ChemComm



# Conversion of 12-Membered D<sub>3</sub>- and L<sub>3</sub>-Co<sup>III</sup> $_3$ Cd<sup>II</sup> $_3$ Metallorings into a 24-Membered D<sub>3</sub>L<sub>3</sub>-Co<sup>III</sup> $_6$ Cd<sup>II</sup> $_6$ Metalloring

| Journal:      | ChemComm                 |
|---------------|--------------------------|
| Manuscript ID | CC-COM-11-2018-009121.R1 |
| Article Type: | Communication            |
|               |                          |

| SCH | <mark>OLAR</mark> ONE <sup>™</sup> |
|-----|------------------------------------|
| M   | anuscripts                         |

# **Journal Name**

# COMMUNICATION



# Conversion of 12-Membered D<sub>3</sub>- and L<sub>3</sub>-Co<sup>III</sup><sub>3</sub>Cd<sup>II</sup><sub>3</sub> Metallorings into a 24-Membered D<sub>3</sub>L<sub>3</sub>-Co<sup>III</sup><sub>6</sub>Cd<sup>II</sup><sub>6</sub> Metalloring

Received 00th January 20xx, Accepted 00th January 20xx

D. Hayashi,<sup>a</sup> N. Yoshinari<sup>a</sup> and T. Konno\*<sup>a</sup>

DOI: 10.1039/x0xx00000x

### www.rsc.org/

The treatment of  $[Co(D- \text{ or } L-\text{ebp})]^-$  with  $CdX_2$  (X = Br<sup>-</sup>, l<sup>-</sup>) gave a cyclic  $Co^{III}_3Cd^{II}_3$  complex with a 12-membered metalloring,  $[Cd_3X_3\{Co(D- \text{ or } L-\text{ebp})\}_3]$  (D<sub>3</sub>- or L<sub>3</sub>-1<sub>X</sub>). The use of a 1:1 mixture of  $[Co(D-\text{ebp})]^-$  and  $[Co(L-\text{ebp})]^-$ , instead of  $[Co(D- \text{ or } L-\text{ebp})]^-$ , led to the creation of a cyclic  $Co^{III}_6Cd^{II}_6$  complex with a 24-membered metalloring,  $[Cd_6X_6(H_2O)_6\{Co(D-\text{ebp})\}_3\{Co(L-\text{ebp})\}_3]$  (D<sub>3</sub>L<sub>3</sub>-2<sub>X</sub>). Compounds D<sub>3</sub>L<sub>3</sub>-2<sub>X</sub> were also produced when D<sub>3</sub>-1<sub>X</sub> and L<sub>3</sub>-1<sub>X</sub> were mixed in water in a 1:1 ratio, illustrating the conversion of a pair of homochiral metallorings into a double-sized heterochiral metalloring.

Metalloring compounds are polygonal architectures constructed by the alternating assembly of metal ions and organic ligands through coordination bonds.<sup>1</sup> One of the most attractive aspects of this class of compounds is that their structures are convertible to other cyclic structures or polyhedrons,<sup>2,3</sup> unlike covalently bridged organic macrocycles such as cyclic oligosaccharides and crown ethers. To date, the structural conversions induced by external chemical/physical factors, such as the solvent,<sup>4</sup> temperature,<sup>5</sup> pH,<sup>6</sup> light,<sup>7</sup> concentration,<sup>8</sup> and guest molecules/ions,<sup>9</sup> have extensively been investigated, with the aim of potential applications as molecular machines and sensing devices.<sup>10</sup> Recent interesting examples of structural conversions involve the intercrossing of metal ions or ligands between two types of metallorings.<sup>3,11,12</sup> While the intercrossing reactions are beneficial for creating mixed-metal (heterometallic) or mixed-ligand (heteroleptic) metallorings, these reactions have normally proceeded while keeping the sizes of the original rings and have rarely been applied for expanding/contracting metallorings.13

