ChemComm

ChemComm

Operando spectroscopic analyses for ammonia absorption process of sodium borohydride

Journal:	ChemComm
Manuscript ID	CC-COM-10-2018-008048.R1
Article Type:	Communication

Chemical Communications

ROYAL SOCIETY OF CHEMISTRY

COMMUNICATION

Operando spectroscopic analyses for ammonia absorption process of sodium borohydride

Received 00th January 20xx, Accepted 00th January 20xx Keita Nakajima, ^a Hiroki Miyaoka, ^{a, b} Kenichi Kojima, ^c Takayuki Ichikawa * ^{b, c, d} and Yoshitsugu Kojima ^{a, b}

DOI: 10.1039/x0xx00000x

www.rsc.org/

Ammonia absorption process of sodium borohydride for ammonia storage has been studied by using operando NMR and FT-IR measurements under various ammonia pressures. As a result, the characteristic variation of chemical states of both materials due to the liquefaction, has been clarified.

Ammonia (NH₃) is expected as a hydrogen carrier because of its high gravimetric and volumetric hydrogen density (17.8 wt%, 108 g/L)¹⁻³. Because of its flammable property, the technical research and developments are required to utilize NH3 as an energy carrier practically. For instance, safety devices to decrease the vapor pressure of liquid NH₃ has been investigated for establishing a NH₃infrastructure^{1, 4, 5}. Recently, we have focused on the NH₃ absorbing materials to control the NH₃ vapor pressure⁵⁻⁸. It was observed that some halides and complex hydrides can absorb large amount of NH₃ to form ammine complexes, and the NH₃ partial pressure is able to be lowered down than that of the original vaper pressure, which depends on the thermodynamic stability of ammine complexes⁸⁻¹¹. The volumetric hydrogen densities of ammine complexes are high and almost comparable to that of liquid NH₃^{1, 3}. Thus, the above NH₃ absorbing materials are attractive as hydrogen (or NH₃) storage materials and/or functional materials for establishing the safety

 ^{b.} Natural Science Center for Basic Research and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
^c Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 devices. Among them, sodium borohydride (NaBH₄) possess characteristic features of liquefaction by the NH₃ absorption^{8, 12} with promising cycle properties.¹³ This liquefaction is understood from the result of the NH₃ pressure-composition isothermal (PCI) measurement that the vapor pressure was linearly increased with the absorbed NH₃. This feature is practically useful, for example, in that the residual amount of NH₃ in cylinder has to be estimated only from the pressure and temperature.

In this work, the NH₃ absorbing process of NaBH₄ has been investigated in further details by using operando nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy under NH₃ atmosphere. These measurements were performed by using the hand-made apparatus (see Fig. S1). And, thermodynamic analysis based on solution theory for PCI curve was performed to discuss and understand the phase variation and the absorption behaviour of the NaBH₄-NH₃ system.

Operando ¹¹B NMR measurements were performed under NH₃ pressure to understand the variation of chemical states during the NH₃ absorption of NaBH₄, as shown in Figure 1. The signals of solid NaBH₄ and NMR tube are also shown as a reference. The vertical axis of all the profiles are normalized by the highest intensity of the observed signals. A weak ¹¹B signal was observed for the NMR tube because it is made of borosilicate glass. Here, the signal relating to NMR tube is confirmed in all the measurements (see Fig. S2). It is observed that a total of 2] mol NH₃ could be absorbed in NaBH₄ to form Na(NH₃)₂BH₄ with a plateau at 93 kPa from the result of PCI measurement (see Fig. S3). The broad signal of solid NaBH₄ is appeared around -42.4 ppm. This broadening is caused by the limited

^{a.}Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan

Kagamiyama, Higashi-Hiroshima 739-8521, Japan ⁽Craducto School of Enzinozoina, Llisophima University, 1,4,1 Kagamiyama

^{d.} Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan

 $^{^{+}}$ Electronic Supplementary Information (ESI) available: Detailed experimental procedures, ^{11}B NMR results, and PCI results of NaBH_4. See DOI: 10.1039/x0xx00000x

