ChemComm

ChemComm

Stille cross-coupling of secondary and tertiary a-(trifluoromethyl)-benzyl chlorides with allylstannanes

Journal:	ChemComm
Manuscript ID	CC-COM-05-2018-003541.R1
Article Type:	Communication

SCHOLARONE[™] Manuscripts

Journal Name

COMMUNICATION

Stille cross-coupling of secondary and tertiary α -(trifluoromethyl)benzyl chlorides with allylstannanes

Nagender Punna,^a Kyosuke Harada^a and Norio Shibata^{*a,b}

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

www.rsc.org/

A Stille cross-coupling reaction was developed that delivers for the first time trifluoromethyl-substituted homoallyl compounds from α -(trifluoromethyl)benzyl chlorides and allylstannanes. This reaction proceeds even with low catalyst loadings (1 mol %) *via* a rare CF₃-Pd- π -benzyl intermediate.

The introduction of fluorine or fluorine-containing functional groups into organic molecules represents a powerful tool in medicinal and pharmaceutical chemistry, as the high electronegativity of fluorine modulates the pKa value and the electronic density of the products, which in turn affects their molecular properties such as the lipophilicity, solubility, permeability, and protein binding.¹ In this context, the introduction of the trifluoromethyl group is particularly noteworthy, as it increases the bio-efficacy and metabolic stability of the products, which is desirable for the identification of new drug leads.² The development of new methods to introduce trifluoromethyl groups at strategic positions of organic molecules is hence highly desirable.^{1,2} Herein, we report the synthesis of α -(trifluoromethyl)-substituted homoallyl compounds using Stille cross-coupling reaction between α -(trifluoromethyl)benzyl chlorides and allylstannanes, which exhibits a broad substrate scope.

Transition-metal-catalyzed cross-coupling reactions have become an indispensable tool in synthetic organic chemistry for the formation of C (sp³)–C (sp³) bonds, and these reactions could potentially be used for the construction of new trifluoromethyl-substituted molecular architectures with specific physical and biological properties.³ However, previously reported methods for the synthesis of α -(trifluoromethyl)substituted homoallyl compounds suffer from a very limited substrate scope.⁴ Kato et al. have reported on the reaction

^{a.} Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan, E-mail: nozshiba@nitech.ac.jp between chloro-trifluoroethylphenols with Grignard reagents, which requires the hydroxy group of the phenols while the substrate scope is narrow (Figure 1a).^{4a} A Pd-catalyzed nucleophilic-addition-induced allylic alkylation was reported by Loh,^{4b} albeit that this method is limited to difluoro-substrates that are substituted with electron-withdrawing groups, the synthesis of which is usually very tedious (Figure 1b).

Fig. 1 Previously reported methods (a–c, e) and the method used in this study (d) for the introduction of the trifluoromethyl groups in organic molecules.

Even though transition-metal-catalyzed cross-coupling reactions are meanwhile well established and a variety of simple pseudohalide and secondary alkyl halide electrophiles is accessible, examples for the formation of α -(trifluoromethyl)-substituted compounds via this route remain extremely rare.⁵ Recently, Tredwell and co-worker have reported the Suzuki-

^{b.} Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China.

^{*}Electronic Supplementary Information (ESI) available: See DOI: 10.1039/x0xx00000x

Journal Name

COMMUNICATION

Miyaura cross-coupling reaction between secondary α -(trifluoromethyl)benzyl tosylates (Figure 1c).⁶ Herein, we disclose a method that is able to use allyl-substituted substrates, i.e., a Pd-catalyzed Stille cross-coupling reaction between α -(trifluoromethyl)benzyl chlorides and allylstannanes, which delivers a broad variety of trifluoromethyl-substituted homoallylic compounds in high yield (Figure 1d). Stille crosscoupling reactions generally require alkenyl, aryl, or acyl halides, while the reaction with benzyl halides is not common.⁷ More precisely, the reaction with benzyl chlorides proceeds very differently:⁸ the Pd-catalyzed coupling reactions between benzyl chlorides and allyltributylstannane afford π benzylpalladium chloride intermediates that furnish allylativedearomatization products rather than Stille cross-coupling products (Figure 1e).⁸ Naphthylmethyl and heteroarylmethyl chlorides also afford similar allylative-dearomatization products under such Pd-catalysis.^{8c,d} The method presented herein thus represents not only an efficient method for the preparation of trifluoromethyl-substituted homoallyl compounds, but also the first examples for the formation of Stille cross-coupling products from benzyl, naphthylmethyl, and heteroarylmethyl chlorides with allyltributylstannanes using Pd-based catalysts.

Unfortunately, we did not observe any improvements of the yield, but found the formation of the β -fluoro-eliminated compound as a by-product. To improve the reaction efficiency, we examined various palladium sources and additives (Table 1 and Table S4 in SI), which improved the yield to 49% in the presence of KF (Table 1, entry 7). Surprisingly, upon decreasing the catalyst loading to 2.5 mol %, the yield increased to 57% (Table 1, entry 10). However, when the catalyst loading was further reduced to 1 mol %, the conversion was low and the product yield decreased to 27% (Table 1, entry 11). Nevertheless, the β -fluoro-eliminated compound was not formed. Encouraged by these results, we raised the reaction temperature to 75 °C and obtained the desire homoallyltrifluoromethylated compound 3a in 70% yield (Table 1, entry 14). Thereafter, we conducted a control experiment in the absence of a palladium source, which did not proceed (Table 1, entry 15). However, the aforementioned results demonstrate that both the catalyst loading and the temperature play a crucial role for this cross-coupling reaction.

Table 2 Examining the substrate scope of 1^a

Table 1 Optimization of the reaction conditions^a

\bigcirc	CF ₃ cataly: CI SnBu ₃ [[/] Bu ₃ PH][Et ₃ N, additiv	st (X mol %) BF ₄] (Y mol %) re, DMF, rt, 24 h	CF ₃
	1a 2a	Ť	3a
Entry	Catalyst	Additive/T °C	Yield ^c [%]
1 ^b	PdCl₂ (5 mol %)	CsF, Cul/rt	31
2 ^b	Pd(PPh ₃) ₄ (5 mol %)	CsF, Cul/rt	5
3 ^b	Pd(OAc)₂ (5 mol %)	CsF, Cul/rt	13
4	PdCl ₂ (5 mol %)	CsF, Cul/rt	35
5	PdCl₂ (5 mol %)	CsF/rt	45
6	PdCl ₂ (5 mol %)	TBAF/rt	9
7	PdCl ₂ (5 mol %)	KF/rt	49
8	PdCl ₂ (5 mol %)	CsF, LiCl ^d /rt	40
9	PdCl ₂ (2.5 mol %)	CsF/rt	53
10	PdCl ₂ (2.5 mol %)	rt	57
11	PdCl ₂ (1 mol %)	rt	27
12	PdCl ₂ (1 mol %)	50 °C	55
13	PdCl ₂ (2.5 mol %)	KF/rt	59
14	PdCl ₂ (1 mol %)	75 °C	70
15	-	75 °C	_

^{*a*} Experiments were performed with **1a** (0.5 mmol), **2a** (1.25 mmol), PdCl₂/[^tBu₃PH][BF₄]/Et₃N (ratio: 1/2/4 mol %), F⁻ source (1.0 mmol), and Cul (4 mol %) in DMF (1.25 mL). ^{*b*} For entries 1–3, **2a** (0.65 mmol) was used. ^{*c*} Yields refer to ¹⁹F NMR yields, for which PhCF₃ was used as an internal standard. ^{*d*} 3 equiv of LiCl was used.

We started our optimization studies by exposing the α -(trifluoromethyl) pseudohalides/secondary alkyl halides and allylstannanes (1.3 equiv) for 24 h at room temperature to PdCl₂ (5 mol %), ['Bu₃PH][BF₄] (10 mol %), Cul (4 mol %), and CsF (2 equiv) in DMF. When α -(trifluoromethyl)benzyl chloride **1a** was used under these conditions, the desired cross-coupled product (**3a**) was obtained in 31% yield (entry 1, Table 1 and Table S1 in Supporting Information). Then, we screened a variety of solvents and phosphine ligands (Tables S2 and S3 in SI).

^{*a*} Experiments were performed with **1** (0.5 mmol), **2** (1.25 mmol), and PdCl₂/['Bu₃PH][BF₄]/Et₃N (ratio: 1/2/4 mol %) in DMF (1.25 mL). ^{*b*} Percentage values refer to ¹⁹F NMR yields, for which PhCF₃ or fluorobenzene were used as internal standards; isolated yields are given in parenthesis (all products are volatile liquids).

