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Abstract 

Adhesion plays an important role in the mechanics of nanoscale fibers such as various biological 

filaments, carbon nanotubes and artificial polymeric nanofibers. In this work we study 

assemblies of non-crosslinked filaments and characterize their adhesion-driven structural 

evolution and their final stable structure. The key parameters of the problem are the network 

density, the fiber length, the bending stiffness of fibers and the strength of adhesion. The system 

of fibers self-organizes in one of three types of structures: locked networks, in which fibers 

remain in the as-deposited state, cellular networks, in which fibers form bundles and these 

organize into a larger scale network, and disintegrated networks, in which the network of bundles 

becomes disconnected. We determine the parametric space corresponding to each of these 

structures. Further, we identify a triangular structure of bundles, similar to the Plateau triangle 

occurring in foams, which stabilizes the network of bundles and study in detail the stabilization 

mechanism. The analysis provides design guidelines and a physical picture of the stability and 

structure of random fiber networks with adhesion.   

 

Keywords: random fiber networks, stability, fiber bundling, flocculation, elastocapillarity. 

 

  

                                                           
*
 Corresponding author. Tel: +1 518 276 2195, E-mail: picuc@rpi.edu 

Page 1 of 35 Soft Matter



2 

 

1. Introduction 

Many artificial and biological soft materials are fibrilar, either being made from a dense packing 

of filaments or having a fiber network as their main structural component. Examples include 

various types of non-wovens, fiber-based insulation and filtration materials, and a variety of 

hygiene products. Collagen is one of the main structural materials in the human and animal 

bodies and is present in the form of bundles of filaments of a range of diameters.
1,2
  

Fiber bundling in random fibrous materials is broadly observed. Elastocapillarity represents the 

interaction of liquid-air or liquid-liquid interfaces with elastic structures.
3
 Capillarity organizes 

fibrils into structures
4
 and may be used to produce a variety of effects in soft matter, as reviewed 

in Ref. 5. If the structure remains wet, capillary forces are sufficient to hold the fiber bundles 

together. If it is dried, adhesion stabilizes the bundled structure;
6
 an analysis of this process is 

presented by Cranford et al.
7
 While the longer ranged capillary forces are more efficient in 

organizing fibrous structures into fiber bundles, adhesion-driven bundling also takes place in the 

dry state.
8
  

Aggregation in colloidal particle suspensions is produced by inter-particle interactions and 

hydrodynamic forces.
9
 Suspensions of rigid and flexible fibers undergo flocculation as the 

concentration increases. The formation of filament bundles was observed in dense suspensions of 

actin
10
 and collagen

11
 and the process was discussed theoretically by Zilman and Safran

12
 using a 

mean field model. This theoretical work outlines a sol-gel transition followed by another 

transition to a bundled state as the fiber concentration increases or/and temperature decreases. 

Inter-particle interactions lead to the modification of the rheological response in concentrated 

suspensions of filaments, including the occurrence of a pseudo-yield stress
13
 and shear 

thinning.
14
  

Adhesion is particularly strong between carbon nanotubes (CNT). Buckypaper is a quasi-two-

dimensional material similar to regular paper, made from CNTs deposited on a substrate. The 

CNTs self-organize under the action of adhesive forces leading to the formation of CNT 

bundles
15,16,17,18

 whose size and structure depends on the bending stiffness (i.e. whether the 

buckypaper contains single wall or multiwall CNTs) and the length of the filaments. 
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While substantial work was dedicated to the mechanics of cross-linked networks of fibers both in 

the mechanics of materials and physics literature (see reviews
19,20

), the mechanical behavior of 

non-cross-linked filament packings was studied to a smaller extent
21,22,23,24,25

. Non-cross-linked 

filamentary structure mechanics is controlled by the deformation of fibers and their topological 

(excluded volume) interactions. The mechanical behavior of non-bonded assemblies of filaments 

in presence of adhesive interactions is even less studied. Li and Kroger
26
,
27
 studied numerically 

the structure and mechanical behavior of buckypaper. They observe intense bundling and 

conclude that for CNTs with weaker adhesion the structure is controlled by entanglements, while 

CNTs with stronger adhesion form bundles. The pore size of the respective structures could be 

controlled from 7 nm to 50 nm by increasing the bending stiffness of filaments. Volkov and 

Zhigilei
28
 also simulated assemblies of CNTs and concluded that the resulting structures can be 

stabilized provided the CNT length is larger than a threshold value and, for systems of single 

wall CNTs, bending-buckling is considered in the model. A demonstration of the effect of 

adhesion between filaments on the overall mechanical behavior of the network was provided by 

Xu et al.
29
 using random networks of long un-cross-linked CNTs. They observe strong energy 

dissipation under cyclic loading due to the bundling/unbundling of filaments. Since the system is 

athermal (mechanical behavior is not affected by thermal fluctuations), the measured system-

scale storage and loss moduli are temperature independent in a broad range of temperatures. 

Simulations reproducing this result were presented by Li and Kroger.
30
  

The present study is motivated by the limited understanding of the stability and mechanics of 

fiber networks of non-cross-linked filaments interacting adhesively. We focus on identifying the 

types of stable structures into which a quasi-two-dimensional fibrous network evolves under the 

action of adhesive forces. To this end, we first identify the system parameters of importance in 

this problem, and perform a parametric study to determine the stable network structures of 

interest. A numerical model is used for this purpose. We observe that fibers either remain locked 

in the as-deposited state, or evolve by bundling. The evolution can lead to either the full 

disintegration of the network into a set of large, isolated bundles, or to a network of fiber 

bundles. We find the range of parameters in which such networks of bundles exist. The essential 

contribution of this work is the identification of the structural element that stabilizes networks of 

bundles. This is a triangular feature that forms at the nodes of the network, resembling the 

Plateau triangles in foams. Given the importance of these constructs, we provide a 

Page 3 of 35 Soft Matter



4 

 

comprehensive description of the mechanisms by which such triangles form and stabilize the 

network. 

 

2. Problem definition 

We consider ensembles of filaments of identical diameter, ��, and length, ��, made from the 

same linear elastic material of Young’s modulus, ��. The fibers are sufficiently large to be 
considered athermal and hence behave mechanically as beams of axial and bending rigidities 

���� and ����, where �� and �� are the area and moment of inertia of the fiber cross-section. 

