

[
L2

1 + L2
2

]
τ
)

cosϕ1

exp
(
−i

[
L2

1 + L2
2

]
τ
)
× exp

(
−iW

I
12τ

)∣∣∣∣∣ψMOS

〉
. (D10)

with the maximally oriented states |ψMOS〉 as the initial state |ψ(0)〉. From Eq. (D7), and the

orthogonal relation 〈mi|m′i〉 = δmim′i , we can explicitly expand Eq. (D10) as

〈cosϕ1〉(τ) =
∑
m1

∑
m2

∑
m′1=m1±1

∑
m′′1 =m1±1

∑
m′′2 =m2±1

∑
m′′′1 =m′1±1

∑
m′′′2 =m2±1〈

ψMOS

∣∣∣∣∣m′′1 ,m′′2 〉
×

{〈
m′′1 ,m

′′
2

∣∣∣∣∣exp
(
+iW

I
12τ

)∣∣∣∣∣ m1,m2

〉
× 〈m1| cosϕ1|m′1〉

×

〈
m′1,m2

∣∣∣∣∣exp
(
−iW

I
12τ

)∣∣∣∣∣ m′′′1 ,m
′′′
2

〉}
×

〈
m′′′1 ,m

′′′
2

∣∣∣∣∣ψMOS

〉
× exp

(
−i

[
m′21 − m2

1

]
τ
)
. (D11)

The field-free orientation dynamics in Eq. (D11) at large separations contain two disparate time

scales: (i) short-time fast oscillations, of time scale on the order of the inverse of the rotational

constant , and (ii) long time slow modulations, of time scale on the order of the inverse of the

dipole-dipole coupling strength ∼ 1/Γ ∼ R3, see Eq. (D7). The long time revival periods in

Figs. 10(a) and 10(b) can be understood in terms of the small splittings of the degenerate free-

rotor product states due to the very small dipole-dipole coupling Γ ∼ 1/R3. Specifically, the

short-time fast oscillations in Eq. (D11) are due to the exponential term

exp
(
−i[m′21 − m2

1]τ
)
, m′1 = m1 ± 1,
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with [m′21 − m2
1] = [(m1 ± 1)2 − m2

1] , 0, while the long-time slow oscillations are associated with

the concatenated products〈
m′′1 m′′2

∣∣∣∣∣{exp
(
+iW

I
12τ

)∣∣∣∣∣ m1,m2

〉
× 〈m1| cosϕ1|m′1〉 ×

〈
m′1,m2

∣∣∣∣∣exp
(
−iW

I
12τ

)}∣∣∣∣∣ m′′′1 m′′′2

〉
=

1
2

〈
m′′1 m′′2

∣∣∣∣∣{exp
(
+iW

I
12τ

)∣∣∣∣∣ m1,m2

〉
×

〈
m′1,m2

∣∣∣∣∣exp
(
−iW

I
12τ

)}∣∣∣∣∣ m′′′1 m′′′2

〉
×

{
δm1,m′1+1 + δm1,m′1−1

}
, (D12)

which indicate only the immediate neighboring free-rotor product states are linked by the joint

actions of the dipole-like orientation operator cosϕ1 and the time-average dipole-dipole interaction

W
I
12. Using the coupling property of the time-average dipole-dipole interaction W

I
12 (as a small

perturbation) in Eq. (D7), it was found that the degenerate product states directly coupled by W12

can be divided into three distinct subspaces as follows (see Appendix C):

(i) S[2(2M−2)]
1 ≡

{
{|m,m + 1〉, |m + 1,m〉} ; m = −M, · · · ,−2,+1, · · · ,M − 1

}
,

(ii) S[2(2M−2)]
2 ≡

{
{|m,−m − 1〉, |m + 1,−m〉} ; m = −M, · · · ,−2,+1, · · · ,M − 1

}
,

and

(iii) S[4]
3 ≡

{
| − 1, 0〉, |0,−1〉, |0, 1〉, |1, 0〉

}
.