With the optimized reaction conditions in hand, we screened the scope of this cross-coupling reaction with respect to the substituents on the α -(trifluoromethyl)benzyl chloride substrate **1**. Substrates with electron-donating groups underwent the cross-coupling reaction smoothly to afford the desired products in up to 87% yield (Table 2). This stands in sharp contrast to the method reported by Loh, which is limited to electron-withdrawing groups.^{4b} The electron-donating groups in **1b** (MeO), **1c** (Me), and **1e** (^tBu) were tolerated under

Journal Name

the applied conditions to afford the desired products in moderate to good yields (3b: 58%; 3c: 69%; 3e: 72%). Substrates with electron-withdrawing substituents also produced the required products in up to 97% yield. CF₃ and CN groups at the *para*-position of the phenyl ring in the α -(trifluoromethyl)benzyl chloride (1n and 1o) provided the homoallyltrifluoromethylated products in very good yields (3n: 89%; 3o: 85%). Switching the location of the substituent from para to meta did not affect the reaction efficiency, and these meta-substituted substrates 1j (3-CF₃) and 1k (3-CN) afforded the corresponding products in excellent yields (3j: 90%; 3k: 88%). Moreover, in the presence of halogen substituents at various positions of the phenyl ring, the reaction proceeded smoothly to furnish the desired products in moderate to good yields (31: 70%; 3p: 74%; 3q: 70%). Extended π-conjugated naphthalene-derived α-(trifluoromethyl)benzyl chloride substrates 1h (2-naphthyl) and 1i (1-naphthyl) also generated the corresponding products in moderate to good yields (3h: 68%; 3i: 54%). Importantly, heteroaryl-containing substrates such as thiophene 1r also underwent the reaction smoothly and afforded the corresponding product in 62% yield. Subsequently, we turned our attention to variations on the tin substrates for this Stille cross-coupling reaction. When methyl-substituted а allylstannane was treated with electronically dissimilar α -(trifluoromethyl)benzyl chlorides, the corresponding homoallyltrifluoromethylated products were obtained in good to excellent yields (3d: 91%; 3g: 87%; 3t: 95%; 3u: 74%). A wide variety of substituted allylstannanes is suitable for this cross coupling with α -(trifluoromethyl)benzyl chlorides and produced consistently good yields under low catalyst loadings.

Moreover, trifluoromethyl-substituted tertiary alkyl chlorides substrates **4** could be used under the standard conditions, which provided the desired products in moderate to good yields after 48 h (Table 3). The unsubstituted substrate **4a** furnished the corresponding product in good yield (**5a**; 65%), while substrates with halogen (**4b**), electron-withdrawing (**4c**), and electron-donating groups (**4d**) afforded the desired products in moderate yields (**5b**: 50%; **5c**: 62%; **5d**: 60%).

 $^{\it a}$ Unless otherwise noted, the reactions were carried out as described in Table 2 for 48 h. Yields and $^{19}{\rm F}$ NMR yields with internal standard PhCF3 also shown in parenthesis.

In order to elucidate the mechanism underlying this crosscoupling reaction, we wanted to examine the reactivity of α -(trifluoromethyl)allyl chloride (**6a**). However, the synthesis of **6a** delivered a non-separable mixture of allyl chlorides (**6a:6b** = 3:7). The subsequent cross-coupling reaction with this mixture of allyl chlorides produced the corresponding product (**7a**) as a single isomer in 71% yield, which supports our hypothesis that this reaction proceeds via a Pd- π -allyl intermediate that should be identical for **6a** and **6b** (Scheme 1).

Scheme 1 Stille cross coupling reaction of α -(trifluoromethyl)allyl chloride.

To demonstrate the synthetic utility of this method, we performed the cross-coupling reaction using **1f** on the gram scale, which provided **3f** in 70% isolated yield (Scheme 4). Furthermore, we subjected **3f** to several subsequent transformations, including an epoxidation with *m*-CPBA (**8a**; 70% yield) and a reaction with phenyl boronic acid in the presence of a palladium catalyst (**8b**; 75% yield; *E:Z* = 20:1). Moreover, a C–H oxidation using White's catalytic system produced the linear allylic acetate (**8c**) in 40% yield, while halohydrins such as **8d** were formed in the presence of ammonium acetate and NBS, albeit that the yield and the diastereoselectivity of **8d** were low (45%; dr = 1:1).

Scheme 2 Derivatization of 3f.

A plausible mechanism for this cross-coupling reaction proceeds via the oxidative addition of the Pd(0) catalyst to 1a, which results in the formation of trifluoromethyl-substituted Pd-π-benzyl intermediate I (Figure 2). In 1974, Stille disclosed the synthesis of an α -(trifluoromethyl) substituted π -benzyl complex like I using Pd- and Rh-based catalysts.⁹ In the present study, the electrophilic Pd- π -benzyl intermediate I should coordinate to the allylstannane to form cyclic intermediate II, which should afford intermediate III following а transmetalation. Intermediate III should then undergo a reductive elimination to form the desired product 3a under concomitant regeneration of the Pd(0) species. The detection of trace amounts of by-products 9 and 10 by ¹⁹F NMR (9: -64.05 ppm (t, J=11.4 Hz); 10: -82.43 ppm (dd, J = 34.9, 28.2 Hz), -84.31 ppm (d, J = 35.6 Hz), see Figure S1 in ESI) supports the generation of the Pd- π -benzyl intermediates. We did not observe clear evidence for the formation of the allylative dearomatization products **11a**,**b** via **IV**,^{8,10} which is presumably due to the high reactivity of the highly electrophilic CF₃-Pd- π benzyl intermediates in I, II and III induced by the high electronegativity of the CF3 group. While we could not detect the intermediates I, II and III by ¹⁹F-NMR analysis (see Figure S1 in ESI), finally the generation of Pd- π -benzyl intermediate III was confirmed by LC mass spectrometry (ESI). The intermediate III

COMMUNICATION

Journal Name

with ligands (${}^{t}Bu_{3}P$, HBF₄) shows a prominent peak at m/z 597.15 ([M + H]⁺ = 597.15) and the isotopic profile is compared with the calculated isotopic pattern for **III**, which shows a nearly similar match (see Figure S2 in ESI).

Fig. 2 Plausible mechanism for the Stille cross-coupling reaction of secondary α -(trifluoromethyl)benzyl chlorides with allylstannanes.

Conclusions

In summary, we have reported a Stille cross-coupling reaction for the preparation of trifluoromethyl-substituted homoallyl compounds 3 and 5, which were obtained in very good yields from the reaction of readily available α -(trifluoromethyl)benzyl chlorides, naphthylmethyl chlorides and heteroarylmethyl chlorides with allylstannanes. This transformation proceeds via a crucial trifluoromethyl-substituted Pd- π -benzyl intermediate. The reaction proceeds with low catalyst loadings (1 mol %) and a broad substrate scope. Despite the use of benzyl chlorides, the allylative dearomatization⁸ is alternative completely suppressed in this reaction. Although a CF₃-substituted Pd-πbenzyl intermediate was postulated by Stille in 1974,9 such intermediates have rarely been discussed over the last 40 years. Our report thus demonstrates the potential of the aforementioned trifluoromethyl-substituted Pd-π-benzyl intermediates, which could be applied to a wide variety of transition-metal-mediated coupling reactions.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by JSPS KAKENHI grant JP 18H02553, and ACT-C from the JST Agency (JPMJCR12Z7).

Notes and references

 (a) I. Ojima, In Fluorine in Medicinal Chemistry and Chemical Biology; Wiley-Blackwell: Chichester, 2009; (b) V. A. Petrov, Fluorinated Heterocyclic Compounds; Synthesis, Chemistry and Applications; John Wiley & Sons, Inc., Hoboken: New Jersey, 2009; (c) K. L. Kirk, J. Fluorine Chem., 2006, 127, 1013– 1029; (d) C. Isanbor and D. O. Hagan, J. Fluorine Chem., 2006, 127, 303–319; (e) F. Menaa, B. Menaa and O. N. Sharts, J. Mol. Pharm. Org. Process Res., 2013, 1, 1000104; (f) H. Kawai and N. Shibata, *Chem. Rec.*, 2014, **14**, 1024–1040; (g) J. Wang, M. S. Rosello, J. L. Acena, C. d. Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok and H. Liu, *Chem. Rev.*, 2014, **114**, 2432–2506.