The torsional rigidity of fibers is less important in this problem in absence of chirality, since 

random networks do not store much strain energy in the torsional mode of the fibers.
20,31

 

Inter-fiber adhesion is defined by the energy gain per unit area of contact when two surfaces are 

brought together,	��. In the case of cylindrical filaments, the contact is established over an area 

of width 	�. In absence of chirality or residual stress in fibers, the two cylinders in contact 
remain parallel. The Johnson-Kendall-Roberts (JKR) and the Derjaguin-Muller-Toporov (DMT) 

theories predict that 	�~������ ��⁄ ��/�. 32,33,34 The adhesion energy per unit length of filament is 

� = ��	�.35 
Fibers are randomly deposited into a quasi-two-dimensional mat without fiber-fiber 

interpenetration. The structure is three-dimensional and the mat has finite thickness. We consider 

the limit of vanishing inter-fiber friction. It is convenient to describe the mat density, ρ, in 

projection on the mean plane of the mat as the total length of fiber per unit area of the projection.  

If the mat is thicker than 3-4 fiber diameters, a given fiber does not make contacts with all fibers 

it intersects in projection. This situation is qualitatively similar to that of thin mats and hence the 

concepts discussed here apply to both thin and thick initial structures. 

The as-deposited mat is organized by the adhesive interactions between fibers. Bundles of 

closely packed parallel fibers form and organize further into a new network of bundles. The 

objective of this work is to define the structure and stabilization mechanism of networks of fiber 

bundles.  

3. Computational model definition 
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The study of the evolution of a large number of fibers interacting adhesively requires a numerical 

approach. In this work we use a bead-spring model similar to that employed frequently in 

polymer physics to represent the coarse grained mechanics of polymeric molecules. Such model 

was used to represent CNT bundles.
4,27,30

 Each filament is represented by a collection of 

spherical beads which interact along the filament through axial and angular potentials that mimic 

the axial and bending stiffness of the fiber. The stiffness of the harmonic axial potential is 

�� = ���� ��⁄ , while the stiffness of the angular potential is �� = ���� ��⁄ , where �� is the 
distance between consecutive bead centers along the filament.  

Non-bonded interactions between beads not belonging to the same fiber are represented via 

Lennard-Jones (LJ) potentials of characteristic length σ and well depth, ��. These impose the 

excluded volume condition and represent the adhesive energy per unit length of contact between 

two straight and parallel fibers in equilibrium, γ.  

The fiber parameters, γ, �� and �� are uniquely defined in this model by parameters σ, �� and �� 
(or ��). �� is the equilibrium distance of a bead from the axis of an infinite straight fiber and, for 

the potentials used, is related to σ as �� = 1.063�. Parameter γ is given by � = 7.11��/�. The 
effective fiber modulus is defined by either �� or �� as �� = 0.3��/� or �� = 4.8��/����. 
The discreteness of the filament representation renders the fiber surface rough, which may lead 

to undesirable interlocking and friction. In order to minimize this effect, the density of beads 

along the filament is increased to 4 beads per fiber segment of aspect ratio 1, �� = �� 4⁄ . We 

evaluated the resulting roughness by considering two relaxed parallel chains in adhesive contact 

which were displaced axially relative to each other. The fluctuations of adhesion energy during 

such sliding are within 0.01% of the mean.  

The mat of fibers is created by depositing fibers on a plane with random orientations and random 

positions of their centers of mass in a square domain of size � × �, with L > 2�� in all cases. 
Periodic boundary conditions are imposed in the plane of the mat and zero tractions are imposed 

in the direction perpendicular to the plane of the mat. Fibers do not interact adhesively or 

frictionally with the support plane, which is removed after the mat is constructed and relaxed.   

In the production phase, the system evolves under the action of inter-fiber adhesion forces, 

subjected to periodic boundary conditions in the plane of the mat. This represents a system of 
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infinite 2D extent and of constant average density. The system is evolved with molecular 

dynamics. Various temperatures up to 300
o
K are used in separate simulations in order to test the 

effect of this parameter on the resulting structure. No significant differences are observed for the 

set of energetic parameters used in these simulations; this is expected given the athermal nature 

of the system. 
29,30

 Simulating at higher temperatures is desirable in order to reduce the 

computational cost. Since at finite temperatures one cannot exclude aging effects, i.e. the very 

slow, thermally activated evolution of the system, we run long simulations with stopping 

criterion being the variation of the total energy of the system by less than 10
-5
% per integration 

time step. However, the stability of the system is evaluated based on theoretical considerations 

presented in section 5.    

Simulations are performed using LAMMPS from Sandia National Labs.
36
 We use the Nose-

Hoover thermostat and the velocity Verlet integration algorithm. All simulations are performed 

on a massively parallel computer at the RPI Center for Computational Innovation. 

4. Results and discussion 

4.1 Network evolution modes 

Simulations are used to evolve the system of fibers and various sets of the control parameters are 

used in separate simulations. Fig. 1 shows two examples of system evolution. Two values of the 

non-dimensional parameter "�� are selected, "�� = 24.8 and "�� = 99.25, which correspond to 
systems of same density and different fiber length. Figs. 1(a) and 1(b) show the two-dimensional 

(projected) view of the as-deposited networks, while Figs. 1(c) and 1(d) show the corresponding 

final states. In the as-deposited state each line represents an individual filament, while a network 

of bundles forms at later stages. It is observed that the network of low "�� disintegrates, i.e. 
fibers bundle until the resulting network of bundles loses connectivity. In this limit, the network 

decomposes in a set of individual bundles of length bounded below by ��. The system of higher 

"�� reaches a stable cellular structure whose total energy remains constant in time. 
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Figure 1. Initial and final structures for two networks of same density but different fiber length, 

L0. The initial network of short fibers disintegrates, while that of longer fibers forms a cellular 

structure. 
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Figure 2. The evolution of the structure of four initial networks described by different " and ��. 
The structure is described in terms of the mean cell size, �̅ , and the mean bundle size, '(. 

Systems in the as-deposited conditions are not bundled and correspond to points on the vertical 

axis ('( = 1). System evolution leads either to the full disintegration of the network or to a 

cellular structure. The inset defines the approximate cell diameter.  

 

We analyze the network evolution using two parameters: the average cell diameter, �̅ , and the 
average bundle size, '(. The cell diameter is computed as � = √�, where A is the projected area 
of a cell (inset to Fig. 2). This parameter is evaluated by processing images similar to that of the 

cellular structure in Fig. 1. The bundle size represents the number of fibers forming a bundle.  