As part of our long-standing interest in the rational construction of S-bridged polynuclear and metallosupramolecular structures by using thiolato metal

complexes as S-donating metalloligands,<sup>14-16</sup> we previously reported that trans(N)-[Co(p-pen)<sub>2</sub>]<sup>-</sup> binds to a Cd<sup>II</sup> centre in a bidentate-S,S chelating mode to form an S-bridged Co<sup>III</sup><sub>2</sub>Cd<sup>II</sup> trinuclear complex, [Cd(H<sub>2</sub>O){Co(D-pen)<sub>2</sub>}<sub>2</sub>].<sup>17</sup> To construct Sbridged polynuclear structures that have a cyclic form, it is necessary to employ a thiolato complex that can bridge two metal centres through sulfur donors, instead of trans(N)-[Co(Dpen)<sub>2</sub>]<sup>-</sup>. The complex *trans*(O)-[Co(p-ebp)]<sup>-</sup>, which has been synthesized by us.<sup>18</sup> meets this requirement because of its trans(O) geometry suitable for adopting a bridging coordination mode,<sup>19</sup> as well as its N,N-bridged structure that enlarges the S-Co-S angle to prevent it from chelating to a metal centre. Here, we report that the reactions of trans(O)- $[Co(D- or L-ebp)]^-$  with  $CdX_2$  (X = Br<sup>-</sup>, I<sup>-</sup>) indeed afford cyclic Co<sup>III</sup><sub>3</sub>Cd<sup>II</sup><sub>3</sub> complexes with a 12-membered metalloring,  $[Cd_3X_3\{Co(D- or \ L-ebp)\}_3]$   $(D_3-\mathbf{1}_x or \ L_3-\mathbf{1}_x)$  (Scheme 1). Remarkably, the 1:1 mixing of  $D_3$ - $\mathbf{1}_x$  and  $L_3$ - $\mathbf{1}_x$  led to the production of heterochiral complexes with a 24-membered metalloring,  $[Cd_6X_6(H_2O)_6\{Co(D-ebp)\}_3\{Co(L-ebp)\}_3]$  (D<sub>3</sub>L<sub>3</sub>-**2**<sub>x</sub>). To the best of our knowledge, this is the first example of a metalloring expansion due to the conversion of a pair of enantiomeric metallorings via a heterochiral recognition event.



Scheme 1. Reactions of [Co(ebp)]<sup>-</sup> with CdX<sub>2</sub>.

<sup>&</sup>lt;sup>a.</sup> Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan).

E-mail: konno@chem.sci.osaka-u.ac.jp; Tel: +81-6-6850-5765

<sup>&</sup>lt;sup>+</sup> Electronic Supplementary Information (ESI) available: Synthesis, NMR, absorption, diffuse reflection, circular dichroism (CD), powder X-ray diffraction, thermal gravimetric analysis (TGA) and crystallographic data. CCDC 1879438-1879446. See DOI: 10.1039/x0xx00000x

#### COMMUNICATION

Complexes Na[Co(D-ebp)] and Na[Co(L-ebp)] were prepared according to a procedure similar to that used in the literature,<sup>18</sup> employing Na<sub>3</sub>[Co(CO<sub>3</sub>)<sub>3</sub>] as a Co<sup>III</sup> source instead of  $[Co(NH_3)_6]Cl_3$  to prevent the contamination of NaCl in the product. The reaction of Na[Co(D-ebp)] with a slight excess of Cdl<sub>2</sub> in water gave a purple solution, from which purple block crystals  $(D_3-1_1)$  were isolated with a satisfactory yield (73%).<sup>+</sup> The fluorescence X-ray analysis of this product showed the presence of Cd, Co, S, and I atoms, and its elemental analytical data were in good agreement with the formula for a 1:1:1 adduct of  $[Co(ebp)]^-$ ,  $Cd^{2+}$ , and  $I^-$ ,  $\dagger$ ,  $\ddagger$  The structure of  $D_3$ - $\mathbf{1}_1$  was determined by single-crystal X-ray crystallography (space group: C2221, Flack parameter: 0.030(6)), which revealed the presence of neutral complex molecules and water molecules of crystallization. As shown in Figure 1a, the complex molecule consists of three [Co(D-ebp)]<sup>-</sup> octahedral units that are alternately bridged by three {Cdl}<sup>+</sup> moieties through S and O atoms (av. Cd–S = 2.54 Å, av. Cd-O = 2.53 Å), forming a cyclic  $Co^{III}_{3}Cd^{II}_{3}$  structure in  $[Cd_{3}I_{3}\{Co(D-ebp)\}_{3}]$  having a 12membered  $Co_3Cd_3S_6$  metalloring. In  $D_3$ -**1**<sub>1</sub>, each Cd<sup>II</sup> atom is coordinated by two thiolato S and two carboxyl O atoms from two  $[Co(D-ebp)]^-$  units and one terminal I<sup>-</sup> ion (av. Cd–I = 2.68 Å) in a distorted trigonal-bipyramidal geometry. The cyclic structure in  $D_3$ -1, possesses a cavity with the largest S…S separation of 5.29 Å. This cavity size is similar to that found in the S<sub>6</sub> thioether cage that can encapsulate a metal ion.<sup>20</sup>



