Real-time mass-spectrometric screening of droplet-scale electrochemical reactions

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>AN-COM-05-2018-000957.R2</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Communication</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>09-Jul-2018</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Zhang, Hong; Harbin Institute of Technology
Yu, Kai; Harbin Institute of Technology - Weihai
Li, Na; Harbin Institute of Technology - Weihai
He, Jing; Harbin Institute of Technology at Weihai
Qiao, Lina; Harbin Institute of Technology
Li, Ming; National Institute of Metrology, Chemical Metrology & Analytical Science Division
Wang, Yingying; Harbin Institute of Technology at Weihai
Zhang, Dongmei; Harbin Institute of Technology - Weihai
Jiang, Jie; Harbin Institute of Technology at Weihai, School of Marine Science and Technology
Zare, Richard; Stanford University, Department of Chemistry |

Analyst
COMMUNICATION

Real-time mass-spectrometric screening of droplet-scale electrochemical reactions

Hong Zhang, Kai Yu, Na Li, Jing He, Lina Qiao, Ming Li, Yingying Wang, Dongmei Zhang, Jie Jiang* and Richard N. Zare*

A droplet-scale, real-time electrochemical reaction screening platform based on droplet spray ionization mass spectrometry (DSI-MS) has been developed. The N,N-dimethylaniline (DMA) radical cation with a half-life of microseconds was readily detected by MS during the electrooxidation of DMA, and the subsequent reactions followed in real time for minutes.

Determining transient intermediates generated during an electrochemical process is of prime importance to mechanistic studies of electrochemical reactions. In many cases, one-electron or multiple-electrons losses commonly form a very unstable radical cation. The transient reaction time of such a cation is difficult to detect. Traditional techniques that have been developed for these studies include cyclic voltammetry (CV), spectroelectrochemistry, and scanning electrochemical microscopy (SECM). However, they do not provide direct chemical identification. Combining mass spectrometry (MS) with electrochemistry (EC) is appealing owing to its capabilities for structural characterization, and its high specificity, sensitivity, and speed.

An effective interface between electrochemistry and mass spectrometry for quickly transferring electrochemically generated species from solution to the gas phase for MS analysis is still a challenge. Since EC-MS coupling was described by Bruchkenstein et al. in 1971, various ionization methods have been applied for the online coupling of EC-MS, including thermospray, fast atom bombardment (FAB), electrospray ionization (ESI), probe electrospray ionization, nano desorption electrospray ionization (nanoDESI), and differential electrochemical mass spectrometry (DEMS). A sample transfer capillary is commonly used in these EC-MS couplings to allow electrolytic solution flowing from electrochemical cells to ionization sources. This leads the response times ranged from 0.1 to a few seconds.

Taking advantage of direct sampling, desorption electrospray ionization (DESI) and easy ambient sonic-spray ionization (EASI) reduce the response time to the order of the millisecond scale. In 2015 Zare and coworkers achieved detection of electrogenerated short-lived intermediates by utilizing DESI to directly sample the surface of a rotating waterwheel setup as well as a porous carbon tape with two setups (grooved inclined plane and flat plane). In another study by Ran et al., a hybrid ultramicroelectrode was coupled directly with a mass spectrometer and provided information about an electrochemical reaction. However, such techniques require rather complex fabrication. The development of simple and effective screening platform for electrogenerated species is highly desirable and would facilitate mechanistic studies of electrochemical reactions.

The goals of the present work are 1) to develop a droplet-scale, real-time electrochemical reaction screening platform for capturing and characterizing the transient intermediates formed from an electrochemical reaction and 2) to obtain long-time monitoring of electrochemical reaction mechanisms. This setup takes inspiration from the coupling of droplet spray ionization mass spectrometry (DSI-MS) with an innovative electrochemical controlling system.