Figure 2 shows the variation of the normalized inverse �̅, �� �̅⁄ , versus '( for four representative 
systems. This figure shows the main features of structural evolution. In the initial state, '( = 1, 
the network is in the as-deposited state (initial states of Fig. 1) and can be described using 

concepts relevant for two-dimensional Mikado networks. In these networks, the mean segment 

length, *+, is related to the density through the Kallmes-Corte relation, *+ = , 2"⁄ .
37
  

Furthermore, in the initial state, �̅ varies linearly with *+ as: 
�̅ = 0.86*+.           (1) 
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This relationship is supported by the data shown in Fig. 3, which results from a separate analysis 

of the geometry of Mikado networks. In this analysis, random 2D networks of straight lines of 

length �� are generated with various densities, such to control *+. The area of each cell is 
computed by image processing and �̅ = √�(((( is evaluated. The figure supports the relation 
between the mean segment length and the mean cell diameter of Eq. (1). With Eq. (1) and the 

Kallmes-Corte relation, the point on the vertical axis in Fig. 2 corresponding to a given system 

results as  �� �̅⁄ = 0.74"��.  

 

Figure 3. Relation between the mean cell size, �̅, and the mean segment length, *+, for 2D 
Mikado networks in the as-deposited, un-bundled state. 

 

The minimum density below which a network does not form in the as-deposited state is given by 

the geometric percolation threshold for networks constructed by depositing randomly fibers of 

length ��. The percolation threshold, "-, is given by "-�� = 5.71.38,39 Hence, no network exists 
for �� �̅⁄ . 4.22. This provides the lower bound for the range of the vertical axis in Fig. 2 in 
which points corresponding to as-deposited networks ('( = 1� may exist.  

Figure 2 shows that systems starting at  '( = 1 evolve such that �� �̅⁄ 	~	1 '(⁄  (or �̅	~	'() at all 
stages of the evolution. This relation is a consequence of mass conservation. Consider the system 

at some stage of its evolution, in which the cell size is �̅ and the degree of bundling is '(. The 
total number of chains in the model can be computed as "��/��, where "�� is the total length of 
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fiber in the model (or projected area � = ��). On the other hand, the number of chains can be 

also estimated based on the perimeter ℘ of the bundled network, i.e. the total length of bundles 
in the model at given time, as '(℘/��. Hence, "�� = '(℘. The total perimeter of the bundled 

network can be also evaluated as the perimeter of the representative cell times the number of 

such cells. Considering that the perimeter of the mean cell is proportional to �̅, it results that: 
℘	~		��/�̅. Replacing this expression for ℘ in the previous relation involving '(, one obtains:  
'(	~	"�̅,           (2) 

which provides conceptual support for the numerical results in Fig. 2.  

 

Figure 4. Variation of the system average (a) adhesion and (b) bending energies with the bundle 

size during the evolution of the four systems shown in Fig. 2. The energies are reported per 

length of fiber equal to σ, and are normalized by the adhesion energy of two fibers in contact 

over length σ, i.e. ��. The adhesion energy is multiplied by the non-dimensional '(-dependent 
group of Eq. (4). 

 

It is observed in simulations that systems with larger initial "�� lead to the formation of cellular 

structures, while systems with smaller "��disintegrate (Fig. 1). This is shown schematically in 

Fig. 2. The boundary separating the two types of behavior cannot be predicted based on 

theoretical considerations at this stage.  

It is instructive to analyze the variation of the energies involved (axial, bending and adhesion) 

during the structural evolution of a network starting from the as-deposited state. The total axial 

energy is at all times much smaller than all other energies (below 5% of the total energy).  
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The adhesion energy is expected to be proportional to the total length of bundle in given state, ℘, 
times the adhesion energy per unit length of a bundle of size '(. This bundle-scale adhesion 
energy can be evaluated as the energy per contact between two fibers, γ, times the number of 

binary contacts in the bundle, '+�'(�. Harborth40 has shown that the maximum number of 

contacts in a packing of n congruent circles is:  

'+�'� = 3' 0 √12' 0 3.          (3) 

Therefore, the adhesive energy stored within a perfect bundle of '( filaments, per unit length of 

the bundle, is  ��3'( 0 √12'( 0 3). The negative term in the parenthesis has the physical meaning 

of a surface tension. Therefore the total adhesion energy reads: 

��	~�	'+�'(�	℘	~	1	23�2(�2( .         (4) 

Figure 4(a) shows the mean adhesion energy per fiber length σ, ��4, normalized by 514	23�2(�2( 6 vs. 
'( for all systems shown in Fig. 2. This numerical result is in agreement with Eq. (4).  

The variation of the bending energy during relaxation is shown in Fig. 4(b). The energy increases 

fast at the beginning of the process and then remains approximately constant throughout the 

deformation. The initial increase is due to the bending of initially straight fibers in the vicinity of 

the contact points, under the action of the adhesive forces. The subsequent behavior is more 

difficult to understand on theoretical grounds.  

Fiber kinematics is of importance in order to understand the mechanisms of structural evolution. 

Three main fiber re-arrangement modes are identified, as follows: 
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Figure 5. Structural evolution modes for bundles and for individual fibers. (a) shows a rigid 

rotation mode, (b) and (c) show bundling and unbundling for two configurations, and (d) and (e) 

show repatation of individual fibers. The orange filament in (a) is loaded by moments that tend 

to close the acute angle at each fiber crossing. The bundle of size '� in (b) either peels off 
forming two bundles of smaller size, '� and '� ('� = '� 7 '�), or re-bundles, such that node O, 
with connectivity z = 3, moves left or right. The configuration in (c) contains two nodes with z = 

3 that may move past each other without interference. In (d) and (e) the red fiber slides relative 

to the rest of the bundle. The fiber can be on the outside of the bundle, as shown here, or inside. 

State (d) is stable since no driving force for fiber motion exists. In state (e) the fiber is driven to 

the right by the gradient of bending energy. 

 

(i) Rigid rotation/translation of fibers. This fiber motion mode implies that filaments 

move as rigid bodies, as shown in Fig. 5(a). Driving is due to the small, but non-

vanishing moments resulting from the adhesive interaction at contact points, 89. Each 
of these moments tends to align the respective pair of fibers, closing the acute angle 

defined by them. Since fiber crossings are random, both the magnitude and direction 

of these moments is random. This motion mode becomes less efficient as the fiber 

length increases since the effective moment rotating the fiber is ∑89, which 
decreases as the number of the random, uncorrelated terms in the sum increases. 
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Therefore, this mechanism is expected to apply only in the case of short and stiff 

fibers and in the limit of vanishing friction.  