**Figure 1.** Perspective views of (a)  $D_3-\mathbf{1}_{l_{\nu}}$  (b)  $L_3-\mathbf{1}_{l_{\nu}}$  and (c)  $D_3L_3-\mathbf{2}_{l_{\nu}}$  viewed from virtual  $C_3$  or  $S_6$  axes. Colour code: Cd, beige; I, purple; Co, blue for  $[Co(D-ebp)]^-$  unit and green for  $[Co(L-ebp)]^-$  unit; S, yellow; O, pink; N, pale blue; C, grey. H atoms are omitted for clarity. Red dashed lines indicate NH···I hydrogen bonds.

#### Journal Name

Page 2 of 4

To check the stability of the cyclic structure in  $D_3$ - $\mathbf{1}_1$ , we measured the electronic absorption, CD, and <sup>1</sup>H NMR spectra in solution.\$ The absorption spectrum of D<sub>3</sub>-1<sub>1</sub> in water exhibits a visible band ca. 530 nm, with a shoulder at a lower wavelength, assignable to the d-d transition of a Co<sup>III</sup> centre (Figure S1).<sup>†</sup> In this d-d band region, positive bands are observed in the CD spectrum (Figure S1).<sup>+</sup> The absorption and CD spectra of  $D_3$ - $\mathbf{1}_1$  are almost identical with those of the parental Na[Co(D-ebp)] in water. This is also the case for the <sup>1</sup>H NMR spectrum of  $D_3-1_1$ , which gives a single set of proton signals identical to those for Na[Co(p-ebp)] (Figure S2).<sup>+</sup> Thus, we conclude that  $D_3-\mathbf{1}_1$  is dissociated into  $[Co(D-ebp)]^-$  and  $Cd^{2+}$ ions in water due to the cleavage of Cd-S and Cd-O bonds, considering that appreciable differences in the diffuse reflection and CD spectra of D<sub>3</sub>-1<sub>1</sub> and Na[Co(D-ebp)] were found in the solid state (Figures S3, S4).<sup>+</sup>

A similar reaction with Cdl<sub>2</sub> using Na[Co(L-ebp)], instead of Na[Co(D-ebp)], also produced purple block crystals (L<sub>3</sub>-1<sub>1</sub>). Based on the single-crystal X-ray analysis (space group: C222<sub>1</sub>, Flack parameter: 0.011(5)), together with the spectroscopic measurements (Figures S2-S4), L<sub>3</sub>-1 was confidently determined to have a cyclic Co<sup>III</sup><sub>3</sub>Cd<sup>II</sup><sub>3</sub> structure in [Cd<sub>3</sub>I<sub>3</sub>{Co(Lebp) $_{3}$ , which is enantiomeric to the structure in  $D_{3}$ - $\mathbf{1}_{I}$  (Figure 1b). On the other hand, the use of a 1:1 mixture of Na[Co(Debp)] and Na[Co(L-ebp)] gave purple crystals with a hexagonal plate shape (D<sub>3</sub>L<sub>3</sub>-**2**<sub>1</sub>).<sup>+</sup>,<sup>‡</sup> The fluorescence X-ray and elemental analyses indicated that D<sub>3</sub>L<sub>3</sub>-2<sub>1</sub> is a 1:1:1 adduct of [Co(ebp)]<sup>-</sup>, Cd<sup>2+</sup>, and I<sup>-</sup>, as is also the case for  $D_3$ -**1**<sub>1</sub> and  $L_3$ -**1**<sub>1</sub>. The CD spectrum of  $D_{3}L_{3}$ -**2**<sub>1</sub> in the solid state, as well as in water, is completely silent, indicative of the presence of [Co(D-ebp)]and [Co(L-ebp)]<sup>-</sup> units in a 1:1 ratio. However, the assignment of  $D_3L_3$ - $\mathbf{2}_1$  as a racemic compound consisting of  $D_3$ - $\mathbf{1}_1$  and  $L_3$ - $\mathbf{1}_1$  is excluded because the diffuse reflection spectral feature of  $D_3L_3$ -**2**<sub>1</sub> is not the same as that of  $D_3$ -**1**<sub>1</sub> or  $L_3$ -**1**<sub>1</sub> (Figure S5).<sup>+</sup>