Figure 1 Operand ¹¹B NMR results for NaBH₄ at the plateau region with NH₃/NaBH₄(mol/mol)=(a) 0.3, (b) 0.6, (c) 0.9, (d) 1.4, (e) 1.7, (f) 2.0, and under (g) 331 kPa, (h) 650 kPa of NH₃. The inset figure is the enlarged profile of (e).

molecular motion in solid state due to interactions such as dipolar and quadrupole interactions. With the increase in the amount of absorbed NH₃, the signal intensity relating to the solid NaBH₄ is decreased with the appearance of a new sharp signal at -40.4 ppm, which is found to be grown gradually. These phenomena are caused by the disappearance of the specific interactions of solids, in other words, the chemical states are averaged by the fast motion of molecules. The sharp signal is split into 5 peaks, as shown in the inset of Figure 1, due to the spin-spin interactions in the B-H bonds¹⁴. In the previous reports, the peak splitting in solid state borohydride could not be observed by solid state ¹¹B NMR measurements at room temperature even by using magic angle spinning¹⁵. It can be suggested that the Na(NH₃)₂BH₄ phase generated in the plateau region is in liquid state. Namely, solid NaBH₄ and liquid Na(NH₃)₂BH₄ coexist at the plateau pressure (see Fig. S3 and Fig. S4). At the higher pressure than the plateau pressure, the phase is totally changed to liquid as evidenced from the presence of the sharp signal only. Moreover, the peaks are slightly shifted to lower magnetic field with the increase in the NH₃ concentration. This phenomenon generally suggests that the electron density at B atom in the BH4 anion is decreased. As one of the reasons to explain the above shift, it is suggested that the polarization of BH bonds is enhanced by the increase in the distance between the Na cation and the BH₄ anion.

Figure 2 shows the FT-IR results of NaBH₄ under vacuum, 90, and 105 kPa of NH₃ pressure. Here, NaBH₄ doesn't absorb NH₃ under vacuum and 90 kPa, whereas liquid Na(NH₃)₂BH₄ phase is formed under 105 kPa of NH₃. It is difficult to observe the changes in the

Figure 2 Operand FT-IR results for NaBH₄ under vacuum, 90 kPa, and 105 kPa of NH₃.

peaks corresponding to N-H vibration mode before and after NH₃ absorption, because the strong peaks of gaseous NH₃ overlapped in the operando measurements. The several peaks derived from the B-H bonds of solid NaBH₄ are observed in the wide range from 2100 to 2500 cm⁻¹ under vacuum and 90 kPa. These peaks correspond to the symmetric and asymmetric stretching modes of B-H bonds of solid NaBH₄. In addition, on the basis of structural analysis by neutron diffraction, it has been reported that NaBD₄ contains two different B-D bonds with different bond lengths¹⁶. The observed broad peak is formed by the B-H bonds with the various chemical states. On the other hand, the single peak related to B-H stretching is appeared at 2246 cm⁻¹ for the sample under 105 kPa of NH₃, suggesting that the B-H bonds in the solid phase of NaBH₄ are averaged by liquefaction. These results are consistent with the results of ¹¹B NMR. Furthermore, the absorption peaks are shifted to low frequency after the NH₃ absorption. Here, it is known that, in alkali borohydrides and amides, the FT-IR peaks derived from B-H bonds or N-H bonds shift to low frequency with the decrease in the ionization energy of alkali metal species^{17, 18}. Therefore, it can be considered that the peak shift in the $NaBH_4\mathchar`-NH_3$ system is caused by the decrease in ionization energy of Na cation due to the coordination of NH₃ to Na cation. As another possibility, the peak may also shift by the interaction between positively charged hydrogen in NaBH₄ and the negatively charged hydrogen in NH₃, which is called dihydrogen bond¹⁹. Actually, NaBH₄·2H₂O is known to have a dihydrogen bond formed between H in NaBH₄ and H in H₂O according to the analysis of crystal structure and infrared spectroscopy²⁰.