(ii) Bundling and unbundling. Two bundles of '� and '� fibers merge into a larger 

bundle of '� 7 '� fibers, which we call a ‘handle’ for the respective junction. The 
contact point may travel in both directions along the handle leading to bundling and 

unbundling (Fig. 5(b)). The handle ;�;� in Fig. 5(c) splits on the left side into two 
bundles of size '� and '�, and on the right side into two bundles of size '� and '<, 
with the obvious conservation relation '� 7 '� = '� 7 '<. This example 

demonstrates that nodes with = = 3 may travel past each other (by the motion of ;� 
and ;� in either direction). This structural evolution mode is not affected by friction 

and is the dominant evolution mechanism for the type of networks discussed in this 

article. 

(iii) Reptation. Filaments are able to slide along the contour of bundles. This is shown 

schematically in Figs. 5(d) and 5(e). This mode is driven by the adhesive and bending 

energy difference (the chemical potential difference) between the two ends of the 

respective filament. Thermal fluctuations play no role in the reptation of athermal 

filaments. Fiber CD in Fig. 5(d) has ends C and D in regions of bundle AB of zero 

curvature. Hence, the bending energy at the two ends of CD is zero. If in addition, the 

adhesive energy of the two ends is equal, there is no driving force for reptation. The 

opposite situation is shown in Fig. 5(e), where fiber CD is driven to the right by the 

gradient of bending energy. An energy barrier prevents the reptation of fiber CD from 

the configuration in Fig. 5(e) to that in Fig. 5(d). Hence, fibers longer than the mean 

segment length of the network of bundles tend not to reptate, while short fibers 

reptate to the nearest state in which the energy difference between their ends 

vanishes.  

 

4.2 Phase diagram of stable network states 

We characterize the system of fibers with adhesion using two non-dimensional parameters: "�� 
and  
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Ψ = 1?@A
B@C@.           (5) 

Ψ can be rewritten as Ψ = ��� �BD�⁄ , where �BD  is the elastocapillarity length introduced by Bico,6 
which captures the physics of bending-dominated elasticity in presence of surface forces.

41
 Also, 

in Ref. 27 the length scale �BD = E���� �⁄  is identified as the key parameter controlling CNT 

structures stabilized by adhesion. 

 

Figure 6. Map indicating the expected structure of the network for various values of parameters 

"�� and Ψ. No network forms for "�� . "-��, while below the line of slope 2 defined by Ψ~�"����, the as-deposited network does not evolve. The colored domains correspond to 

evolving networks which either disintegrate or form cellular structures. The symbols indicate 

states which have been simulated. Red crosses indicate non-evolving locked structures, open 

circles indicate networks that disintegrate and filled squares correspond to the formation of 

cellular structures. It is also indicated that increasing the filament length moves a point in this 

map further into the cellular domain, parallel to the boundary with the locked structures region, 

while increasing the density at constant fiber length transforms the structure into a locked state. 

 

Networks with a broad range of parameter values are considered and evolved until energy 

stabilization. A summary of all simulation results is presented in Fig. 6. The figure shows a map 
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of the resulting structures in different regimes of system parameters	"�� and Ψ . The map is 

bounded on the left by "-�� = 5.71. For "�� . "-�� no network forms upon fiber deposition and 

hence no further fiber organization is possible. Networks with "�� > "-�� either remain locked 

in the initial, as-deposited state, or evolve. Crosses indicate simulated structures which remain in 

the as-deposited state, circles indicate simulations in which network disintegration occurs, while 

filled squares indicate cases in which a cellular network of bundles develops. The boundary 

between the cellular networks and disintegrating structures regions is defined based on 

simulation results. The boundary between evolving and locked structures is defined numerically 

and justified theoretically, as described below.  

To identify the conditions under which the as-deposited network starts evolving under the action 

of adhesion, we consider two fibers of the network in contact at O and making an angle α (Fig. 

7(a)). These fibers are in contact with other filaments at points not shown in the figure. Adhesion 

tends to bundle these filaments, which is however restrained by their interactions with other 

fibers in the model. The boundary conditions in this case require that points A and B move 

during relaxation along line AB and likewise, C and D remain on the original line CD (Fig. 7(a)). 

Hence, filaments have to slide along their contour to accommodate the relative fiber rotation and 

bending in the vicinity of the contact point. This leads to the configuration of Fig. 7(b) in which 

the filaments stick over a length 2s in the vicinity of point O.  
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Figure 7. Initial (a) and relaxed (b) configurations for two crossed fibers in contact at O. The 

two fibers bend and slide along their contour to accommodate adhesive contact along a segment 

of length 2s in the vicinity of O. (c) shows a detail of one of the fibers in the vicinity of O, and 

the adhesive forces in the vicinity of E. Their resultant force P and moment M (shown in red) 

drive the change of shape of fiber OA.  

 

Figure 7(c) shows the region of one of the fibers close to point O in Fig. 7(b). Segment OE 

rotates by G 2⁄  to adhere to filament OC. This is caused by the distribution of adhesive forces in 

the vicinity of point E, as shown schematically in the inset to Fig. 7(c). The mechanical 

equivalent of this distribution is the force P and moment M.  

The bending energy stored in the filament can be evaluated as: 

�� = 2���� �H �⁄ �A
?IJ 7 6���� JA

�?IJ�K LM'� H� 7 3���� J
�?IJ�A G sin H�,    (6) 
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This expression results by solving the beam equation for the configuration in Fig. 7(c) under the 

boundary conditions: the deflection at E is L	sin H�, the rotation at E is G 2⁄ , while at A, both 

deflection and rotation vanish. Segment AE stores bending energy.  

The energy of adhesion corresponding to this filament is: 

�+ = �
� �L,           (7) 

and the work performed against the far field friction (if any) is: 

QR ≈ TRL	LM'� H<.          (8) 

Eq. (8) results by evaluating the change of the length of the beam from the straight to the current 

configuration shown in Fig. 7(c). Taking the derivative of �� 0 �+ 7QR with respect to s, the 
condition for the onset of relaxation result as: 

G�UV 7 WTXRY . 1?A
B@C@,          (9) 

where a and b are numerical coefficients of order unity, TXR = TR��/���� and the approximation 

sin G 	≈ 	G was used. L represents the length of fiber between two successive contact points and 
is equal to the mean segment length, *+. Using the Kallmes-Corte relation, *+ = ,/2", Eq. (9) 
can be arranged as: 

Ψ > �"����Z�TXR , G�.          (10) 

Function f in Eq. (10) is linear in the normalized friction force (Eq. (9)). If the friction force is 

proportional to the number of contacts along the fiber (i.e. 
?@
-3 ~"��)_, TXR~1/". In the absence of 

friction, TXR = 0, and the condition for the initiation of system evolution becomes: 

Ψ	~	�"����.           (11) 

The constant of proportionality in Eq. (11) is linear in G�. Extrapolating to the scale of the entire 
network analytically is not straightforward because fibers cross at angles forming a broad 

distribution. However, we conjecture that rearrangement should take place at a sufficient number 

of crossing points in order for the entire structure to re-organize. Hence, the factor containing α 

should be replaced at the scale of the entire network with a system average constant. 
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This analysis indicates that the boundary between locked and evolving structures should be 

described by Eq. (11). This relation is shown in Fig. 6 by the diagonal line of slope 2. We 

observe that numerical results support this result. Further, Eqs. (9) and (10) indicate that 

accounting for inter-fiber friction would move the boundary between locked and evolving 

structures towards larger Ψ, therefore inhibiting system self-organization.  