The molecular structure of  $D_3L_3-2_1$  was established by a single-crystal X-ray analysis (space group: R3). As shown in Figure 1c,  $D_3L_3$ -**2**<sub>1</sub> has a cyclic  $Co^{III}_6Cd^{III}_6$  structure in  $\label{eq:colored} [Cd_6I_6(H_2O)_6\{Co(\texttt{D}\mbox{-}ebp)\}_3\{Co(\texttt{L}\mbox{-}ebp)\}_3], \mbox{ in which three } [Co(\texttt{D}\mbox{-}ebp)\}_3],$ ebp)]<sup>-</sup> and three [Co(L-ebp)]<sup>-</sup> units are alternately spanned by  ${Cdl(H_2O)}^+$  moieties in the meso form with an S<sub>6</sub> symmetry.\$\$ Like in  $D_3$ - $\mathbf{1}_1$  and  $L_3$ - $\mathbf{1}_1$ , the [Co(ebp)]<sup>-</sup> units in  $D_3L_3$ - $\mathbf{2}_1$  each bind to two Cd<sup>II</sup> centres in a bis(bidentate-O,S) mode. However, each Cd<sup>II</sup> atom adopts a distorted octahedral geometry, coordinated by two S and two O atoms from two [Co(ebp)]<sup>-</sup> units (av. Cd–S = 2.58 Å, av. Cd–O<sub>COO</sub> = 2.75 Å), one I<sup>−</sup> ion (Cd–I = 2.8269(3) Å), and one water molecule (Cd– $O_{H2O}$  = 2.2174(18) Å). Importantly, the  $Co_{6}Cd_{6}Cd_{6}$  structure in  $D_{3}L_{3}$ -2, comprises a 24-membered Co<sub>6</sub>Cd<sub>6</sub>S<sub>12</sub> metalloring that is twice as large as the metalloring in the homochiral  $D_3$ - $\mathbf{1}_1$  or  $L_3$ - $\mathbf{1}_1$ . The metalloring cavity in  $D_3L_3$ - $\mathbf{2}_1$ is occupied by 12 ebp methyl groups by forming hydrophobic interactions (Figure S6).<sup>+</sup> In the cyclic structure in  $D_{3}L_{3}$ - $2_{1}$ , there exist six intramolecular hydrogen bonds (NH...I = 3.5966(18) Å) between amine groups and iodide ligands (Figure 1c). Such intramolecular hydrogen bonds are not found in  $D_3$ - $\mathbf{1}_1$  and  $L_3$ - $\mathbf{1}_1$ ; the closest N...I separation is 5.07 Å. We assume that the intramolecular NH...I hydrogen bonds, together with the hydrophobic interactions due to methyl groups, lead to the heterochiral assembly of  $D_3L_3$ -**2**<sub>1</sub> from  $[Co(D-ebp)]^-$  and [Co(Lebp)]<sup>-</sup> on crystallization. The ESI-mass spectrum of D<sub>3</sub>L<sub>3</sub>-**2**<sub>1</sub> in