Operando ¹H NMR measurements under various NH₃ pressure were carried out to investigate the chemical state of NH₃ and NaBH₄ solution, and the results are shown in Figure 3. The profile of pure liquid NH₃ without NaBH₄ is also shown as reference. The ¹H signals from the sample tube and solid NaBH₄ are hardly observed in Figs.

Journal Name

COMMUNICATION

Figure 3 Operand ¹H NMR results for NaBH₄ at the plateau region with NH₃/NaBH₄(mol/mol)=(a) 1.1, (b) 1.7, (c) 2.0, and under (d) 267 kPa, (e) 499 kPa, (f) 650 kPa of NH₃. The inset figures are the enlarged profile of (f) and pure liquid NH₃.

3(a) - 3(f) because these materials are solid and the interactions such as dipolar and quadrupole interactions are large. A series of 4 signals with high intensity and 7 signals with low intensity are observed in the range from -0.2 to 0.3 ppm, as shown in the inset of Figure 3(f). Actually, NaBH₄ is dissociated to Na cation and BH₄ anion, and all the ¹H nuclei in the BH₄ anion are equivalent in the liquid state. Here, the nuclear spins of ^{11}B and ^{10}B are 3/2, 1/2, -1/2, -3/2 and 3, 2, 1, 0, -1, -2, -3, respectively, and the natural abundance ratio of them is 80:20. Therefore, signals originated in the ¹H nuclei in NaBH₄ split into 4 and 7 peaks corresponding to the spins of ¹¹B and ¹⁰B, respectively. The difference in the intensities is caused by the abundance ratio. The ¹H NMR signals corresponding to NaBH₄ were observed under the NH₃ atmosphere, suggesting that NaBH₄ is liquefied. The large signal around 1 - 1.5 ppm is assigned to liquid state NH₃. The shoulder peaks are thought to be originated from the different states of NH₃, i.e. strongly and weakly coordinated NH₃ to NaBH₄, although the details of origin are not understood completely yet. The shoulder peak actually disappeared with the increase in the NH₃ concentration. When it is considered in the same way as spin coupling in BH bonds, the ¹H signal related to NH₃ should be split into 3 peaks because the nuclear spins of ¹⁴N is 1, 0, -1. Actually, the peak is split to 3 peaks for the pure liquid NH₃ as shown in the inset of Figure 3. However, the peak splitting is not found in the NaBH₄-NH₃ system. Ogg et al. reported the similar phenomena in the NaNH₂-NH₃ system ^{21, 22}. They added NaNH₂ into liquid NH₃ and carried out ¹H NMR measurements. In that case, the number of peaks of ¹H NMR signal is 1 due to the influence of NaNH₂. With respect to the chemical shift in ¹H NMR, the signals of NH₃ and NaBH₄ are shifted to higher magnetic field with

the increase in the absorbed NH₃, although only the ratio of solid NaBH₄ and liquid Na(NH₃)₂BH₄ is changed under the plateau pressure. It indicates that the local environment of H atoms is slightly changed possibly because solid NaBH4 affects liquid Na(NH3)2BH4, however, the detail is not understood yet. At the higher pressure than the plateau pressure, the signals of NH₃ and NaBH₄ are also shifted, and the similar phenomenon was confirmed in the case of ethanolchloroform system. Ethanol can be written by the chemical formula of CH₃CH₂OH, and it was known that the hydrogen bonds are formed between OH groups. When chloroform, which is written by CHCl₃ and known as nonpolar solvent, was gradually added to ethanol, the signal of the OH groups shifted to the higher magnetic field because the hydrogen bonds between ethanol molecules are disturbed by chloroform²³. From this perspective, the hydrogen bonds between NH₃ molecules in the NaBH₄-NH₃ system are considered as the reason for environmental change of NH₃ because it is reported that NH₃ molecules also form hydrogen bonds²⁴. The peak shift of NaBH₄ to higher magnetic field with the increase in the NH₃ concentration corresponds to the increase of the electron density of H in BH₄ anion. Here, the electron density of B in BH₄ anion is decreased as discussed above. Namely, the electron density of H in BH₄ anion is increased to keep the electrical balance. This peak shift is possibly occurred by the polarization of the BH bonds and longer distance between the Na cation and BH₄ anion due to the increase in the NH₃ concentration.