It is of interest to discuss the results in Fig. 6 in relation to specific filamentary systems. A given 

filament type is characterized by the elastocapilarity length �BD . Networks of various densities 
and of various fiber lengths can be constructed with such filaments. Considering that Ψ =
��� �BD�⁄ , any point of the map in Fig. 6 can be represented as logΨ = 2 log "�� 0 2 log "�BD. 
Based on this relation and the data (which correspond to vanishing friction between fibers), the 

boundary separating locked and evolving structures corresponds to "�BD = 44.6. Therefore, for 
a specific type of fiber defined by	�BD , network densities " > 44.6/�BD correspond to locked 
structures, while " . 44.6/�BD correspond to evolving structures. The characteristic length �BD  
can be evaluated based on literature data for various nanoscale filaments. For example, the 

adhesion energy per unit length of contact between two microtubules, γ, was reported to range 

from 2x10
-14
 to 17x10

-14
 J/m function of the ionic strength of the solution.

42
 With ���� = 9 ×

10I�<	^_� reported for individual microtubules
43
 of 25 nm outer diameter one obtains  �BD  in 

the range 7 to 20 µm. Single wall carbon nanotubes (10,10) of diameter 1.4 nm have  ���� ≈
3.2 × 10I�`	^_� 44

 and � ≈ 2.9 × 10Ia	 J/m 
45
 which leads to �BD ≈ 10	'_. Likewise, 

polyacrylonitrile (PAN) fibers of ~300 nm diameter produced by electrospinning exhibit � ≈
1x10

-9
 J/m,

46
  which, with a measured  �� = 3 GPa,47 leads to  �BD ≈ 34	b_. Note the much 

smaller value of �BD  obtained for carbon nanotubes which indicates, in agreement with 

experimental observations, that network self-organization should be prevalent in these systems.  

 

4.3 Network design considerations 

The data presented in section 4.2 can be used to guide the design of fiber networks with 

adhesion. In particular, it is of practical interest to understand the effect of parameters 

controllable in experiments, such as " and ��, on the final state of the relaxed structure. The map 

indicates that increasing the filament length ��	moves a given point of the map towards the 
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regime of cellular structures (shown in Fig. 6 by a red arrow). Hence, working with networks of 

longer fibers increases the probability to obtain a cellular network of bundles upon full system 

relaxation. Volkov and Zigilei
28
 also report this effect and observe that increasing the fiber 

length stabilizes the resulting structure of bundles.  

On the other hand, increasing the density promotes locking. Points in the map corresponding to 

systems with increasing ρ, but constant Ψ, move horizontally (shown in Fig. 6 by a red arrow). 

Clearly, decreasing γ or increasing the bending rigidity of fibers brings the system into the range 

of locked structures.  

In practical situations, the as-deposited filaments could be fiber bundles. The map in Fig. 6 can 

be used for these cases too, since the relevant mechanics remains unchanged. However, the 

values of "�� and Ψ to be used in this context become dependent on the size of the as-deposited 

bundles, n.  Parameter "�� is to be replaced by "���, where "� is the density of as-deposited 
bundles, while γ should be replaced by ���'� which represents the variation of the adhesion 
energy when two bundles, each of size n, merge into a single bundle of size 2n. Eq. (3) can be 

used to evaluate ���'�: 
���'� = �2√12' 0 3 0 √24' 0 3��       (12) 

With Eq. (12), parameter Ψ� (which replaces Ψ in this evaluation) becomes: 

Ψ� = 1c�2�?@A
B@C =	 1c�2�12 Ψ ≈ �

√2Ψ,        (13) 

where the moment of inertia of the bundle, I, was evaluated as � = '��, since the fibers in the 
bundle are free to slide axially during bundle bending.  

Since Ψ� ≪ 	Ψ, the adhesive interaction of two bundles is much weaker than the interaction of 

two fibers. Therefore, as-deposited networks which are composed from bundles are unlikely to 

evolve into cellular networks of fiber bundles.  
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5. Cellular networks are stabilized by triangular structures of fiber bundles 

Simulations indicate that in the last stages of evolution of a network of bundles, triangular 

features form at a majority of the network nodes. Figure 8 shows a small region of a much larger 

cellular network which exhibits such triangles at each node. Each edge of the triangle is made 

from multiple fibers. The bundles outside the triangular regions, i.e. the cell walls, tend to 

become straight. Therefore, the triangles concentrate the entire bending energy of the cellular 

network.  

 

Figure 8. Section of a cellular network showing triangular features developing at all network 

nodes.  

In this section we outline the mechanism by which these triangular features stabilize cellular 

structures. Give their importance, we also discuss the relation between the size of the bundles 

merging into a node and the structure and energy of the triangle that stabilizes the respective 

node.  

The physical picture emerging from this analysis is that adhesion drives the ensemble of fibers 

towards disintegration in all cases. Cellular networks of fiber bundles are stabilized when the 

kinetics of formation of nodal triangular features is faster than the kinetics of disintegration. 

5.1 Cellular network stability analysis 

We consider first cases in which the fiber length, ��, is much larger than the cell size, d. The 

overall structural evolution of the cellular network requires that network nodes move and hence 

mandates that triangles slide along network bundles. Consider that a driving force exists for 
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triangle ABC in Fig. 9(a) to move along bundle A’C’ to the right. In this process, bundles AB 

and AC merge at A (segment AA’ becomes longer), while bundles BC and AC separate at C 

(segment CC’ becomes shorted). This requires minimal energy expenditure since no relative 

sliding is involved and only the adhesive energy associated with bundling (at A) and unbundling 

(at C) varies. Actually, this energy difference drives the motion of the node. However, the 

process requires relative sliding of sub-bundles within bundle BB’ (indicated by colored arrows). 