#### Journal Name

MeOH/H<sub>2</sub>O (v/v = 1/1) shows a divalent signal corresponding to  $[Cd_6I_4\{Co(ebp)\}_6]^{2+}$  and a monovalent signal corresponding to  $[Cd_3I_2\{Co(ebp)\}_3]^+$  at m/z = 1729 in an approximate intensity ratio of 2:1, although these signals are weak (Figure S7).<sup>+</sup> For D<sub>3</sub>-**1**<sub>1</sub> or L<sub>3</sub>-**1**<sub>1</sub>, a monovalent signal corresponding to  $[Cd_3I_2\{Co(ebp)\}_3]^+$  (m/z = 1729) is observed, but no apparent signal corresponding to  $[Cd_6I_4\{Co(ebp)\}_6]^{2+}$  is detected. These mass spectral features suggest the preferential formation of the cyclic  $Co^{III}_6Cd^{III}_6$  structure, rather than the  $Co^{III}_3Cd^{III}_3$ structure, when  $[Co(D-ebp)]^-$  and  $[Co(L-ebp)]^-$  coexist in solution.

Prompted by these results, we carried out the 1:1 mixing of  $D_3$ - $\mathbf{1}_1$  and  $L_3$ - $\mathbf{1}_1$  in water, expecting the selective formation of  $D_{3}L_{3}$ -2<sub>I</sub> via the scrambling of the  $[Co(D-ebp)]^{-}$  and  $[Co(L-ebp)]^{-}$ units. When aqueous NaI was added to the brown solution of  $D_3$ - $\mathbf{1}_1$  and  $L_3$ - $\mathbf{1}_1$ , we were able to isolate purple hexagonal crystals of D<sub>3</sub>L<sub>3</sub>-2<sub>1</sub> in high yield (84%).<sup>+</sup>,<sup>‡</sup> Since other species were not crystallized from the mixed solution,  $D_3$ - $\mathbf{1}_1$  and  $L_3$ - $\mathbf{1}_1$ are fused to produce  $D_{3}L_{3}$ -2, exclusively in the course of the crystallization process. Notably, green block crystals (D<sub>2</sub>L<sub>2</sub>-3), besides the purple hexagonal platelet crystals of  $D_3L_3$ - $2_1$ , appeared when NaI was not added to an aqueous solution of the 1:1 mixture of  $D_3$ -1, and  $L_3$ -1, \$\$ A single-crystal X-ray analysis demonstrated that D2L2-3 is composed of two [Co(Debp)]<sup>-</sup> and two  $[Co(L-ebp)]^-$  units and two  $\{Cd(H_2O)\}^{2+}$  moieties (space group:  $P2_1/n$ ) (Figure S8).<sup>†</sup> In  $D_2L_2$ -**3**, [Co(D-ebp)]<sup>-</sup> and [Co(L-ebp)]<sup>-</sup> units are linked by two Cd<sup>II</sup> atoms to form an Sbridged Co<sup>III</sup><sub>2</sub>Cd<sup>II</sup><sub>2</sub> tetranuclear core with an 8-membered Cd<sub>2</sub>Co<sub>2</sub>S<sub>4</sub> metalloring. To this core, additional [Co(D-ebp)]<sup>-</sup> and  $[Co(L-ebp)]^-$  units each bind to a Cd<sup>II</sup> centre in a bidentate-S,O mode, completing a meso Co<sup>III</sup><sub>4</sub>Cd<sup>III</sup><sub>2</sub> hexanuclear structure in  $[Cd_2(H_2O)_2\{Co(D-ebp)\}_2\{Co(L-ebp)\}_2]$ . Each Cd<sup>II</sup> atom in  $D_2L_2$ -3 has a square-pyramidal geometry coordinated by three thiolato S and a carboxyl O atom from three [Co(ebp)]- units (av. Cd–S = 2.56 Å, Cd–O<sub>coo</sub> = 2.787(3) Å), besides one water molecule (Cd– $O_{H2O}$  = 2.403(4) Å). The formation of  $D_{2L_2}$ -3 is a result of the lack of iodide ions bound to each Cd<sup>II</sup> centre, which is indicative of the importance of the iodide coordination to construct the  $Co_{6}^{III}Cd_{6}^{III}$  structure in  $D_{3}L_{3}$ -2, from  $D_3$ - $\mathbf{1}_1$  and  $L_3$ - $\mathbf{1}_1$ .