- 2 (a) Chemistry: Principles and Commercial Applications; Plenum: New York, 1994; (b) I. Ojima, J. R. McCarthy, J. T. Welch, Eds, Biomedical Frontiers of Fluorine Chemistry; ACS: Washington, 1996; (c) H. Hiyama, Organofluorine Compounds: Chemistry and Applications; Springer: Berlin, 2000; (d) P. Kirsch, Modern Fluoroorganic Chemistry; Wiley-VCH: Weinheim, 2004; (e) Y. Ozoe, Adv. Insect Physiol., 2013, 44, 211–286; (f) X.-H. Xu, K. Matsuzaki and N. Shibata, Chem. Rev., 2015, 115, 731–764;
- (a) A. de Meijere, F. Diederich, Eds, Metal-Catalyzed Cross-Coupling Reactions, 2nd Completely Revised and Enlarged ed; Wiley-VCH: Weinheim, Germany, 2004; Vol. 2; (b) M. Beller, C. Bolm, Eds, Transition Metals for Organic Synthesis, 2nd ed.; Wiley-VCH: Weinheim, 2004; (c) A. Rudolph and M. Lautens, Angew. Chem. Int. Ed., 2009, 48, 2656–2670; (d) R. Jana, T. P. Pathak and M. S. Sigman, Chem. Rev., 2011, 111, 1417–1492; (e) K. Zhao, L. Shen, Z.-L. Shen and T. P. Loh, Chem. Soc. Rev., 2017, 46, 586–602; (f) S. L. Zultanski and G. C. Fu, J. Am. Chem. Soc., 2011, 133, 15362–15364.
- 4 (a) Y. Gong and K. Kato, *Synlett*, 2002, 431–434; (b) P. Tian, C.
 -Q. Wang, S. -H. Cai, S. Song, L. Ye, C. Feng and T. P. Loh, *J. Am. Chem. Soc.*, 2016, **138**, 15869–5872.
- (a) E. J. Tollefson, L. E. Hanna and E. R. Jarvo, Acc. Chem. Res., 2015, 48, 2344–2353; (b) Z. Qureshi, C. Toker and M. Lautens, Synthesis, 2017, 1–16; (c) I. D. Hills, M. R. Netherton and G. C. Fu, Angew. Chem. Int. Ed., 2003, 42, 5749–5752; (d) D. A. Powell and G. C. Fu, J. Am. Chem. Soc., 2004, 126, 7788–7789; (e) A. Ariafard and Z. Lin, Organometallics, 2006, 25, 4030–4033; (f) A. L. Prez, J. Adrio and J. C Carretero, Org. Lett., 2009, 11, 5514–5517; (g) I. M. Yonova, A. G. Johnson, C. A. Osborne, C. E. Moore, N. S. Morrissette and E. R. Jarvo, Angew. Chem. Int. Ed., 2014, 53, 2422–2427; (h) S. N. Mendis and J. A. Tunge, Org. Lett., 2015, 17, 5164–5167; (i) Q. Zhou, K. M. Cobb, T. Tan and M. P. Watson, J. Am. Chem. Soc., 2016, 138, 12057–12060; (j) S. Tabuchi, K. Hirano and M. Miura, Angew. Chem. Int. Ed., 2016, 55, 6973–6977.
- (a) M. Brambilla and M. Tredwell, *Angew. Chem. Int. Ed.*, 2017, 56, 11981–11985.
- 7 (a) V. Farina, V. Krishnamurthy and W. J. Scott, Org. React., 1998, 50, 1–652; (b) Y. Dai, X. Feng, H. Liu, H. Jiang and M. Bao, J. Org. Chem., 2011, 76, 10068–10077; (c) B. Peng, S. Zhang, X. Yu, X. Feng and M. Bao, Org. Lett., 2011, 13, 5402–5405; (d) X. Feng, A. Sun, S. Zhang, X. Yu and M. Bao, Org. Lett., 2013, 15, 108–111.
- 8 (a) M. Bao, H. Nakamura and Y. Yamamoto, J. Am. Chem. Soc., 2001, **123**, 759–760; (b) Y. Ren, J. Jia, W. Liu and H. -S. Wu, Organometallics, 2013, **32**, 52–62; (c) Y. Ren, J. Jia, T. -T. Zhang, H. -S. Wu and W. Liu, Organometallics, 2012, **31**, 1168–1179; (d) A. Ariafard and Z. Lin, J. Am. Chem. Soc., 2006, **128**, 13010– 13016; (e) W. Cao, D. Tian and D. Han, J. Mol. Model., 2015, **21**, 260.
- 9 (a) J. K. Stille and R. W. Fries, J. Am. Chem. Soc., 1974, 96, 1514–1518; (b) K. S. Y. Lau, R. W. Fries and J. K. Stille, J. Am. Chem. Soc., 1974, 96, 4983–4986.
- 10 It cannot be ruled out that the trace amount of the peak at 61.24 ppm (d, J = 6.7 Hz) and/or others peaks around -63 -64 ppm might be the signal of **11**. See Figures S1 in ESI.

Electronic Supplementary Information

Stille cross-coupling of secondary and tertiary α-(trifluoromethyl)benzyl chlorides with allylstannanes

Nagender Punna,^a Kyosuke Harada,^a and Norio Shibata*^{ab}

^a Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.

^b Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China.

nozshiba@nitech.ac.jp

Table of contents

1. General information	S3
2. Optimization studies of Stille coupling reaction	S4
a) Screening of pseudohalide and secondary alkyl halide (Table S1)	S4
b) Screening of solvents (Table S2)	S4
c) Ligand screening (Table S3)	S5
d) Catalyst screening (Table S4)	S5
3. ¹⁹ F NMR studies to observe the progress of the Stille coupling reaction	S6
4. LC-MS analysis of CF ₃ -Pd- π -benzyl complex IV	S8
5. General experimental procedure for the synthesis of compound 1 & 4	S9
6. Typical procedure for the preparation of Stille-coupling products 3 , 5 & 7	S11
7. Application of compound 3f	
8. References	S27
9. NMR Data	S28

1. General information:

All reactions were performed in oven-dried glassware under a positive pressure of nitrogen or argon. Solvents were transferred via syringe and were introduced into the reaction vessels through a rubber septum. All solvents were dried by standard method. All of the reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica gel (60-F₂₅₄). The TLC plates were visualized with UV light and 7% phosphomolybdic acid or KMnO₄ in water/heat or *p*-anisaldehyde solution/heat. All of the reaction products were purified by column chromatography. Column chromatography was carried out on a column packed with silica gel 60N spherical neutral size 50-63 mm. The ¹H NMR (300 MHz and 500 MHz) and ¹⁹F NMR (282 MHz) spectra (with hexafluorobenzene (δ ppm –162.2) as an internal standard) as for solution in CDCl₃ and DMSO were recorded on a Varian Mercury 300 and BRUKER 500 Ultra Shield TR. ¹³C NMR (125.8 MHz) spectra for solution in CDCl₃ was recorded on a BRUKER 500 Ultra Shield TR. Chemical shifts (δ) are expressed in ppm downfield from internal TMS or C₆F₆. Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Mass spectra were recorded on a SHIMADZU GCMS-QP5050A (EI-MS) and SHIMADZU LCMS-2020 (ESI-MS).

Commercially available chemicals were obtained from Aldrich Chemical Co., Alfa Aesar, TCl, Ark Farm and used as received unless otherwise stated. The residual solvent signals were used as references (TMS: δ H = 0.00 ppm, δ C =77.16 ppm; and C₆F₆: δ F = -162.2 ppm). High resolution mass spectrometry (HRMS) was carried out on an electron impact ionization mass spectrometer with a micro-TOF analyzer.

2. Optimization studies of Stille coupling reaction

a) Table S1. Screening of pseudohalide and secondary alkyl halide^a

Entry	Х	Yield ^b [%]
1	OTs	-
2	OBoc	-
3	OC(O)OMe	-
4	Cl	31

^{*a*} Experiments were performed with **1a** (0.5 mmol), **2a** (0.65 mmol) and $PdCl_2/[^tBu_3PH][BF_4]/Et_3N$ (ratio: 1/2/4 mol %) in DMF (1.25 mL). ^{*b*} Yields refer to ¹⁹F NMR yields, for which PhCF₃ was used as internal standard.

b) Table S2. Screening of solvents^a

Entry	Solvent	Yield ^b [%]	
1	DMF	31	
2	THF	NR	
3	DCM	trace	
4	Toluene	trace	
5	DMSO	11	
6	CH₃CN	25	

^{*a*} Experiments were performed with **1** (0.5 mmol), **2** (0.65 mmol) and $PdCl_2/[^{t}Bu_3PH][BF_4]/Et_3N$ (ratio: 1/2/4 mol %) in solvent (1.25 mL). ^{*b*} Yields refer to ¹⁹F NMR yields, for which PhCF₃ was used as internal standard.

c) Table S3. Ligand screening^a

1a 2a	PdCl ₂ (5 mol %) SnBu ₃ Ligand (10 mol CsF (2 equiv) Cul (4 mol %) DMF, rt, 24 h) %) → 3a
Entry	Ligand	Yield ^b [%]
1 ^c	[^t Bu ₃ PH][BF ₄]	31
2	Dppf	trace
3	Dppe	3
4	Dppp	4
5	PCy₃	4
6	DPEphos	3
7	Xanthphos	2

^{*a*} Experiments were performed with **1** (0.5 mmol), **2** (0.65 mmol) and PdCl₂/[^tBu₃PH][BF₄]/Et₃N (ratio: 1/2/4 mol %) in DMF (1.25 mL). ^{*b*} Yields refer to ¹⁹F NMR yields, for which PhCF₃ was used as internal standard. ^{*c*} Et₃N (20 mol %) was used.

d) Table S4. Catalyst screening^a

Entry	Catalyst	Ligand	<i>Т</i> (°С)	Yield ^b [%]
1	-	-	75	-
2	Pd(PPh ₃) ₄	-	rt	5
3	Pd(OAc)₂	[^t Bu ₃ PH][BF ₄]/Et ₃ N	rt	13
4	Pd₂(dba)₃•CHCl₃	[^t Bu ₃ PH][BF ₄] /Et ₃ N	rt	33
5	PdCl ₂	[^t Bu ₃ PH][BF ₄] /Et ₃ N	rt	31

^{*a*} Experiments were performed with **1** (0.5 mmol), **2** (0.65 mmol) and $PdCl_2/[^tBu_3PH][BF_4]/Et_3N$ (ratio: 1/2/4 mol %) in DMF (1.25 mL). ^{*b*} Yields refer to ¹⁹F NMR yields, for which PhCF₃ was used as internal standard. Et₃N (20 mol %) was used.