Sliding in BB’ takes place against inter-fiber friction and has to be accommodated by a 

reciprocal evolution of the triangle located at the other end of segment BB’. Hence, in order to 

evaluate the ability of triangle ABC to move, it is necessary to consider the correlated evolution 

of multiple neighboring nodes of the cellular network. Figures 9(b) to 9(d) show schematically 

three possible such configurations. In all these cases, we consider the fiber length L0 to be larger 

than the cell size d and much larger than the length of any segment in Fig. 9.  Figure 9(b) shows 

the extremely improbable case in which all fibers separating from AA’ at A (red segment AB) 

continue into B’D and DD’, and all fibers forming CB also form B’E and EE’. Consider that 

triangle ABC moves to the right as shown by the black arrow. Under these circumstances, 

moving triangle B’DE to the right, as shown by the black continuous arrow, is impossible since 

filament length has to be provided at both A and D and has to be eliminated from both C and E, 

which violates mass conservation. The 4 small arrows parallel to the respective bundles indicate 

the direction of sliding mandated by the imposed motion of triangles ABC and B’DE. This 

topological incompatibility is eliminated if triangle B’DE moves to the left, as indicated by the 

dashed black arrow. However, in this case segment BB’ is subjected to bending and its length 

has to increase which, again, violates mass conservation. The most probable configuration is 

shown in Fig. 9(c) where fibers forming AB as well as the fibers forming BC continue into both 

bundles B’D’ and B’E’, as indicated schematically by the colors used. This case is locked for 

reasons identical to those outlined in relation to the case in Fig. 9(b). The only configuration in 

which both nodes B and B’ can move without violating mass conservation and without bending 

or elongating BB’ is shown in Fig. 9(d). The two triangles ABC and B’DE have to move in the 

same direction and their motion is accommodated by the relative sliding of the sub-bundles of 

BB’ shown in red and orange, as indicated by the two small colored arrows (Fig. 9(d)). If A’C’ 

and D’E’ are parallel, the length of BB’ does not increase. This is the only energetically neutral 

and topologically allowable correlated motion mode of two neighboring triangles. However, the 
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probability of existence of such configuration is extremely small (and decreases fast with 

increasing the size of the respective bundles) since it is necessary that all fibers in AB form also 

B’E and all fibers in BC also form B’D. This analysis demonstrates that structural evolution of a 

cellular network of bundles which has triangles at all nodes is topologically impossible. 

Therefore, the nodal triangles are the key geometric features that stabilize the cellular network.  

 

 

Figure 9. Schematic representation of the correlated motions of two neighboring triangular 

structures.  (a) the motion of triangle ABC along bundle A’C’ (in the direction shown by the 

black arrow) requires bundling at A, unbundling at C, and relative sliding of the red and orange 

sub-bundles along BB’. Panels (b)-(c) show the three possible correlated motion modes of two 
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neighboring triangles (ABC and B’DE): (b) improbable case in which all fibers separating from 

AA’ (red) continue into DD’. This configuration is locked; (c) most probable configuration in 

which fibers separating from AA’ and CC’ form part of both DD’ and EE’. This configuration is 

locked. (d) improbable case in which all fibers separating from AA’ (red) form part of EE’ and 

all fiber separating from CC’ (orange) form DD’. 

If the fiber length �� is smaller than the cell wall length, BB’, conditions exist for network 

disintegration. Under the action of adhesion, segments AD and CE collapse into an isolated 

bundle of length ��, and a similar process takes place at all cell walls leading to network 

disintegration.   

This discussion indicates that if triangles form at all nodes of the network before the cells grow 

to a size d comparable with ��, the cellular network of bundles becomes stable. Otherwise, the 

network decomposes into isolated bundles. Since adhesion always drives the network towards 

disintegration, the formation of stable cellular networks requires that the kinetics of formation of 

nodal triangular features is faster than that of cell growth and network disintegration.  

Further insight into the structural evolution of the network and formation of nodal triangles can 

be obtained from an entirely geometric analysis of cell evolution, as discussed in the Appendix. 

A ‘stability index’ is defined indicating under what conditions a cell is stable. A cell with 

triangles at all nodes is always stable, independent of the number of cell walls or cell size. The 

cellular network is globally stable when all of its cells are stable. This method allows identifying 

how close to global stability is a cellular structure in some intermediate state of its evolution.  

It is interesting to draw a parallel between these triangles formed by fiber bundles, with role in 

the stabilization of cellular filamentary structures, and the Plateau triangles observed in foams.
48
 

In a liquid foam, all intersections of cell faces are decorated with regions of fluid with triangular 

cross-section known as Plateau triangles. Liquid rich domains are found at triple points where 

multiple 3D cells meet. These Plateau triangles are necessary for the stability of the foam and 

store the largest amount of fluid in the structure. While surface tension plays the stabilizing role 

in the Plateau triangles case, in the problem discussed here the stabilization effect is due to the 

constrained kinematics of filaments.    

5.2 Structure and energetics of triangles of fiber bundles 
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Given the central role of triangular structures in the stability of cellular networks, and for 

completeness, it is necessary to fully characterize them from a structural and energetic point of 

view.   

The structure of a triangle depends on the size of the 3 external bundles and the angles between 

them. Consider the structure in Fig. 10, with external bundles of size '�, '� and '� forming 

angles G�, G� and G�. The sub-bundles connecting nodes A, B and C are of size '9�, '9� and '9� 
and the obvious conservation conditions  

'� = '9� 7 '9�,  
'� = '9� 7 '9�, 
'� = '9� 7 '9�          (14)  

hold.  

 

Figure 10. Parameters defining a triangle of fiber bundles. 

 

Several observations can be made by inspection. Bundles AB, BC and AC forming the triangle 

are loaded in pure bending and hence are arcs of circle of radii e�, e� and e�. Since these circles 
must be tangent to each other at A, B and C, segments OA, OB and OC are also of equal length, 

*fg. If the incoming bundles AA’, BB’ and CC’ are straight, i.e. the entire bending energy is 
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concentrated in the triangle, the bending moments loading the three edges of the triangle are 

equal, 8fg.  
The equilibrium configuration results by minimizing the total energy, for given bundle sizes and 

set of angles, relative to the size of the triangle, *fg.The bending moment results: 

8fg = h�1B@C@i j          (15) 

and the total bending and adhesive energies of the structure are: 

��	fg = i
�8fg = hi1B@C@� j         (16) 

��	fg = k	�fg 0 ��	fg,          (17) 

where 

k = ∑ �'+�'l�lm�,�   

j = ∑ '9l'+�'l� tan iIHp� 0lm�,� '9l'+�'9l��, 0 Gl�     (18) 

and �fgis the length of segments OA’, OB’ and OC’ and scales proportional with the mean 

segment length of the cellular network.  