To see the generality of this intriguing conversion phenomena, analogous cyclic  $Co^{III}_3Cd^{III}_3$  complexes with bromide ligands,  $[Cd_3Br_3\{Co(D-ebp)\}_3]$  (D<sub>3</sub>-1<sub>Br</sub>) and  $[Cd_3Br_3\{Co(L-bp)\}_3]$ ebp)}<sub>3</sub>] ( $L_3$ -**1**<sub>Br</sub>), were prepared from Na[Co(D- or L-ebp)] and  $CdBr_2$ .<sup>†</sup> The characterization of D<sub>3</sub>-1<sub>Br</sub> and L<sub>3</sub>-1<sub>Br</sub> was made by fluorescence X-ray and elemental analyses and spectroscopic methods (Figures S9, S10).<sup>+</sup>,<sup>‡</sup> The single-crystal X-ray analysis confirmed that the overall structures of  $D_3$ - $\mathbf{1}_{Br}$  (space group: C222<sub>1</sub>, Flack parameter: 0.032(5)) and  $L_3$ -**1**<sub>Br</sub> (space group: C222<sub>1</sub>, Flack parameter: 0.022(8)) are essentially the same as those of  $D_3$ - $\mathbf{1}_1$  and  $L_3$ - $\mathbf{1}_1$ , respectively, except for the presence of Br<sup>-</sup> ligands (av. Cd-Br = 2.51 Å) (Figure S11).<sup>+</sup> As expected, the 1:1 mixing of  $D_3$ - $\mathbf{1}_{Br}$  and  $L_3$ - $\mathbf{1}_{Br}$  in water in the presence of NaBr, as well as the reaction of a 1:1 mixture of Na[Co(D-ebp)] and Na[Co(L-ebp)] with CdBr<sub>2</sub>, led to the production of a cyclic Cd<sup>II</sup><sub>6</sub>Co<sup>III</sup><sub>6</sub> complex with a 24-membered metalloring,  $[Cd_6Br_6(H_2O)_6\{Co(D-ebp)\}_3\{Co(L-ebp)\}_3]$  (D<sub>3</sub>L<sub>3</sub>-**2**<sub>Br</sub>). The molecular structure of D<sub>3</sub>L<sub>3</sub>-2<sub>Br</sub>, determined by single-crystal X-ray analysis (space group:  $R^3$ ), corresponds well with that of  $D_3L_3$ -**2**<sub>1</sub>, with the metalloring cavity being occupied by methyl groups (Figure

#### COMMUNICATION

S11).<sup>†</sup> Like in  $D_{3L_3}$ -**2**<sub>1</sub>, the cyclic structure in  $D_{3L_3}$ -**2**<sub>Br</sub> appears to be sustained by intramolecular hydrogen bonds (N···Br = 3.428(5) Å). Here, it should be noted that the use of CdCl<sub>2</sub> in the reaction of Na[Co(p-ebp)] did not afford a cyclic Co<sup>III</sup><sub>3</sub>Cd<sup>II</sup><sub>3</sub> complex but a (Co<sup>III</sup>Cd<sup>III</sup>)<sub>n</sub> 4-fold helix structure in [CdCl{Co(p-ebp)}]<sub>n</sub> (space group:  $P4_12_12$ , Flack parameter: 0.018(5)) (Figure S12).<sup>†</sup> Nevertheless, the reaction of a 1:1 mixture of Na[Co(p-ebp)] and Na[Co(L-ebp)] with CdCl<sub>2</sub> led to the production of a cyclic Cd<sup>III</sup><sub>6</sub>Co<sup>III</sup><sub>6</sub> complex with a 24-membered metalloring, [Cd<sub>6</sub>Cl<sub>6</sub>(H<sub>2</sub>O)<sub>6</sub>{Co(p-ebp)}<sub>3</sub>(Co(L-ebp)}<sub>3</sub>] (D<sub>3</sub>L<sub>3</sub>-**2**<sub>CI</sub>) (space group:  $R^{\overline{3}}$ ), the structure of which is the essentially same as those of D<sub>3</sub>L<sub>3</sub>-**2**<sub>1</sub> and D<sub>3</sub>L<sub>3</sub>-**2**<sub>Br</sub> (Figure S12).<sup>†</sup>