Each of two subspaces, S[2(2M−2)]
1 and S[2(2M−2)]

2 , is a 2(2M-2)-dimensional one composed of 2M−2

two-fold degenerate subspaces, while the subspace S[4]
3 is a four-fold degenerate subspace. Thus,

the time-average dipole-dipole coupling matrix W
I
12 may be written in a direct-sum (denoted by

“⊕”) block structure, i.e.,

W
I
12 = W̃ [2(2M−2)]

1 ⊕ W̃ [2(2M−2)]
2 ⊕ W̃ [4]

3 ⊕ W̃[(2M+1)2−4(2M−1)]
∅

, (D13)

where W̃ [2(2M−2)]
1 and W̃ [2(2M−2)]

2 are direct sums of 2M − 2 sub-blocks of 2 × 2 similar matrices,

respectively, Eqs. (C4) and (C8), associated with subspaces S[2(2M−2)]
1 and S[2(2M−2)]

2 , W̃ [4]
3 is a 4×4

matrix, Eq. (C11), associated with subspace S[4]
3 , while W̃[(2M+1)2−4(2M−1)]

∅
is a [(2M +1)2−4(2M−

1)] × [(2M + 1)2 − 4(2M − 1)] zero matrix defined in the subspace S[(2M+1)2−4(2M−1)]
∅

spanned by

all other unperturbed free-rotor product states, including all degenerate ones that are not directly

coupled by W̃12, cf. Eq. (D7). As a result of the small dipole-dipole coupling W̃12 ∼ Γ, it can

be shown that (i) the two-fold degenerate free-rotor product states |m,m + 1〉 and |m + 1,m〉 are

split into two sublevels, respectively, corresponding to energy shifts −Γ/4 and +Γ/4, (ii) the two-

fold degenerate free-rotor product states |m,−m − 1〉 and |m + 1,−m〉 are split into two sublevels,

respectively, corresponding to energy shifts −3Γ/4 and +3Γ/4, and (iii) the four-fold degenerate

free-rotor product states |−1, 0〉, |0,−1〉, |0, 1〉, and |1, 0〉 are split into four sublevels, respectively,
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corresponding to energy shifts, −Γ,−Γ/2, +Γ/2, and +Γ. A closer examination shows that the

quantity

|m1,m2〉〈m1| cosϕ1|m′1〉〈m
′
1,m2|

in Eq. (D11) reduces to

|m1,m2〉〈m1 ± 1,m2|,

indicating that the summation over the index m′1 in Eq. (D11) can only assume a value of either

m1 +1 or m1−1; thus, the dipole-like orientation operator cosϕ1 only links the perturbed subspaces

S
[2(2M−2)]
1 , S[2(2M−2)]

2 , and S[4]
3 , individually, to the unperturbed subspace S[(2M+1)2−4(2M−1)]

∅
. More-

over, since the exponential of the zero matrix is an identity matrix, the time-average dipole-dipole

evolution operator exp
(
−iW

I
12τ

)
in Eq. (D11) can be written as a direct sum:

exp
(
−iW

I
12τ

)
= exp

(
−iW̃ [2(2M−2)]

1 τ
)
⊕ exp

(
−iW̃ [2(2M−2)]

2 τ
)
⊕ exp

(
−iW̃ [4]

3 τ
)

⊕ exp
(
−iW̃ [(2M+1)2−4(2M−1)]

∅
τ
)

= exp
(
−iW̃ [2(2M−2)]

1 τ
)
⊕ exp

(
−iW̃ [2(2M−2)]

2 τ
)
⊕ exp

(
−iW̃ [4]

3 τ
)

⊕ I[(2M+1)2−4(2M−1)]
∅

, (D14)

where I[(2M+1)2−4(2M−1)]
∅

is an identity matrix belonging to the subspaceS[(2M+1)2−4(2M−1)]
∅

. As a result,

there are four likely long-time overlapping revival patterns at the asymptotic regime Γ → 0 ,

corresponding to the periods

TL,
TL

2
,

TL

3
,

TL

4
, (D15)

respectively, in the field-free orientation dynamics of the coupled rotors. To this end, we found

that (i) sublevels in S[2(2M−2)]
1 are responsible for the longest revival period

TL ≡ TL(R) =
4
Γ
× τrot =

8π
Γ
, (D16)

(ii) sublevels in S[2(2M−2)]
2 contribute to a revival period equal to TL/3, while (iii) sublevels in S[4]

3

account for two more revival periods TL/4 and TL/2. Note that the rotational period for a planar

rotor is τrot = 2π in the dimensionless time.
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FIG. 1. The sketch shows the configuration of two planar rotors,with dipole moments µ1 and µ2 pointing

in the directions denoted by the rotor angles ϕ1 ∈ [−π, π] and ϕ2 ∈ [−π, π], respectively, from the x̂-axis.