6 Conclusions 

The structural evolution of networks of non-crosslinked filaments self-organized by adhesion is 

discussed in this article. The driving force for system evolution is provided by the interplay 

between bending and adhesion energies. Since fibers are free to relax axially, the axial 

deformation energy is negligible. At small fiber densities and/or small filament lengths, "��, the 
formation of bundles leads to the loss of connectivity of the network which eventually 

disintegrates into isolated fiber bundles. Cellular networks of bundles form at large "�� and large 
values of the adhesion parameter Ψ. Such cellular networks are qualitatively different from non-

crosslinked and cross-linked networks without adhesion. These are stabilized by the formation of 

a characteristic triangular structure of fiber bundles at all nodes. The stabilization mechanism and 

the configuration of these triangles are discussed in detail. If Ψ is sufficiently small compared to 

�"����, adhesion is too weak to drive network self-organization, and the structure remains in the 
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unbundled state. This analysis provides a comprehensive physical picture of structural evolution 

and bundling under the action of adhesion in filamentary structures, with applications to a 

diverse set of systems of current interest.  
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Appendix 

In this appendix we present a geometric method to predict the stability of a generic cell of the 

cellular network at some intermediate state of its evolution. A ‘stability index’ is introduced 

which can be used to determine whether a cell is stable in the current configuration or not. 

A cell is defined by the number of edges, q̂, and the nature of the nodes. Table A1 shows a 
classification of cells in these terms. The discussion uses terminology introduced in section 4.1 

referring to Fig. 5(b). Specifically, a bundle that splits into two sub-bundles (bundle AO in Fig. 

5(b)) is called a ‘handle’. Bundles (or handles) forming the walls of a cell are called ‘internal,’ 

while all others are called ‘external.’  

A number of observations can be made based exclusively on the geometry. Triangular cells 

( q̂ = 3) may take only one configuration and only the external bundles can be handles. The 

triangle is stable only in the concave configuration shown in Table A1, line 1. 

Multiple configurations are possible for q̂ = 4 (lines 2 to 4 in Table A1). We evaluate their 

stability by the following procedure: the end nodes, A, B, C and D, are held fixed and the density 

of the cell is allowed to increase by sliding in, along its contour, one of the bundles going 

through the end nodes. The resulting structures for the four configurations shown for q̂ = 4 are 
represented in the third column of Table A1, lines 2 to 4. Only one of the multiple (but 

equivalent) resulting configurations corresponding to each initial state is shown. Two 

possibilities exist: either the cell collapses, or it develops into a simpler structure that contains 

triangles. The number of resulting triangles depends on the number of the initial cell edges that 

are handles. A cell edge bundle that splits at one end is called “internal handles of order 1” and is 

denoted by r9�. 9̂� representes the number of such handles in the given cell. The structure on 

line 2 of Table A1 has only external handles, that on line 3 has one internal handle of order 1 

(segment AE), while that on line 4 has 2 internal handles of order 1 (segments AE and EF).  

This argument applies to cells with any number of edges; a further example is shown in Table 

A1, lines 5 and 6, for q̂ = 5. The situation is similar: the structure with no internal handles (line 

5 of Table A1) evolves into a simpler structure with 3 triangles, while as the number of internal 
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handles increases, the number of triangles in the final structure decreases. A collapsed structure 

(the cell disappears) results for q̂ = 5 and 9̂� = 3.  
Further, we consider situations in which some of the nodes of the original cell are stabilized by 

triangles. A family of related configurations based on the q̂ = 4, 9̂� = 1 of Table A1 (line 3) is 
shown in Table A2. A case with one stabilized node is shown on the first line of Table A2. This 

example has q̂ = 5 after the introduction of the triangle at node C and of edge FG. The number 

of internal handles in this case is 9̂� = 3. This structure may evolve into the configuration 

shown in column 3, line 1, of Table A2, having a single triangle. To envision this transformation, 

hold the outer handle nodes A, B, C and D fixed and allow segment AD to move into the cell and 

adhere to AEFGD. As the number of stabilized nodes increases, both q̂ and 9̂� increase and 
this stabilizes the initial state. “Internal handles of order 2” (denoted r9�) are bundles that split 
into sub-bundles at both ends and appear as edges connecting two triangles. Their number in the 

cell is indicated by 9̂�. An example is segment GH in the initial structure on line 2, column 2 of 

Table A2. This structure has q̂ = 6, 9̂� = 3 and 9̂� = 1 and is stable. It has two triangles and 
one external handle. Even if the external handle node is allowed to move into the cell, node E 

may be eliminated, but the general structure of the cell does not change. A cell with one external 

handle and all other nodes being stable is denoted as “Stable cell or type 1”. Eliminating the 

external handle and placing triangles at all nodes of the original structure fully stabilizes the cell. 

The stable structure on line 4 of Table 2 has q̂ = 8, 9̂� = 0	and 9̂� = 4. We denote this 

structure as “Stable cell of type 0.”  
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Table A1. Structural evolution of cells with no nodes stabilized by triangles in the initial state. 

The initial structures are shown in column 2, with the number of edges of the cell, q̂, indicated 
in column 1. The initial evolve by holding the nodes fixed and allowing the total contour length 

to increase. Column 3 shows the transformed structure, while columns 4,5 and 6 indicate the 

values of parameters 9̂�, 9̂�, the number of triangles resulting upon structural evolution, and the 

corresponding cell stability index, CSI (Eq. A1).  

Ne Initial cell shape Relaxed cell shape Ni1; Ni2 No. triangles CSI 
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Table A2. Structural evolution of cells with nodes stabilized by triangles in the initial state. 

Parameter specification identical to that in Table A1.  

Ne Initial cell shape Relaxed cell shape Ni1; Ni2 No. triangles CSI 
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This geometric analysis indicates two important features of cellular structures: 

- The triangle is the most stable structure and is needed in order to stabilize cells with 

number of edges larger than 3, 

- It is possible to devise an index, the “cellular stability index,” CSI, which indicates the 

type of structure resulting from any initial cell. This index is defined as: 

 

ks� = 	 q̂ 0 9̂� 0 2 9̂�,         (A1) 

 

and its values for the cells in Tables A1 and A2 are shown in the respective tables.  