3. ¹⁹F NMR studies to observe the progress of the Stille coupling reaction

In a glove box, a flame dried NMR tube was charged with PdCl₂ (0.05 equiv, 5 mol %), tri-*tert*-butylphosphine tetrafluoroborate (0.1 equiv, 10 mol %), triethylamine (0.2 equiv, 20 mol %) and 0.7 mL DMF-*d*₇ then stirred the mixture for 5 min at room temperature. After that added the (1-chloro-2,2,2-trifluoroethyl)benzene substrate **1a** (0.3 mmol, 1 equiv) and stirred at room temperature. Separately, recorded the ¹⁹F NMR of only (1-chloro-2,2,2-trifluoroethyl)benzene substrate **1a** [Figure S1 a)]. ¹⁹F NMR spectra of the crude were recorded after 2h [Figure S1 b)]. Then, added allyltributylstannane (0.75 mmol, 2.5 equiv) and recorded ¹⁹F NMR spectra after 2h and 4h respectively [Figure S1 c)-d)]. After that, the reaction mixture was warmed up to 75 °C and recorded ¹⁹F NMR spectra after 10 min and 40 min respectively [Figure S1 e)-f)]. Reaction completed within 40 min.

Figure S1a. ¹⁹F NMR investigation in between the reaction of **1a** and **2a** in DMF- d_7 . a) **1a** b) PdCl₂/[^tBu₃PH][BF₄]/Et₃N was added, at rt for 2h. c) **2a** was added, at rt for 2h. d) at rt for 4h. e) at 75 °C for 10 min. f) at 75 °C for 40 min.

Figure S1b. Expanded ¹⁹F NMR Spectra.

Figure S1c. Expanded ¹⁹F NMR Spectra.

4. LC-MS analysis of CF₃-Pd- π -benzyl complex III

LC-MS analysis confirmed that CF₃-Pd- π -benzyl complex III was confirmed during the progress of the reaction. LC-MS (ESI, m/z): [M+H]⁺ 597.15 (isotopic pattern) (Figure S2)

Figure S2. LC-MS spectra of Pd-intermediate III.

D:\Harada\HKY-606-with Sn.lcd

Figure S2a LC-MS spectra of III: Isotopic resolution of the calculated and observed LC-MS main peaks of the intermediate. Obs.: $[M + H]^+ = 597.15$, Calcd.: $[M + H]^+ = 597.1884$.

5. General experimental procedure for the synthesis of (1-chloro-2,2,2-trifluoroethyl)benzene substrates 1a–u & 4a–d

Followed by the general procedure from *J. Fluorine Chem.* 2005, **126**, 1174-1184. To a mixture of fluorinated alcohol (5.0 mmol) and pyridine (5.5 mmol) was slowly added thionyl chloride (5.5 mmol) and catalytic amount of DMF (0.1 mol %). The mixture was refluxed for 3–5 h and poured into cold water (5 mL). The organic layer was separated and the aqueous layer extracted with diethylether (3×10 mL). The combined organics extracts were washed with diluted HCl (4×3 mL), water (2×5 mL), saturated sodium bicarbonate (2×5 mL) and brine. Evaporation of the solvent yielded the crude product which was purified by column chromatography (by using 9:1 hexane/ethyl acetate as an eluents). All the starting materials was almost reported.¹

Methyl 4-(1-chloro-2,2,2-trifluoroethyl)benzoate (1f)

Following the general procedure, **1f** was obtained as a yellow oil (Yield: 82%). ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 8.2 Hz, 2H), 7.59 (d, *J* = 8.1 Hz, 2H), 5.17 (q, *J* = 6.7 Hz, 1H), 3.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.32, 136.73, 131.96, 130.13, 128.99, 123.28 (q, *J* = 279.4 Hz), 58.24 (q, *J* = 34.5 Hz), 52.55. ¹⁹F NMR (282 MHz, CDCl₃) δ -73.52 (d, *J*

= 6.4 Hz, 3F). HRMS(EI) calculated for $C_{10}H_8O_2F_3CI [M]^+: 252.0165$, found:252.0180.

3-(1-Chloro-2,2,2-trifluoroethyl)thiophene (1r)

Following the general procedure, **1r** was obtained as a yellow oil (Yield: 38%). ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.46 (m, 1H), 7.40–7.36 (m, 1H), 7.21 (d, *J* = 5.0 Hz, 1H), 5.25 (q, *J* = 6.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 132.65, 127.20, 126.99, 126.66. 123.30 (d, *J* = 278.9 Hz), 54.25 (q, *J* = 35.4 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ –73.96 (d, *J* = 6.7 Hz, 3F). HRMS (EI) calculated for C₆H₄F₃SCl [M]⁺: 199.9674, found:199.9699.

1-Chloro-4-(1-chloro-2,2,2-trifluoro-1-phenylethyl)benzene (4b)

Following the general procedure, **4b** was obtained as a colorless oil (Yield: 90%). ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.30 (m, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 137.77, 136.82, 135.43, 130.60, 129.36, 129.01, 128.49, 128.40. 124.33 (q, *J* = 283.2 Hz), 74.62 (q, *J* = 29.7 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ –69.90 (s, 3F). HRMS (EI) calculated for C₁₄H₉F₃Cl₂ [M]⁺: 304.0033, found: 304.0030.

1-(1-Chloro-2,2,2-trifluoro-1-phenylethyl)-4-(trifluoromethyl)benzene (5c)

Following the general procedure, **4c** was obtained as a colorless oil (Yield: 74%). ¹H NMR (500 MHz, CDCl₃) δ 7.65–7.61 (m, 4H), 7.46 (d, *J* = 7.4 Hz, 2H), 7.42–7.35 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 142.10, 137.45, 131.32 (q, *J* = 32.9 Hz), 129.69, 129.51, 129.00, 128.51, 125.31. 124.25 (q, *J* = 283.2 Hz), 123.80 (q, *J* = 272.3 Hz), 74.48 (d, *J* = 29.8 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ –63.44 (s, 3F), –69.75 (s, 3F). HRMS (EI) calculated for C₁₅H₉F₆Cl [M]⁺: 338.0297, found: 338.0311.

6.General experimental procedure for the synthesis of trifluoromethyl substituted homoallyl compounds 3a–u & 5a–d

In a glove box, a flame dried test tube was charged with $PdCl_2$ (0.01 equiv, 1 mol %), tri*tert*-butylphosphine tetrafluoroborate (0.02 equiv, 2 mol %), triethylamine (0.04 equiv, 4 mol %) and 1.25 mL DMF then stirred the mixture for 5 min at room temperature. After that added the (1-chloro-2,2,2-trifluoroethyl)benzene substrate **1** (0.5 mmol, 1 equiv) and allyltributylstannane (1.25 mmol, 2.5 equiv) respectively at room temperature. The reaction mixture was warmed up to 7 and stirred for 24 hours, upon completion of the reaction, excess of allyltributylstannane was quenched with TBAF (2 mL, 1 M solution in THF) followed by the water then aqueous layer was extracted with diethyl ether (3 × 10 mL) and combined the organic layers, dried over Na₂SO₄ and concentrated on the reduced pressure, dried over sodium sulfate. The crude reaction mixture was purified by column chromatography (by using 9:1 hexane/ethyl acetate as an eluents) and all the products **3** are isolated as volatile liquids.

(1,1,1-Trifluoropent-4-en-2-yl)benzene (3a)

Followed by the general procedure, by using $PdCl_2$ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 µL) in 1.25 mL DMF. To it **1a** (0.5 mmol, 97.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3a**.

Volatile colorless oil (32.0 mg, yield: 32%). ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.23 (m, 5H), 5.62–5.51 (m, 1H), 5.04 (d, *J*_{trans} = 17.0 Hz, 1H), 4.97 (d, *J*_{cis} = 10.1 Hz, 1H), 3.38–3.26 (m, 1H), 2.83–2.72 (m, 1H), 2.70– 2.59 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 134.43, 134.03, 129.26, 128.75, 128.32, 126.84 (q, *J* = 280.0 Hz), 117.89, 50.20 (q, *J* = 26.3 Hz), 33.35. ¹⁹F NMR (282 MHz, CDCl₃) δ –70.21 (d, *J* = 9.2 Hz, 3F). HRMS (EI) calculated for C₁₁H₁₁F₃ [M]⁺: 200.0813, found: 200.0826.