As depicted in Fig. 1, the design employs a glass slip corner positioned in front of the MS inlet, and this slip corner can be both the reservoir for the electrolyte and the spray ionization source. A three-electrode system consisting of a platinum-wire working electrode (WE), a coiled platinum counter electrode (CE), and an Ag/AgCl reference electrode (RE) is mounted on the slip corner. A potentiostat (see Fig. S1, ESI†) is used to apply a potential difference across the three electrodes to trigger both the electrochemical reaction and a spray of charged droplets. The electrodes function both as the electrooxidation controller and the high voltage input. The applied voltages are \(E + \Delta E \) and \(E \) for the WE and CE, respectively. \(E \) is the high voltage for the charged spray and \(\Delta E \) is the high voltage for the charged spray and \(\Delta E \).

* School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China. E-mail: jiejiang@hitwh.edu.cn.
* State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
* Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
* Department of Chemistry, Stanford University, Stanford, California 94305, USA. E-mail: zare@stanford.edu.

Electronic Supplementary Information (ESI) available: MS/MS data for structural confirmation and experimental procedure detail. See DOI: 10.1039/x0xx00000x
is the electrooxidation potential. In addition, the voltage of RE is $E = 0.223$ V and has no influence on the electrochemical reactions. No electrochemical oxidation or reduction is constrained to take place when the WE and CE are held at equal high voltage ($\Delta E = 0$) (see Fig. S2, ESI†), indicating that the electrode setup works properly and has no influence on the final detection results.

Electrooxidation of aromatic amines usually gives very unstable radical cations$^{1, \text{-} 30}$. One of such examples that has been extensively studied is N,N-dimethylaniline (DMA). The DMA radical cation (DMA•+) has a lifetime on the order of microsecond24, which is too short to be detected by conventional methods such as CV3 and spectroscopy31. The well-known mechanism for electrooxidation of DMA (Scheme 1) begins with the loss of one electron, leading to the unstable DMA•+ cation12. Two DMA•+ units rapidly react to yield the dimer, N,N,N',N'-tetramethylbenzidine (TMB)$^{14, 24}$. The electrooxidation then proceeds by loss of one electron from TMB forming TMB•+ for the further generation of the trimer in the presence of excess DMA. Loss of two electrons from TMB also occurs during this reaction, which generates the quinoid TMB•+.

A DMA solution of 0.24 mM was prepared in acetonitrile containing 0.1 mM lithium triflate. When 20 μL of electrolyte solution was loaded onto the glass slip corner and no potential difference was applied across the electrodes ($E = 4.5$ kV; $\Delta E = 0$ V), the protonated DMA was observed at m/z 122.08 (Fig. 2a). Applying an oxidation potential of 2.0 V across the electrodes ($E = 4.5$ kV; $\Delta E = 2$ V) resulted in the formation of an ion at m/z 121.08, which we ascribe to the DMA radical cation intermediate (Fig. 2b). Upon CID (see Fig. S3, ESI†), the observed loss of a hydrogen atom was thought to induce the formation of a resonance stabilized aromatic imine24. Signals were clearly evident at m/z 241.17 and 240.17, corresponding to the protonated TMB and the radical cation of TMB. Peaks at m/z 226.16 were formed from the loss of CH$_3$ from the TMB•+.

The signal intensity of DMA•+ increased greatly when an oxidizing potential was applied across the electrodes relative to when no oxidizing potential was applied, as shown in the extracted ion chromatogram (EIC) in Fig. 2c. The MS signal of TMB•+ also markedly observed when an oxidizing potential was applied across the electrodes (Fig. 2d). Apparently, both DMA•+ and TMB•+ were both formed via electrochemical oxidation of DMA, as will be shown below.

Beyond obtaining real-time information for electrochemical reactions at the initial stage, this droplet-scale electrochemistry screening approach is also applicable to longer real-time monitoring of electrochemical reactions,
The mass spectra displayed at the reaction times of (a) 20 s and (b) 90 s.