In summary, we showed that [Co(ebp)]<sup>-</sup> adopts a bridging mode to Cd<sup>II</sup> to construct S-bridged metalloring structures. While the use of the homochiral [Co(D- or L-ebp)]<sup>-</sup> in the reactions with  $CdX_2$  (X = Br<sup>-</sup>, I<sup>-</sup>) gave  $Co^{III}_3Cd^{II}_3$  complexes with a 12-membered metalloring  $(D_3-\mathbf{1}_X \text{ or } L_3-\mathbf{1}_X)$ , the use of a racemic mixture of [Co(D-ebp)]<sup>-</sup> and [Co(L-ebp)]<sup>-</sup> produced a  $Co^{III}_{6}Cd^{II}_{6}$  complex with a 24-membered metalloring  $(D_{3L_{3}}-2_{X})$ . Remarkably, the 1:1 mixing of  $D_3$ - $\mathbf{1}_X$  and  $L_3$ - $\mathbf{1}_X$  led to the production of  $D_{3}L_{3}$ - $2_{x}$ , showing the unprecedented conversion of a pair of homochiral metallorings into a double-sized heterochiral metalloring. The presence of halide ligands that can form intramolecular hydrogen bonds, as well as ebp methyl groups that can induce a hydrophobic effect, is a key to the conversion of  $D_3$ - $\mathbf{1}_{\mathbf{X}}$  and  $L_3$ - $\mathbf{1}_{\mathbf{X}}$  into  $D_3L_3$ - $\mathbf{2}_{\mathbf{X}}$ . While homochiral coordination systems have attracted much attention in recent years due to their relevance to biological systems,<sup>21</sup> the present results demonstrate the availability of a heterochiral system as an alternative way to construct fascinating selfassembled metallosupramolecular architectures.

This work was supported in part by CREST, JST (Grant No. JPMJCR13L3) and by the Sumitomo Foundation. The synchrotron radiation experiments were performed at the BL02B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2015A1520 and 2015B1241).

### **Conflicts of interest**

There are no conflicts to declare.

### Notes and references

<sup>‡</sup> The bulk purity of each product was confirmed by powder Xray diffraction (PXRD), the pattern of which matched well with the pattern simulated from the single-crystal X-ray data (Figures S13, S14).<sup>†</sup>

\$ The TGA data showed that  $D_3-1_1$  and  $D_3L_3-2_1$  are stable until 250 °C in the solid state, although most of their water molecules of crystallization are released by 100 °C. The PXRD experiments indicated that the crystalline phases of  $D_3-1_1$  and  $D_3L_3-2_1$  are at least in part maintained after removing of water molecules of crystallization by heating at 100 °C (Figures S16-S18).†

### COMMUNICATION

\$ Pure  $D_{2L_2}$ -**3** was isolated by the recrystallization of a mixture of  $D_{3L_3}$ -**2**<sub>1</sub> and  $D_{2L_2}$ -**3** from water and characterized by elemental, fluorescence X-ray, and powder and single-crystal X-ray diffraction analyses, as well as diffuse reflection spectral measurements (Figures S13, S15). †