The two rotors are separated by R, the linearly polarized electric field ε(t) is along the x̂-axis, and the

configuration angle between inter-rotor vector R and the electric field ε(t) is denoted by θ ∈ [0, π/2]. When

orientation is the control goal, the target angle is denoted by α ∈ [−π/2, π/2] from the x̂-axis.
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FIG. 2. Plots of the orientation objective functional JO(τf) vs the optimization parameter s based on the

use of D-MORPH for different θ and α at the separation R = 1 nm corresponding to strong dipole-dipole

coupling and starting with the same initial control field. The initial state |ψ(0)〉 is the ground state |E1〉 of

the coupled rotors. The initial control field, Eq. (37), is composed of three frequencies: ω1 = 8.1248,

ω2 = 7.5543, and ω3 = 6.8751. It takes about five times the number of optimization steps to reach the

maximum expectation value ∼ 1.97 of the orientation for (a) the oblique configuration angle θ = π/4 than

it does for (b) the perpendicular configuration angle θ = π/2.
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FIG. 3. Orientation control for θ = π/4, α = 0, and strong dipole-dipole coupling with R = 1 nm. (a) The

temporal evolution of orientation of rotor 1 (the same for rotor 2) in the presence of optimal control field. (b)

The optimal control field, ε (τ) (in units of a0 = 0.85625×105 V/cm) as a function of time τ. (c) The power

spectrum of the optimal field. The initial state is the ground state |E1〉 of the coupled rotors. Three dominant

peaks, labeled as 1, 2, 3 in (c), respectively, corresponding to the frequencies ω1 = 8.1248, ω2 = 7.5543,

and ω3 = 6.8751, which coincide with the sequential transitions: |E1〉 → |E7〉 → |E14〉 → |E27〉, used to

construct the initial field. The pulse length of the control fields is τf = 50.
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FIG. 4. Orientation control for θ = π/2, α = 0, and strong dipole-dipole coupling with R = 1 nm. (a) The

temporal evolution of orientation of rotor 1 (the same for rotor 2) in the presence of optimal control field. (b)

The optimal control field, ε (τ) (in units of a0 = 0.85625×105 V/cm) as a function of time τ. (c) The power

spectrum of the optimal field. The initial state is the ground state |E1〉 of coupled rotors. Three dominant

peaks, labeled as 1, 2, 3 in (c), respectively, corresponding to the frequencies ω1 = 8.1248, ω2 = 7.5543,

and ω3 = 6.8751, which coincide with the sequential transitions: |E1〉 → |E7〉 → |E14〉 → |E27〉, used to

construct the initial field. The pulse length of the control fields is τf = 50.
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FIG. 5. Orientation control for the case (A2) in the text for θ = π/2, α = 0, and strong dipole-dipole coupling

with R = 1 nm. (a) The temporal evolution of orientation of rotor 1 (the same for rotor 2) in the presence of

optimal control field. (b) The optimal control field, ε (τ) (in units of a0 = 0.85625×105 V/cm) as a function

of time τ. (c) The power spectrum of the optimal field.The initial state is the ground state |E1〉 of the coupled

rotors. Three dominant peaks, labeled as 1, 2, 3 in (c), respectively, corresponding to the frequenciesω1 = 2,

ω2 = 6, and ω3 = 10, which coincide with the sequential transitions: |00〉 → |11〉 → |22〉 → |33〉, used to

construct the initial field. The pulse length of the control fields is τf = 50.
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FIG. 6. Orientation control for the case (A3) in the text for θ = π/2, α = 0, and strong dipole-dipole coupling

with R = 1 nm. (a) The temporal evolution of orientation of rotor 1 (the same for rotor 2) in the presence

of optimal control field. (b) The optimal control field, ε (τ) (in units of a0 = 0.85625 × 105 V/cm) as a

function of time τ. (c) The power spectrum of the optimal field. The initial state is the ground product state

|0〉 ⊗ |0〉 of the uncoupled rotors. Three dominant peaks, labeled as 1, 2, 3 in red color in (c), respectively,

corresponding to the frequencies ω1 = 8.1248, ω2 = 7.5543, and ω3 = 6.8751, which coincide with the

sequential transitions: |E1〉 → |E7〉 → |E14〉 → |E27〉. The pulse length of the control fields is τf = 50.

40

Page 40 of 49Physical Chemistry Chemical Physics



FIG. 7. Time evolution of orientation of the coupled rotors in the presence of their respective optimal fields

(not shown), for the perpendicular configuration angle θ = π/2, at the target angle α = 0 and two separations.