1-Methoxy-4-(1,1,1-trifluoropent-4-en-2-yl)benzene (3b)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **1b** (0.5 mmol, 112.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3b**. Volatile colorless oil (55.3 mg, yield: 48%). ¹H NMR (500 MHz, CDCl₃) δ 7.20 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.5 Hz, 2H), 5.63–5.51 (m, 1H), 5.04 (d, *J*_{trans} = 17.1 Hz, 1H), 4.97 (d, *J*_{cis} = 10.2 Hz, 1H), 3.81 (s, 3H), 3.33–3.21 (m, 1H), 2.80–2.70 (m, 1H), 2.66–2.55 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.50, 134.18, 130.30, 126.91 (q, *J* = 280.4 Hz), 126.32, 117.79, 114.12, 55.36, 49.33 (q, *J* = 26.3 Hz), 33.30. ¹⁹F NMR (282 MHz, CDCl₃) δ –70.67 (d, *J* = 9.2 Hz, 3F). HRMS (EI) calculated for C₁₂H₁₃F₃O [M]⁺: 230.0918, found: 230.0931.

1-Methyl-4-(1,1,1-trifluoropent-4-en-2-yl)benzene (3c)

Followed by the general procedure, by using $PdCl_2$ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 µL) in 1.25 mL DMF. To it **1c** (0.5 mmol, 104.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3c**.

Volatile colorless oil (61.1 mg, yield: 57%). ¹H NMR (500 MHz, CDCl₃) δ 7.19–7.14 (m, 4H), 5.63–5.51 (m, 1H), 5.04 (d, *J*_{trans} = 17.0 Hz, 1H), 4.96 (d, *J*_{cis} = 10.1 Hz, 1H), 3.34–3.22 (m, 1H), 2.81–2.71 (m, 1H), 2.67–2.57 (m, 1H), 2.34 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 138.07, 134.17, 131.32, 129.47, 129.10, 126.90 (q, *J* = 280.3 Hz), 117.77, 49.77 (q, *J* = 26.3 Hz), 33.30, 21.25. ¹⁹F NMR (282 MHz, CDCl₃) δ –70.40 (d, *J* = 9.2 Hz, 3F). HRMS (EI) calculated for C₁₂H₁₃F₃ [M]⁺: 214.0969, found: 214.0983.

(1,1,1-Trifluoro-4-methylpent-4-en-2-yl)benzene (3d)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **1a** (0.5 mmol, 97.3 mg, 1.0 equiv) and **2b** (1.25 mmol, 431.4 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3d**. Volatile colorless oil (72.8 mg, yield: 68%). ¹H NMR (500 MHz, CDCl₃) δ 7.37–7.31 (m, 3H), 7.28 (d, *J* = 7.4 Hz, 2H), 4.69 (s, 1H), 4.60 (s, 1H), 3.54–3.40 (m, 1H), 2.73 (dd, *J* = 14.4, 3.9 Hz, 1H), 2.63 (dd, *J* = 14.3, 11.2 Hz, 1H), 1.63 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.77, 134.51, 129.25, 128.63, 128.25, 127.00 (q, *J* = 280.3 Hz), 113.98, 48.57 (q, *J* = 26.2 Hz), 36.94, 22.20. ¹⁹F NMR (282 MHz, CDCl₃) δ –70.29 (d, *J* = 9.2 Hz, 3F). HRMS (EI) calculated for C₁₂H₁₃F₃ [M]⁺: 214.0969, found: 214.0989.

1-(*tert*-Butyl)-4-(1,1,1-trifluoropent-4-en-2-yl)benzene (3e)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **1e** (0.5 mmol, 125.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3e**. Volatile colorless oil (85.9 mg, yield: 67%). ¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, *J* = 8.2

Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 5.66–5.53 (m, 1H), 5.06 (d, $J_{trans} = 17.0$ Hz, 1H), 4.97 (d, $J_{cis} = 10.1$ Hz, 1H), 3.36–3.23 (m, 1H), 2.81–2.71 (m, 1H), 2.69–2.58 (m, 1H), 1.31 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 151.14, 134.32, 131.31, 128.83, 126.95 (q, J = 280.1 Hz), 125.64, 117.68, 49.70 (q, J = 26.3 Hz), 34.65, 33.37, 31.43. ¹⁹F NMR (282 MHz, CDCl₃) δ –70.24 (d, J = 9.2 Hz, 3F). HRMS (EI) calculated for C₁₅H₁₉F₃ [M]⁺: 256.1439, found: 256.1464.

Methyl 4-(1,1,1-trifluoropent-4-en-2-yl)benzoate (3f)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **1f** (0.5 mmol, 126.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3f**. Volatile colorless oil (95.5 mg, yield: 74%). ¹**H NMR** (500 MHz, CDCl₃) δ 8.03 (d, *J* = 8.1 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 5.59–5.48 (m, 1H), 5.02 (d, *J*_{trans} = 17.0 Hz, 1H), 4.97 (d, *J*_{cis} = 10.2 Hz, 1H), 3.92 (s, 3H), 3.46–3.35 (m, 1H), 2.85–2.76 (m, 1H), 2.70–2.59 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 166.80, 139.46, 133.40, 130.24, 130.01, 129.36, 126.48 (q, *J* = 280.2 Hz), 118.40, 52.35, 50.17 (q, *J* = 26.6 Hz), 33.28. ¹⁹**F NMR** (282 MHz, CDCl₃) δ – 69.91 (d, *J* = 9.0 Hz, 3F). **GC-MS** (*m*/*z*): 258 [M]⁺. Compound is already known. (*J. Am. Chem. Soc.* **2016**, *138*, 15869–15872)

Followed by the general procedure, by using $PdCl_2$ (1 mol %; 0.9 mg), [${}^{t}Bu_3PH$][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 µL) in 1.25 mL DMF. To it **1e** (0.5 mmol, 125.3 mg, 1.0 equiv) and **2b** (1.25 mmol, 431.4 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash

column chromatography (using hexane as an eluent) to obtain the pure product **3g**. Volatile colorless oil (102.7 mg, yield: 76%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.34 (d, *J* = 8.3 Hz, 2H), 7.19 (d, *J* = 8.1 Hz, 2H), 4.70 (s, 1H), 4.62 (s, 1H), 3.51–3.39 (m, 1H), 2.71 (dd, *J* = 14.5, 4.3 Hz, 1H), 2.60 (dd, *J* = 14.5, 10.8 Hz, 1H), 1.63 (s, 3H), 1.31 (s, 9H). ¹³**C NMR** (126 MHz, CDCl₃) δ 151.03, 141.00, 131.42, 128.80, 127.11 (q, *J* = 280.4 Hz), 125.52, 113.75, 48.03 (q, *J* = 26.2 Hz), 36.92, 34.63, 31.43, 22.29. ¹⁹**F NMR** (282 MHz, CDCl₃) δ –70.29 (d, *J* = 9.3 Hz, 3F). **HRMS (EI)** calculated for C₁₆H₂₁F₃ [M]⁺: 270.1595, found: 270.1620.

2-(1,1,1-Trifluoropent-4-en-2-yl)naphthalene (3h)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **1h** (0.5 mmol, 122.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3h**. Volatile colorless oil (80.1 mg, yield: 64%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.88–7.80 (m, 3H), 7.74 (s, 1H), 7.54–7.46 (m, 2H), 7.42 (d, *J* = 8.4 Hz, 1H), 5.64–5.52 (m, 1H), 5.06 (d, *J*_{trans} = 17.0 Hz, 1H), 4.95 (d, *J*_{cis} = 10.1 Hz, 1H), 3.56–3.44 (m, 1H), 2.90–2.82 (m, 1H), 2.81–2.71 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 133.97, 133.33, 133.17, 131.84, 128.92, 128.54, 128.06, 127.80, 126.48, 126.46, 126.40, 124.68 (q, *J* = 280.4 Hz), 118.00, 50.36 (q, *J* = 26.4 Hz), 33.35. ¹⁹**F NMR** (282 MHz, CDCl₃) δ –69.95 (d, *J* = 9.2 Hz, 3F). **HRMS (EI)** calculated for C₁₅H₁₃F₃ [M]⁺: 250.0969, found: 250.0995.

1-(1,1,1-Trifluoropent-4-en-2-yl)naphthalene (3i)

Followed by the general procedure, by using $PdCl_2$ (1 mol %; 0.9 mg), [${}^{t}Bu_3PH$][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 µL) in 1.25 mL DMF. To it **1i** (0.5 mmol, 122.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then

extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3i**. Volatile colorless oil (56.3 mg, yield: 45%). ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.5 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 8.2 Hz, 1H), 7.64–7.47 (m, 4H), 5.64–5.51 (m, 1H), 5.05 (d, *J*_{trans} = 17.0 Hz, 1H), 4.90 (d, *J*_{cis} = 10.1 Hz, 1H), 4.44–4.27 (m, 1H), 3.02–2.91 (m, 1H), 2.90–2.77 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 134.02, 133.96, 132.76, 130.61, 129.26, 128.86, 127.11 (q, *J* = 280.6 Hz), 126.76, 125.84, 125.79, 125.41, 122.71, 117.91, 43.08 (q, *J* = 25.9 Hz), 33.98. ¹⁹F NMR (282 MHz, CDCl₃) δ –69.34 (d, *J* = 7.7 Hz, 3F). HRMS (EI) calculated for C₁₅H₁₃F₃ [M]⁺: 250.0969, found: 250.0996.