- Y.-H. Han, Y. Ye, C. Tian, Z. Zhang, S.-W. Du, S. Xiang, J. Mater. Chem. A, 2018, 6, 19681; Z. Li, Y. Ye, Z. Yao, J. Guo, Q. Lin, J. Zhang, Z. Zhang, F. Wei, S. Xiang, J. Mater. Chem. A, 2016, 4, 18742.
- 2 (a) P. J. Stang, *Chem. Eur. J.* 1998, 4, 19; S. Leininger, B.
  Olenyuk, P. J. Stang, *Chem. Rev.* 2000, 100, 853. (b) M. Fujita,
  M. Tominaga, A. Hori, B. Therrien, *Acc. Chem. Res.* 2005, 38, 369.
- 3 S. De, K. Mahata, M. Schmittel, *Chem. Soc. Rev.* 2010, **39**, 1555.
- 4 H. Lee, P. Elumalai, N. Singh, H. Kim, S. U. Lee, K.-W. Chi, J. *Am. Chem. Soc.* 2015, **137**, 4674.
- 5 A. Sautter, D. G. Schmid, G. Jung, F. Würthner, *J. Am. Chem.* Soc. 2001, **123**, 5424.
- 6 N. Yoshinari, Y. Hirai, T. Kawamoto, A. Igashira-Kamiyama, K. Tsuge, T. Konno, *Chem. Lett.* 2009, **38**, 1056.
- 7 S.-S. Sun, J. A. Anspach, A. J. Lees, *Inorg. Chem.* 2002, **41**, 1862.
- (a) M. Fujita, O. Sasaki, T. Mitsuhashi, T. Fujita, J. Yazaki, K. Yamaguchi, K. Ogura, *Chem. Comm.* 1996. (b) M. Rancan, J. Tessarolo, P. L. Zanonato, R. Seraglia, S. Quici, L. Armelao, *Dalton Trans.* 2013, **42**, 7534.
- 9 (a) B. Hasenknopf, J.-M. Lehn, N. Boumediene, A. DupontGervais, A. Van Dorsselaer, B. Kneisel, D. Fenske, J. Am. Chem. Soc. 1997, 119, 10956. (b) K. Oji, A. Igashira-Kamiyama, N. Yoshinari, T. Konno, Angew. Chem. Int. Ed. 2014, 53, 1992.
- (a) J.-M. Lehn, *Chem. Soc. Rev.* 2007, **36**, 151. (b) S.
  Shanmugaraju, P. S. Mukherjee, *Chem. Eur. J.* 2015, **21**, 6656.
- 11 Y. Takino, K. Tsuge, A. Igashira-Kamiyama, T. Kawamoto, T. Konno, *Chem. Asian J.* 2011, **6**, 2931-2935.
- 12 Y.-R. Zheng, P. J. Stang, J. Am. Chem. Soc. 2009, 131, 3487.
- (a) Y. Hashimoto, K. Tsuge, T. Konno, *Chem. Lett.* 2010, **39**, 601. (b) Y. Hashimoto, N. Yoshinari, D. Naruse, K. Nozaki, T. Konno, *Inorg. Chem.* 2013, **52**, 14368.
- 14 T. Konno, Bull. Chem. Soc. Jpn. 2004, 77, 627.
- (a) A. Igashira-Kamiyama, T. Konno, *Dalton Trans*. 2011, 40, 7249. (b) N. Yoshinari, T. Konno, *Bull. Chem. Soc. Jpn*. 2018, 91, 790.
- 16 N. Yoshinari, T. Konno, Chem. Rec. 2016, 16, 1647.
- 17 Y. Yamada, M. Tsumita, A. Hirano, Y. Miyashita, K. Fujisawa, K. Okamoto, *Inorg. Chim. Acta* 2002, **332**, 108.
- 18 K. Okamoto, N. Fushimi, T. Konno, J. Hidaka, Bull. Chem. Soc. Jpn. 1991, 64, 2635.
- 19 T. Konno, M. Hattori, T. Yoshimura, M. Hirotsu, *Chem. Lett.* 2000, 852.
- 20 R. Alberto, D. Angst, K. Ortner, U. Abram, P. A. Schubiger, T. A. Kaden, *New J. Chem.* 2007, **31**, 409.
- (a) H.-K. Liu, P. J. Sadler, *Acc. Chem. Res.* 2011, 44, 349. (b) B.
  J. Pages, D. L. Ang, E. P. Wright, J. R. Aldrich-Wright, *Dalton Trans.* 2015, 44, 3505.
- 22 A. Baniodeh, C. E. Ansona, A. K. Powell, *Chem. Sci.* 2013, **4**, 4354.