limited by volatility. Fig. 3 shows monitoring by this method for the duration of minutes. The peak at m/z 120.08 was attributed to the quinoid TMB\(^{•+}\). The protonated trimer (m/z 360.25) was also detected over time (Fig. 2 and 3). A comparison of the mass spectra in Fig. 3a and 3b shows that the peak at m/z 479.32 (protonated tetramer) was unambiguously observed (Fig. 3b inset), although it was detected at low abundance. The trimer and tetramer were also observed even when the DMA was 0.024 mM (Fig. S6), although the relative abundances showed a extent of decrease compared to the concentration of 0.24 mM (Fig. 3b, S6). However, this contrasted with the spectrum using nESI (10 μM DMA) where no signals of trimer and tetramer were detected\(^{13}\). Besides the concentration, this may be also related to the product transfer efficiency from electrode surface to the spray tip for ionization. No structural information about the trimer and tetramer is available at present. However, this is the first ambient ionization mass spectrometry evidence for the observation of quinoid TMB\(^{•+}\), trimer, and tetramer during the electrooxidation of DMA. DMA electrochemical oxidation as a function of different electrode configurations (wire electrodes, sheet electrodes) has also been studied, and the results are presented in Fig. S4 (ESI†).

The electrooxidation of DMA with concentrations ranging from 0.024 to 2.4 mM was also investigated. As shown in Fig. S5 (ESI†), peaks of DMA\(^{•+}\) were unambiguously observed at different DMA concentrations. In the present work, the great majority of DMA was converted to DMA\(^{•+}\) as indicated by higher signal intensities of TMB and TMB\(^{3+}\) than that of the protonated DMA. In this regard, we assumed a full conversion of DMA to DMA\(^{•+}\) to calculate the half-life of DMA\(^{•+}\), although a complete conversion is impossible. Using the reported rate constant of 2.5×10\(^{-6}\) M\(^{-1}\) s\(^{-1}\), the half-life of observed DMA\(^{•+}\) was calculated to range from 1.7 to 170 μs, depending on the initial starting concentration (see Table S1, ESI†). The obtained lifetime cannot be determined by conventional methods such as SECM\(^6\) and CV\(^3\), and is comparable with the results determined by DESI coupling with a waterwheel setup\(^{26}\).

Compared with similar EC-MS methods\(^{14, 17, 26, 28}\), our design has the following merits: (1) This method is simple, easy to fabricate, and can be compatible with a wide range of analysis needs. (2) By using a slip corner as the reservoir for the electrolyte as well as the spray substrate, studies of transient electrogenerated intermediates and size-dependent electrochemical reaction in a droplet is possible. (3) Because the electrolyte droplet on the corner has a capacity of 5 μL up to 60 μL, the maximum spray time can reach about 12 min, limited by solvent evaporation. In this sense, the typical solvent consumption rate is approximate 5 μL/min. Therefore, it achieves a long real-time monitoring on the scale of minutes that offers access to reaction progress and kinetics and to multiple-step reaction monitoring. (4) Replacing the slip corner with a sheet electrode can achieve high electrode surface sampling efficiency, thus facilitating investigation of the chemical composition of an electrode–electrolyte interface\(^{34}\).

In conclusion, by coupling an innovative electrochemistry controlling system with DSI-MS, we have established a droplet-scale real-time electrochemical reaction screening platform. The short-lived DMA radical cation and products (TMB\(^{•+}\), quinoid TMB\(^{•+}\), trimer, and tetramer) resulting from the electrooxidation of DMA were successfully captured and analyzed by MS. These results indicate that isolation of electrogenerated intermediates with half-lives of milliseconds is assessable by employing a slip corner as the reservoir for both the electrolyte and spray ionization source. This platform was also compatible with a wide range of analytical needs such as different concentrations and electrode configurations. Because of the duration of the electrolyte droplet on the corner, the reaction progress on the scale of minutes was readily obtained. All these capabilities bring opportunities to perform and monitor electrochemical reaction studies in situ, real-time, and a long-time scale as well. Moreover, this platform has desirable features for studying more complex chemical and biological events in droplets.

We gratefully acknowledge the Key R&D program of Shandong Province (grant number 2016YYSF013), Natural Science Foundation of Shandong Province (grant number ZR2016BM11, ZR2016BP01), and R. N. Zare thanks the US Air Force Office of Scientific Research through the Basic Research Initiative Grant (AFOSR FA9550-16-1-0113).

Conflicts of interest
There are no conflicts to declare.

Notes and references
A real-time electrochemistry-mass spectrometry coupling for detecting the short-lived DMA$^{+}$ and observing DMA reaction propagation is reported.