1-(Trifluoromethyl)-3-(1,1,1-trifluoropent-4-en-2-yl)benzene (3j)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **1j** (0.5 mmol, 131.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3j**. Volatile colorless oil (91.2 mg, yield: 68%). ¹H NMR (500 MHz, CDCl₃) δ 7.64–7.57 (m, 1H), 7.55–7.46 (m, 3H), 5.61–5.48 (m, 1H), 5.04 (d, *J*_{trans} = 17.1 Hz, 1H), 5.00 (d, *J*_{cis} = 10.1 Hz, 1H), 3.48–3.34 (m, 1H), 2.88–2.76 (m, 1H), 2.71–2.59 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 135.43, 133.26, 132.63, 131.23 (q, *J* = 32.3 Hz), 129.32, 126.41 (q, *J* = 286.4 Hz), 126.12, 125.33, 124.03 (q, *J* = 272.4 Hz), 118.60, 50.04 (q, *J* = 26.9 Hz), 33.20. ¹⁹F NMR (282 MHz, CDCl₃) δ –63.17 (s, 3F), –70.16 (d, *J* = 8.9 Hz, 3F). HRMS (EI) calculated for C₁₂H₁₀F₆ [M]⁺: 268.0687, found: 268.0711.

3-(1,1,1-Trifluoropent-4-en-2-yl)benzonitrile (3k)

Followed by the general procedure, by using $PdCl_2$ (1 mol %; 0.9 mg), [${}^{t}Bu_3PH$][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **1k** (0.5 mmol, 109.8 mg,

1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3k**. Volatile colorless oil (79.9 mg, yield: 71%). ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 7.4 Hz, 1H), 7.58 (s, 1H), 7.56–7.46 (m, 2H), 5.58–5.47 (m, 1H), 5.07–4.98 (m, 2H), 3.45–3.33 (m, 1H), 2.87–2.78 (m, 1H), 2.67–2.56 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 135.99, 133.75, 132.87, 132.90, 132.11, 129.71, 126.23 (q, *J* = 280.5 Hz), 118.93, 118.53, 113.14, 49.83 (q, *J* = 27.0 Hz), 33.09. ¹⁹F NMR (282 MHz, CDCl₃) δ –70.14 (d, *J* = 8.9 Hz, 3F). HRMS (EI) calculated for C₁₂H₁₀F₃N [M]⁺: 225.0765, found: 225.0745.

1-Fluoro-3-(1,1,1-trifluoropent-4-en-2-yl)benzene (3l)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **1** (0.5 mmol, 106.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3**. Volatile colorless oil (56.7 mg, yield: 52%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.37–7.28 (m, 1H), 7.10–6.98 (m, 3H), 5.62–5.49 (m, 1H), 5.04 (d, *J*_{trans} = 17.0 Hz, 1H), 4.99 (d, *J*_{cis} = 10.1 Hz, 1H), 3.39–3.27 (m, 1H), 2.82–2.73 (m, 1H), 2.65–2.55 (m, 1H). ¹³C **NMR** (126 MHz, CDCl₃) δ 162.94 (d, *J* = 246.5 Hz), 136.84, 133.52, 130.25 (d, *J* = 8.2 Hz), 126.52 (q, *J* = 280.3 Hz), 125.12 (d, *J* = 2.5 Hz), 118.29, 116.18 (d, *J* = 22.3 Hz), 115.38 (d, *J* = 21.2 Hz), 49.95 (q, *J* = 26.3 Hz), 33.33. ¹⁹F **NMR** (282 MHz, CDCl₃) δ –70.19 (d, *J* = 9.0 Hz, 3F), – 113.04– –113.17 (m, 1F). **HRMS (EI)** calculated for C₁₁H₁₀F₄ [M]⁺: 218.0719, found: 218.0728.

5-(1,1,1-Trifluoropent-4-en-2-yl)benzo[d][1,3]dioxole (3m)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2

mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μL) in 1.25 mL DMF. To it **1m** (0.5 mmol, 119.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3m**. Volatile colorless oil (61.1 mg, yield: 50%). ¹H NMR (500 MHz, CDCl₃) δ 6.81–6.76 (m, 2H), 6.75–6.70 (m, 1H), 5.97 (s, 2H), 5.64–5.51 (m, 1H), 5.05 (d, *J*_{trans} = 17.0 Hz, 1H), 4.99 (d, *J*_{cis} = 10.1 Hz, 1H), 3.30–3.18 (m, 1H), 2.77–2.69 (m, 1H), 2.62–2.51 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 148.06, 147.60, 133.97, 127.94, 126.76 (q, *J* = 280.2 Hz), 123.08, 117.93, 109.09, 108.43, 101.37, 49.83 (q, *J* = 26.4 Hz), 33.40. ¹⁹F NMR (282 MHz, CDCl₃) δ –70.60 (d, *J* = 9.1 Hz, 3F). HRMS (EI) calculated for C₁₂H₁₁F₃O₂ [M]⁺: 244.0711, found: 244.0719.

1-(Trifluoromethyl)-4-(1,1,1-trifluoropent-4-en-2-yl)benzene (3n)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **1n** (0.5 mmol, 131.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3n**. Volatile colorless oil (81.8 mg, yield: 61%). ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 7.9 Hz, 2H), 5.60–5.48 (m, 1H), 5.04 (d, *J*_{trans} = 17.0 Hz, 1H), 4.99 (d, *J*_{cis} = 10.1 Hz, 1H), 3.47–3.35 (m, 1H), 2.86–2.76 (m, 1H), 2.70–2.59 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 138.42, 133.26, 130.67 (q, *J* = 32.6 Hz), 129.72, 126.45 (q, *J* = 280.2 Hz), 125.76 (q, *J* = 3.8 Hz), 124.09 (q, *J* = 271.9 Hz), 118.55, 50.08 (q, *J* = 26.6 Hz), 33.25. ¹⁹F NMR (282 MHz, CDCl₃) δ –63.21 (s, 3F), –70.03 (d, *J* = 9.0 Hz, 3F). **GC-MS (m/z)**: 268 [M]⁺. Compound is already known. (*J. Am. Chem. Soc.* **2016**, *138*, 15869–15872)

4-(1,1,1-Trifluoropent-4-en-2-yl)benzonitrile (30)

ChemComm

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **10** (0.5 mmol, 109.8 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3o**. Volatile colorless oil (78.8 mg, yield: 70 %). ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 5.58–5.47 (m, 1H), 5.07–4.97 (m, 2H), 3.47–3.36 (m, 1H), 2.87–2.76 (m, 1H), 2.68–2.57 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 139.70, 132.90, 132.56, 130.11, 126.21 (q, *J* = 280.3 Hz), 118.84, 118.50, 112.50, 50.22 (q, *J* = 26.9 Hz), 33.14. ¹⁹F NMR (282 MHz, CDCl₃) δ –69.87 (d, *J* = 8.9 Hz, 3F). **GC-MS (***m***/z)**: 225 [M]⁺. Compound is already known. (*J. Am. Chem. Soc.* **2016**, *138*, 15869–15872)

1-Chloro-4-(1,1,1-trifluoropent-4-en-2-yl)benzene (3p)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **1p** (0.5 mmol, 114.5 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3p**. Volatile colorless oil (70.4 mg, yield: 60%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.34 (d, *J* = 8.3 Hz, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 5.60–5.48 (m, 1H), 5.03 (d, *J*_{trans} = 17.0 Hz, 1H), 4.98 (d, *J*_{cis} = 10.1 Hz, 1H), 3.37–3.25 (m, 1H), 2.83–2.72 (m, 1H), 2.66–2.53 (m, 1H). ¹³C **NMR** (126 MHz, CDCl₃) δ 134.32, 133.55, 132.85, 130.59, 129.01, 126.55 (q, *J* = 280.4 Hz), 118.30, 49.61 (q, *J* = 26.6 Hz), 33.22. ¹⁹F **NMR** (282 MHz, CDCl₃) δ –70.36 (d, *J* = 9.1 Hz, 3F). **HRMS (ESI)** calculated for C₁₁H₁₀ClF₃ [M + H]⁺: 235.0501, found:235.0512.

1-Fluoro-4-(1,1,1-trifluoropent-4-en-2-yl)benzene (3q)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **1q** (0.5 mmol, 106.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3q**. Volatile colorless oil (55.6 mg, yield: 51%). ¹H NMR (500 MHz, CDCl₃) δ 7.29–7.22 (m, 2H), 7.05 (t, *J* = 8.5 Hz, 2H), 5.61–5.49 (m, 1H), 5.03 (d, *J*_{trans} = 17.0 Hz, 1H), 4.98 (d, *J*_{cis} = 10.1 Hz, 1H), 3.38–3.26 (m, 1H), 2.83–2.72 (m, 1H), 2.65–2.54 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.69 (d, *J* = 247.0 Hz), 133.71, 130.87 (d, *J* = 8.2 Hz), 130.13, 126.66 (q, *J* = 279.7 Hz), 118.17, 115.75 (d, *J* = 21.3 Hz), 49.45 (q, *J* = 26.5 Hz), 33.34. ¹⁹F NMR (282 MHz, CDCl₃) δ –70.55 (d, *J* = 9.1 Hz, 3F), –114.44– –114.57 (m, 1F). HRMS (EI) calculated for C₁₁H₁₀F₄ [M]⁺: 218.0719, found: 218.0740.