The PCI curve is analyzed in terms of ideal and regular solutions. Here, the PCI measurement was performed at 0 °C to analyze up to the higher NH₃ pressure than the plateau pressure (see Fig. S5). In the ideal solution, the heat generated by mixing the two materials in liquid state, i.e. liquid Na(NH₃)₂BH₄ and liquid NH₃ in NaBH₄-NH₃ system, is negligible. On the other hand, in the regular solution, the heat generated due to the mixing should be considered. The relative pressure *P* normalized by the plateau pressure, in the case of ideal and regular solution of degree of ionization α =0 or 1 for NaBH₄, is expressed as follows²⁵,

ideal: $P = X_{\rm NH3}$ ($\alpha = 0$), (2)

 $= X_{\rm NH3} / (2 - X_{\rm NH3})$

regular: $P = \exp(\Delta H/RT + \ln X_{\text{NH3}})$ ($\alpha = 0$), (4)

 $= \exp(\Delta H/RT + \ln(X_{\rm NH3}/(2-X_{\rm NH3}))) \quad (\alpha = 1).$ (5)

 $(\alpha = 1),$

T is the reaction temperature, ΔH is enthalpy change by mixing, *R* is the gas constant. *X*_{NH3} is the molar fraction defined as the amount of NH₃ divided by the total amount of Na(NH₃)₂BH₄ in a mixture. The *X*_{NH3}-*P* curves for NaBH₄-NH₃ system of ideal and regular solution are

(3)

COMMUNICATION

Journal Name

Figure 4 NH₃ absorption curve of NaBH₄ and results of analyses by assuming ideal and regular solution at 0 °C. The heat of mixing is -6 and -15 kJ/mol for regular solution of α =0 and 1.

shown in Figure 4. The experimental data are matched with the curve of the regular solution (α =1) in the region from X_{NH3} =0.0 to 0.7 in the case of ΔH =-6 kJ/mol. On the other hand, the curve at high NH₃ concentration region from X_{NH3} =0.9 to 1.0 are well consistent with that of the ideal solution (α =0). From the above, the regular solution (α =1) is changed to the ideal solution (α =0) with the increase in X_{NH3} .

In conclusion, the NH₃ absorption properties have been analysed and discussed based on the results obtained by using operando spectroscopic analyses under NH₃ atmosphere. It is clarified from the operando ¹¹B, ¹H NMR, and FT-IR that Na(NH₃)_xBH₄, formed by the NH₃ absorption of NaBH₄ is in liquid state in all the region of the NH₃ concentration. For NaBH₄, it is suggested that the polarization between BH bonds increases with the increase in the NH₃ concentration. In fact, ¹¹B NMR signals and ¹H NMR signals, originated in NaBH₄ are shifted to the opposite direction. For NH₃, weakness of hydrogen bonds between NH₃ molecules in NaBH₄-NH₃ system is found different from pure liquid NH₃. Through the analysis based on solution theory for the Na(NH₃)_xBH₄, it is suggested that liquid solution is changed from the regular solution (α =1) to the ideal solution (α =0) with the increase in the molar ratio of NH₃.

This work is supported by Council for Science, Technology, and Innovation (CSTI), Cross-Ministerial Strategic Innovation Promotion Program (SIP), "energy carrier" (funding agency, JST). The authors are very grateful to Dr. H. Tanida of Toyama prefectural university, Dr. K. Goshome of National Institute of Advanced Industrial Science and Technology (AIST), and Mr. H. Fujitaka of Hiroshima university.

Conflicts of interest

There are no conflicts to declare.