Case (a) is at R = 2 nm with the intermediate dipole-dipole coupling Γ = 1.55, and (b) is a free rotor (Γ = 0)

driven by the same optimal control field as in panel (a). Case (c) is R = 5 nm at weak dipole-dipole coupling

Γ = 0.1, and (d) shows a free rotor (Γ = 0) driven by the same optimal control field as in panel (c). The

initial state is the ground state |E1〉 of the coupled rotors at the respective separations. The initial field ε(0, τ)

is composed of three frequencies: at R = 2 nm, ω1 = 2.2475, ω2 = 3.5415, and ω3 = 4.6245, corresponding

to the sequential transitions |E1〉 → |E6〉 → E17〉 → |E28〉 of the coupled rotors, and at R = 5 nm, ω1 = 1,

ω2 = 3, and ω3 = 5, corresponding to the sequential transitions |0〉 → |1〉 → 2〉 → |3〉 of a single rotor.
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FIG. 8. Time evolution of the field-free orientation of the coupled rotors (starting from the maximally

oriented states) at the separations (a) R = 2 nm, (b) R = 5 nm, and (c) R = ∞ (free rotors) for the

perpendicular configuration angle θ = π/2 and the target angle α = 0. Clear revival behavior is evident at

weak dipole-dipole coupling (b) and with no coupling (c).
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FIG. 9. Time evolution of orientation of the couple rotors in the presence of their respective optimal fields

(not shown) at the separations (a) R = 10 nm (very weak dipole-dipole coupling) and (b) R = 50 nm

(extremely weak coupling) for the configuration angle θ = π/2 and the target angle α = 0. The initial

state is the ground state |E1〉 of the coupled rotors at the respective separations. The initial field ε(0, τ) is

composed of three frequencies: ω1 = 1, ω2 = 3, and ω3 = 5, corresponding to the sequential transitions

|0〉 → |1〉 → 2〉 → |3〉 of a single rotor.
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FIG. 10. Long time evolution of the field-free orientation of the coupled rotors (starting from the maximally

oriented states) at the separations (a) R = 10 nm and (b) R = 50 nm for the perpendicular configuration

angle θ = π/2 and the target angle α = 0. The black regions hide the rapid short-period nearly free rotation

of the rotors, while the long-time scale beating envelopes arise from the weak perturbation due to the dipole-

dipole coupling. The labeled periods TL(R), R = 10, 50, correspond to the primary recurrence features. See

the text for details.
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FIG. 11. Time evolution of entanglement entropy, Eq. (23), of the coupled rotors, for the perpendicular

configuration θ = π/2, in the presence of control fields at different separations and pulse lengths: (a)

R = 1 nm, τf = 50, (b) R = 3 nm, τf = 100 and (c) R = 5 nm, τf = 150, after applying three different fields:

(1) the initial field(red line) (2) the optimal field(blue line) and (3) in the absence of field(black line), for

the transition from state |E1〉 to |ψMES〉. The initial state is the ground state |E1〉 of the coupled rotors at the

respective separations.
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FIG. 12. (a) The optimal field (in units of a0 = 0.85625 × 105 V/cm) and (b) its power spectrum,

corresponding to Fig. 11(a), for the perpendicular configuration angle θ = π/2 at the separation R = 1 nm

for the transition from the state |E1〉 to the state |ψMES〉. Three dominant peaks, labeled as 1, 2, 3 in (b),

respectively, corresponding to the frequencies ω1 = 2, ω2 = 6, and ω3 = 10, which coincide with the

sequential transitions between three lowest product states of the two free rotors: |0〉 ⊗ |0〉 → |1〉 ⊗ |1〉 →

|2〉 ⊗ |2〉 → |3〉 ⊗ |3〉.
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FIG. 13. The field-free entanglement entropy, Eq. (23), of the coupled rotors, for the perpendicular config-

uration θ = π/2 and starting from |ψMES〉 at R = 1 nm, as a function of R for different separation rates (a)

k = 0.01 (b) k = 0.1 (c) k = 1 (d) k = 10 and (e) k = 100 in Eq. (46). Despite the obvious differences due

to the distinct rates of rotor separation, the key observation is that entanglement changes modestly, at most,

as the rotors are separated.
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FIG. 14. Time evolution of entanglement entropy (left panels) and orientation (right panels) of the coupled

rotors; note the corresponding labeling of the ordinates. The configuration is perpendicular θ = π/2, in the

presence of the initial field, (a) and (c), and the optimal field, (b) and (d), for the transition |ψMES〉 → |ψMOS〉

at the strong dipole-dipole coupling separation R = 1 nm.
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FIG. 15. Time evolution of entanglement entropy (left panels) and orientation (right panels) of the coupled

rotors; note the corresponding labeling of the ordinates. The configuration is perpendicular θ = π/2, in the

presence of the initial field, (a) and (c), and the optimal field, (b) and (d), for the transition from |ψMOS〉 to

|ψMES〉 at the separation R = 1 nm.
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