3-(1,1,1-Trifluoropent-4-en-2-yl)thiophene (3r)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **1r** (0.5 mmol, 100.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3r**. Volatile colorless oil (44.3 mg, yield: 43%). ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.30 (m, 1H), 7.19 (s, 1H), 7.04 (d, *J* = 4.4 Hz, 1H), 5.66–5.54 (m, 1H), 5.05 (d, *J*_{trans} = 17.0 Hz, 1H), 5.00 (d, *J*_{cis} = 10.1 Hz, 1H), 3.56–3.42 (m, 1H), 2.78–2.68 (m, 1H), 2.63–2.52 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 134.78, 133.98, 127.55, 126.49 (q, *J* = 279.9 Hz), 126.11, 124.36, 117.93, 45.57 (q, *J* = 27.2 Hz), 33.65. ¹⁹F NMR (282 MHz, CDCl₃) δ –70.75 (d, *J* = 9.0 Hz, 3F). HRMS (EI) calculated for C₉H₉F₃S [M]⁺: 206.0377, found: 206.0391.

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **10** (0.5 mmol, 109.8 mg, 1.0 equiv) and **2b** (1.25 mmol, 431.4 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3s**. Volatile colorless oil (90.9 mg, yield: 76%). ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 4.70 (s, 1H), 4.56 (s, 1H), 3.62–3.49 (m, 1H), 2.76 (dd, *J* = 14.5, 3.4 Hz, 1H), 2.61 (dd, *J* = 14.4, 11.5 Hz, 1H), 1.63 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 139.75, 132.47, 130.08, 126.37 (q, *J* = 280.2 Hz), 118.54, 114.72, 112.43, 48.56 (q, *J* = 26.7 Hz), 36.73, 22.08. ¹⁹F NMR (282 MHz, CDCl₃) δ –69.96 (d, *J* = 8.9 Hz, 3F). **GC-MS** (*m/z*): 239 [M]⁺. Compound is already known. (*J. Am. Chem. Soc.* **2016**, *138*, 15869–15872)

1-Chloro-4-(1,1,1-trifluoro-4-methylpent-4-en-2-yl)benzene (3t)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **1p** (0.5 mmol, 114.5 mg, 1.0 equiv) and **2b** (1.25 mmol, 431.4 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3t**. Volatile colorless oil (87.0 mg, yield: 70%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.32 (d, *J* = 8.5 Hz, 2H), 7.21 (d, *J* = 8.3 Hz, 2H), 4.70 (s, 1H), 4.58 (s, 1H), 3.51–3.40 (m, 1H), 2.72 (dd, *J* = 14.5, 3.7 Hz, 1H), 2.58 (dd, *J* = 14.4, 11.4 Hz, 1H), 1.62 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 140.32, 134.24, 132.91, 130.58, 128.90, 126.72 (q, *J* = 279.9 Hz), 114.32, 47.96 (q, *J* = 26.5 Hz), 36.81, 22.13. ¹⁹**F NMR** (282 MHz, CDCl₃) δ –70.44 (d, *J* = 9.1 Hz, 3F). **HRMS (EI)** calculated for C₁₂H₁₂ClF₃ [M]⁺: 248.0580, found: 248.0599.

3-(1,1,1-Trifluoro-4-methylpent-4-en-2-yl)thiophene (3u)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **1r** (0.5 mmol, 100.3 mg, 1.0 equiv) and **2b** (1.25 mmol, 431.4 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **3u**. Volatile colorless oil (58.4 mg, yield: 53%). ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.28 (m, 1H), 7.18 (d-like, *J* = 1.9 Hz, 1H), 7.04 (d, *J* = 4.9 Hz, 1H), 4.72 (s, 1H), 4.62 (s, 1H), 3.69–3.57 (m, 1H), 2.69 (dd, *J* = 14.3, 3.8 Hz, 1H), 2.54 (dd, *J* = 14.2, 11.1 Hz, 1H), 1.64 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.83, 134.88, 127.55, 126.64 (q, *J* = 279.9 Hz), 125.86, 124.30, 113.83, 44.04 (q, *J* = 27.1 Hz), 37.36, 22.15. ¹⁹F NMR (282 MHz, CDCl₃) δ –70.86 (d, *J* = 9.1 Hz, 3F). HRMS (EI) calculated for C₁₀H₁₁F₃S [M]⁺: 220.0534, found: 220.0526.

(1,1,1-Trifluoropent-4-ene-2,2-diyl)dibenzene (5a)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **4a** (0.5 mmol, 135.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **5a**. Volatile colorless oil (89.8 mg, yield: 65%). ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.26 (m, 10H), 5.62–5.50 (m, 1H), 5.02 (d, *J*_{trans} = 17.0 Hz, 1H), 4.94 (d, *J*_{cis} = 10.2 Hz, 1H), 3.21 (d, *J* = 6.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 140.02, 133.20, 129.47, 128.09, 127.63 (q, *J* = 285.3 Hz), 127.55, 118.47, 57.69 (q, *J* = 23.3 Hz), 40.82. ¹⁹F NMR (282 MHz, CDCl₃) δ – 66.49 (s, 3F). HRMS (EI) calculated for C₁₇H₁₅F₃ [M]⁺: 276.1126, found: 276.1130.

1-Chloro-4-(1,1,1-trifluoro-2-phenylpent-4-en-2-yl)benzene (5b)

ChemComm

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **4b** (0.5 mmol, 152.6 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **5b**. Volatile colorless oil (77.7 mg, yield: 50%). ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.19 (m, 9H), 5.59–5.49 (m, 1H), 5.01 (d, *J*_{trans} = 17.0 Hz, 1H), 4.96 (d, *J*_{cis} = 10.2 Hz, 1H), 3.18 (d, *J* = 6.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 139.45, 138.54, 133.63, 132.72, 130.92, 129.37, 128.28, 128.24, 127.79, 127.41 (q, *J* = 285.2 Hz), 118.94, 57.40 (q, *J* = 23.2 Hz), 40.71. ¹⁹F NMR (282 MHz, CDCl₃) δ –66.76 (s, 3F). HRMS (EI) calculated for C₁₇H₁₄F₃Cl [M]⁺: 310.0736, found: 310.0753.

1-(1,1,1-Trifluoro-2-phenylpent-4-en-2-yl)-4-(trifluoromethyl)benzene (5c)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **4c** (0.5 mmol, 169.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **5c**. Volatile colorless oil (106.7 mg, yield: 62%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.58 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.2 Hz, 2H), 7.36–7.30 (m, 3H), 7.28–7.22 (m, 2H), 5.60–5.49 (m, 1H), 5.02 (d, *J*_{trans} = 17.0, 1H), 4.97 (d, *J*_{cis} = 10.2 Hz, 1H), 3.22 (d, *J* = 6.9 Hz, 2H). ¹³C **NMR** (126 MHz, CDCl₃) δ 144.05, 139.15, 132.44, 129.92, 129.42, 128.34, 127.97, 127.31 (q, *J* = 285.3 Hz), 125.04 (q, *J* = 3.6 Hz), 124.09 (q, *J* = 272.2 Hz), 119.16, 57.81 (q, *J* = 23.4 Hz), 40.68. One carbon of (CF₃-<u>*C*</u>(Ar)) is not observed. ¹⁹F **NMR** (282 MHz, CDCl₃) δ –63.21 (s, 3F), -66.61 (s, 3F). **HRMS (EI)** calculated for C₁₈H₁₄F₆ [M]⁺: 344.1000, found: 344.0993.

1-Methoxy-4-(1,1,1-trifluoro-2-phenylpent-4-en-2-yl)benzene (5d)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it **4d** (0.5 mmol, 150.4 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75 °C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **5d**. Volatile colorless oil (91.9mg, yield: 60%). ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.25 (m, 5H), 7.19 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 5.62–5.51 (m, 1H), 5.02 (d, *J*_{trans} = 17.0 Hz, 1H), 4.94 (d, *J*_{cis} = 10.2 Hz, 1H), 3.81 (s, 3H), 3.18 (d, *J* = 6.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 158.77, 140.15, 133.30, 131.95, 130.68, 129.36, 128.08, 127.72 (q, *J* = 285.2 Hz), 127.45, 118.39, 113.36, 57.09 (q, *J* = 23.0 Hz), 55.34, 40.86. ¹⁹F NMR (282 MHz, CDCl₃) δ –66.77 (s, 3F). HRMS (EI) calculated for C₁₈H₁₇OF₃ [M]⁺: 306.1232, found: 306.1239.