CSI indicates the number of triangles in the relaxed structure and whether the cell is stable in the 

current configuration or not: 

(1) If  ks� t 2, the cell is not stable in the current state. If ks� = 2, the cell collapses. If 
ks� > 2, ks� 0 2 represents the number of triangles of the structure that results upon cell 

evolution. 
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(2) Cells with ks� = 1 and ks� = 0 correspond to stable cells of types 1 and 0, respectively 
(Table A2). 

References 

                                                           

1. D. J. S. Hulmes, in Collagen: Structure and Mechanics, 2008, pp. 15–47.  

2. V.R. Sherman, W. Yang and M.A. Meyers, J. Mech. Beh. Biomed. Matl. 2015, 52, 22-50 

3. J. Bico, Nature 2004, 432, 690. 

4. M. De Volder and A. J. Hart, Angew. Chem. Int. Ed. 2013, 52, 2412-2425. 

5. R.W. Style, A. Jagota, C.Y. Hui and E.R. Dufresne, Annu. Rev. Cond. Matt. Phys. 2017, 8, 99-

118 

6. A.V. Linares, F. Vandevelde, J. Pantigny, A. Falcimaigne‐Cordin and K. Haupt, Adv. Funct. 
Mater. 2009, 19, 1299-1303.  

7. S. Cranford, H. Yao, C. Ortiz and M.J. Buehler, J. Mech. Phys. Sol. 2010, 58, 409-427.  

8. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim and A.G. 

Rinzler, Science, 1996, 273, 483–487. 

9. A. Wierenga, A.P. Philipse, H.N. Lekkerkerker and D.V. Boger, Langmuir 1998, 14, 55. 

10. M. Tempel, G. Isenberg and E. Sackmann, Phys. Rev. E 1996, 54, 1802.  

11. S. Yunoki, H. Hatayama, M. Ebisawa, E. Kondo and K. Yasuda, J. Biomed. Mater. Res. A 

2015, 103, 3054-3065.  

12. A.G. Zilman and S.A. Safran, Europhys. Lett. 2003, 63, 139-145.  

13. S. Bounoua, E. Lemaire, J. Ferec, G. Ausias and P. Kuzhir, J. Rheol. 2016, 60, 1279-1300. 

14. M. Chaouche and D.L. Koch, J. Rheol. 2001, 45, 369-382. 

15. L. Berhan, Y. B. Yi, A. M. Sastry, E. Munoz, M. Selvidge and R. Baughman, J. Appl. Phys., 

2004, 95, 4335–4345. 

16. J.N. Coleman, W.J. Blau, A.B. Dalton, E. Munoz, S. Collins, B.G. Kim, J. Razal, M. 

Selvidge, G. Vieiro and R.H. Baughman, Appl. Phys. Lett. 2003, 82, 1682-1684. 

17. J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. 

Shelimov and C.B. Huffman, Science 1998, 280, 1253-1256. 

18. J.P. Lu, Phys. Rev. Lett. 1997, 79, 1297. 

19. R.C. Picu, Soft Matter 2011, 7, 6768-6785. 

20. C.P. Broedersz and F.C. MacKintosh, Rev. Mod. Phys. 2014, 86, 995. 

Page 33 of 35 Soft Matter



34 

 

                                                                                                                                                                                           

21. D. Poquillon, B. Viguier and E Andrieu, J. Mat. Sci. 2005, 40, 5963-5970. 

22. D. Rodney, M. Fivel and R. Dendievel, Phys. Rev. Lett. 2005, 95, 108004. 

23. G. Subramanian and R.C. Picu, Phys. Rev. E 2011, 83, 056120. 

24. S. Toll, Poly. Eng. Sci. 1998, 38, 1337-1350. 

25.  C. Van Wyk, J. Textile Inst. Trans. 1946, 37, T285-T292. 

26. Y. Li and M. Kröger, Appl. Phys. Lett. 2012, 100, 021907. 

27. Y. Li and M. Kröger, Carbon 2012, 50, 1793-1806. 

28. A.N. Volkov and L.V. Zhigilei, ACS Nano 2010, 4, 6187-6195. 

29. M. Xu, D.N. Futaba, T. Yamada, M. Yumura, K. Hata, Science 2010, 330, 1364-1368. 

30. Y. Li and M. Kröger, Soft Matter 2012, 8, 7822-7830. 

31. A.S. Shahsavari, R.C. Picu, Phys. Rev. E 2012, 86, 011923. 

32. B.V. Derjaguin, V.M. Muller and Y.P. Toporov, Prog. Surf. Sci. 1994, 45, 131-143. 

33. K.L. Johnson, Contact mechanics. Cambridge University Press, Cambridge, 1985. 

34. B.N. Persson, Surf. Sci. Rep. 2006, 61, 201-227. 

35. F.J. Schmied, C. Teichert, L. Kappel, U. Hirn and R. Schennach, Rev.  Sci. Instr. 2012, 83, 

073902. 

36. S. Plimpton, J. Comput. Phys., 1995, 117, 1–19. 

37. O. Kallmes and H. Corte, Tappi J. 1960, 43, 737-752. 

38. D. Stauffer and A. Aharony, Introduction to percolation theory. CRC press, 1994. 

39. J. Wilhelm and E. Frey, Phys. Rev. Lett. 2003, 91, 108103. 

40. H. Harborth, Elem. Math 1974, 29, 14-15. 

41. J.N. Israelachvili, Intermolecular and surface forces, Academic Press, New York, 1991.  

42. F. Hilitski, A.R. Ward, L. Cajamarca, M.F. Hagan, G.M. Grason and Z. Dogic, Phys. Rev. 

Lett 2015, 114, 138102. 

43. T. Hawkins, M. Mirigian, M. Selcuk Yasar, and J. Ross, J. Biomech. 2010, 43, 23. 

44. X. Guo and T. Zhang, J. Mech. Phys. Sol. 2010, 58, 428–443 

45. T. Li, A. Ayari and L. Bellon, J. Appl. Phys. 2015, 117, 164309 

46. Y.C. Liu and D.A. Lu, Plasma Chem. Plasma Proc. 2006, 26, 119-126. 

47. M. Naraghi, P.V. Kolluru and I. Chasiotis, J. Mech. Phys. Sol. 2014, 62, 257. 

48. D. Weaire and S. Hutzler, The Physics of Foams, Oxford University Press, New York, 1999.  

 

Page 34 of 35Soft Matter



 

Inter-fiber adhesion drives self-organization of non-crosslinked fiber networks leading to either 

disintegration or the formation of a stable cellular network.  
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