Notes and references

- C. H. Christensen, R. Z. Sorensen, T. Johannessen, U. J. Quaade, K. Honkala, T. D. Elmoe, R. Kohler and J. K. Norskov, Journal of Materials Chemistry, 2005, 15, 4106-4108.
- A. Klerke, C. H. Christensen, J. K. Norskov and T. Vegge, Journal of Materials Chemistry, 2008, 18, 2304-2310.
- R. Z. Sørensen, J. S. Hummelshøj, A. Klerke, J. B. Reves, T. Vegge, J. K. Nørskov and C. H. Christensen, Journal of the American Chemical Society, 2008, **130**, 8660-8668.
- 4. C. Y. Liu and K. Aika, Bulletin of the Chemical Society of Japan, 2004, **77**, 123-131.
- H. Miyaoka, H. Miyaoka, T. Ichikawa, T. Ichikawa and Y. Kojima, International Journal of Hydrogen Energy, 2018, 43, 14486-14492.
- M. H. Sørby, O. M. Løvvik, M. Tsubota, T. Ichikawa, Y. Kojima and B. C. Hauback, *Physical Chemistry Chemical Physics*, 2011, 13, 7644-7648.
- 7. T. Aoki, H. Miyaoka, H. Inokawa, T. Ichikawa and Y. Kojima, *The Journal of Physical Chemistry C*, 2015, **119**, 26296-26302.
- 8. T. Aoki, T. Ichikawa, H. Miyaoka and Y. Kojima, *The Journal of Physical Chemistry C*, 2014, **118**, 18412-18416.
- 9. C. Y. Liu and K. Aika, *Industrial & Engineering Chemistry Research*, 2004, **43**, 7484-7491.
- S. R. Johnson, W. I. F. David, D. M. Royse, M. Sommariva, C. Y. Tang, F. P. A. Fabbiani, M. O. Jones and P. P. Edwards, *Chemistry* – *An Asian Journal*, 2009, 4, 849-854.
- Y. Song, F. Wu, X. Zheng, X. Ma, F. Fang and Y. Guo, *Chemical Communications*, 2015, **51**, 1104-1107.
- H. Miyaoka, K. Nakajima, S. Yamaguchi, T. Aoki, H. Yamamoto, T. Okuda, K. Goshome, T. Ichikawa and Y. Kojima, *The Journal of Physical Chemistry C*, 2015, **119**, 19922-19927.
- 13. T. Zhang, H. Miyaoka, H. Miyaoka, T. Ichikawa and Y. Kojima, ACS Applied Energy Materials, 2018, 1, 232-242
- J. Hannauer, U. B. Demirci, C. Geantet, J. M. Herrmann and P. Miele, *Physical Chemistry Chemical Physics*, 2011, 13, 3809-3818.
- M. H. W. Verkuijlen, P. Ngene, D. W. de Kort, C. Barré, A. Nale, E. R. H. van Eck, P. J. M. van Bentum, P. E. de Jongh and A. P. M. Kentgens, *The Journal of Physical Chemistry C*, 2012, **116**, 22169-22178.
- 16. P. Fischer and A. Züttel, *Materials Science Forum*, 2004, **443-444**, 287-290.
- G. Renaudin, S. Gomes, H. Hagemann, L. Keller and K. Yvon, Journal of Alloys and Compounds, 2004, 375, 98-106.
- 18. T. Tsumuraya, T. Shishidou, and T. Oguchi, *Journal of Physics: Condensed Matter*, 2009, **21**, 185501.
- 19. R. Custelcean and J. E. Jackson, *Chemical Reviews*, 2001, **101**, 1963-1980.
- 20. F. Yaroslav and H. Hans, *European Journal of Inorganic Chemistry*, 2008, **2008**, 3127-3133.
- 21. R. A. Ogg, The Journal of Chemical Physics, 1954, 22, 560-561.
- 22. R. A. Ogg, Discussions of the Faraday Society, 1954, 17, 215-220.
- 23. T. D. Ferris, M. D. Zeidler and T. C. Farrar, *Molecular Physics*, 2000, **98**, 737-744.
- 24. W. L. Jorgensen and M. Ibrahim, *Journal of the American Chemical Society*, 1980, **102**, 3309-3315.
- 25. T. Hanai, Membrane and ions, Kagakudojin, Kyoto, 1978, 131-145.