(E)-(3-(Trifluoromethyl)hexa-1,5-dien-1-yl)benzene (7a)

Followed by the general procedure, by using PdCl₂ (1 mol %; 0.9 mg), [^tBu₃PH][BF₄] (2 mol %; 2.9 mg) and Et₃N (4 mol %; 2.8 μ L) in 1.25 mL DMF. To it mixture of **6a** and **6b** (0.5 mmol, 110.3 mg, 1.0 equiv) and **2a** (1.25 mmol, 413.9 mg, 2.5 equiv) were added. After being stirred at 75°C for 24 h, the mixture was quenched with TBAF (2 mL, 1 M solution in THF) then extracted with diethyl ether and dried *in vacuo*. The crude product was purified by flash column chromatography (using hexane as an eluent) to obtain the pure product **7a.** Volatile colorless oil (80.3 mg, yield: 71%). ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, *J* = 7.9 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.29–7.26 (m, 1H), 6.56 (d, *J* = 15.9 Hz, 1H), 5.98 (dd, *J* = 15.9, 9.1 Hz, 1H), 5.80–5.69 (m, 1H), 5.13 (d, *J*_{trans} = 17.0 Hz, 1H), 5.08 (d, *J*_{cis} = 10.1 Hz, 1H), 3.00–2.88 (m, 1H), 2.63–2.55 (m, 1H), 2.41–2.31 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 136.33, 136.07, 134.00, 128.77, 128.22, 126.84 (q, *J* = 280.1 Hz), 126.64, 122.40, 118.00, 47.85 (q, *J* = 26.5 Hz), 32.84. ¹⁹F NMR (282 MHz, CDCl₃) δ –71.18 (d, *J* = 8.8 Hz, 3F). HRMS (EI) calculated for C₁₃H₁₃F₃ [M]⁺: 226.0969, found: 226.0974.

7. Applications

a) General procedure for the synthesis of methyl 4-(1,1,1-trifluoro-3-(oxiran-2-yl)propan-2-yl)benzoate (8a)

A flame dried test tube was charged with *m*-CPBA (0.3 mmol, 51.77 mg, 70% wt/wt in water) and dry DCM (3 mL) then cooled to 0 °C. Next added the compound **3f** (0.2 mmol, 51.6 mg) and increase the temperature gradually to room temperature and stirred for 24 h. After completion of reaction, mixture was quenched with saturated NaHCO₃ (3 mL). The organic layer was separated and the aqueous layer was extracted with additional DCM (2 × 10 mL). The organic layers were combined and washed with brine (10 mL). The organic layer was separated, dried over Na₂SO₄, and concentrated over rotary evaporator. The dr was calculated from the crude reaction mixture by using the ¹⁹F NMR. The crude product was purified by silica gel column chromatography (by using 9:1 hexane/ethyl acetate as eluents) to obtain pure epoxide **8a**. Yield 70%, white solid, mp 64–65 °C, dr = 1:3, ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 8.1 Hz, 2H), 3.93 (s, 3H), 3.69-3.57 (m, 1H), 2.72-2.62 (m, 2H), 2.48-2.44 (m, 1H), 2.33-2.24 (m, 1H), 2.04–1.96 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.68, 138.97, 130.59, 130.26, 129.29, 126.37 (q, J = 279.8 Hz), 52.42, 49.25, 48.01, 47.81 (q, J = 27.7 Hz), 32.64.¹⁹F **NMR** (282 MHz, CDCl₃) δ -70.18 (d, J = 9.1 Hz, 3F). **HRMS** (ESI) calculated for C₁₃H₁₄O₃F₃ [M + H]⁺: 275.0895, found: 275.0901.

b) General procedure for the synthesis of methyl (E)-4-(1,1,1-trifluoro-5-phenylpent-4en-2-yl)benzoate (8b)

In a flame dried test tube compound **3f** (0.2 mmol, 51.6 mg, 1 equiv) was dissolved in 2 mL DMF then test tube was charged with $Pd(OAc)_2$ (0.01 mmol, 2.24 mg, 5 mol %), phenylboronic acid (0.22 mmol, 26.82 mg, 1.1 equiv) and AgOAc (0.3 mmol, 50.07 mg,

1.5 equiv). Next, the reaction mixture was stirred at 80 °C for 12 h. After completion of starting material, reaction mixture was quenched with water then extracted with ether (2 × 10 mL), dried over Na₂SO₄ and concentrated on reduced pressure. The crude product was purified by column chromatography (by using 9:1 hexane/ethyl acetate as eluents) to obtain pure product **8b**. Yield 75%, *E/Z* = 20/1, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.3 Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.27–7.15 (m, 5H), 6.38 (d, *J* = 15.8 Hz, 1H), 5.93–5.85 (m, 1H), 3.91 (s, 3H), 3.52–3.42 (m, 1H), 2.99–2.91 (m, 1H), 2.84–2.75 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.76, 139.46, 136.86, 133.40, 130.29, 130.08, 129.31, 128.64, 127.63, 126.48 (d, *J* = 280.4 Hz), 126.23, 124.81, 50.55 (q, *J* = 26.5 Hz), 52.32, 32.66. ¹⁹F NMR (282 MHz, CDCl₃) δ –69.73 (d, *J* = 9.0 Hz, 3F). HRMS (ESI) calculated for C₁₉H₁₇O₂F₃ [M]⁺: 334.1181, found: 334.1204.

c) General procedure for the synthesis of methyl (*E*)-4-(5-acetoxy-1,1,1-trifluoropent-4-en-2-yl)benzoate (8c)

To a flame dried test tube was charged with Pd(OAc)₂ (0.02 mmol, 4.5 mg, 10 mol %), benzoquinone (0.4 mmol, 43.2 mg, 2 equiv), and 4Å MS (21.7 mg). To the solids test tube was sequentially added the following: DMSO (0.3 mL), compound **3f** (0.2 mmol, 51.6 mg, 1 equiv), AcOH (0.3 mL). The vial was charged with a stir bar, capped and allowed to heat at 40 °C for 72 h. After that, the reaction was quenched with saturated NH₄Cl (1 mL) and extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were washed with H₂O (2 × 10 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude reaction mixture was purified column chromatography (by using 9:1 hexane/ethyl acetate as eluents) to obtain pure product **8c**. Yield 40%, oil. ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 6.05 (dd, *J* = 15.5, 7.8 Hz, 1H), 5.80 (dt, *J* = 15.5, 5.7 Hz, 1H), 4.59 (d, *J* = 5.7 Hz, 2H), 4.08 (p, *J* = 8.8 Hz, 1H), 3.93 (s, 3H), 2.07 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.72, 166.68, 139.09, 131.15, 130.37, 130.22, 129.21, 126.61, 125.59 (q, *J* = 280.4 Hz), 63.91, 52.87 (q, *J* = 28.1 Hz), 52.40, 21.00. ¹⁹F NMR (282 MHz, CDCl₃) δ –69.28 (d, *J* = 9.1 Hz, 3F). HRMS (EI) calculated for C₁₅H₁₅O₄F₃Na [M + Na]⁺: 339.0820, found: 339.0820.

d) General procedure for the synthesis of methyl 4-(5-bromo-1,1,1-trifluoro-4-

To a suspension of compound 1f (0.2 mmol, 51.6 mg, 1 equiv) and NH₄OAc (0.02 mmol, 1.54 mg, 10 mol%) in acetone (0.8 mL), NBS (0.22 mmol, 39.15 mg, 1.1 equiv) and water (0.2 mL) were added and the mixture was stirred at room temperature. After completion of the reaction as indicated by TLC the mixture was concentrated in vacuum and extracted with ethyl acetate and water (1:1) $(3 \times 5 \text{ ml})$. The organic portion was concentrated and the residue was subjected to silica gel column chromatography (by using 8:2 hexane/ethyl acetate as an eluents) to obtain pure product 8d. Yield 45%, oil. ¹**H NMR** (500 MHz, CDCl₃) δ 8.06 (d, J = 7.9 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 3.93 (s, 3H), 3.83-3.68 (m, 3H), 3.60-3.50 (m, 1H), 2.51-2.35 (m, 2H). ¹³C NMR (126 MHz, CDCl₃, major + minor isomers) δ 166.64, 139.42 (minor), 137.96 (major), 130.81(major), 130.62 (minor), 130.40 (major), 130.34 (minor), 129.39 (major), 129.15 (minor), 126.45 (q, J = 279.9 Hz, major), 126.35 (d, J = 280.5 Hz, minor), 67.38 (major), 66.49 (minor), 54.69 (major), 54.40 (minor), 52.45, 48.59 (q, J = 27.5 Hz, major), 47.99 (q, J = 27.2 Hz, minor), 35.12 (minor), 33.98 (major). ¹⁹F NMR (282 MHz, CDCl₃) δ –69.36 (d, J = 8.2 Hz, 3F, minor), -69.70 (d, J = 8.8 Hz, 3F, major). HRMS(ESI) calculated for C₁₃H₁₄BrO₃F₃Na [M + Na]⁺: 376.9976, found: 376.9977.

8. References:

1) (a) R. Anilkumar and D. J. Burton, *J. Fluorine Chem.* 2005, **126**, 1174-1184. (b) T. Okano, K. Ito, T. Ueda and H. Muramatsu, *J. Fluorine Chem.* 1986, **32**, 377-388. (c) Y. Gonga and K. Katob, *J. Fluorine Chem.* 2003, **121**, 141–146.

ChemComm

9. NMR Data (¹H NMR , ¹³C NMR and ¹⁹F-NMR)

S66

