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Understanding how the physical phenotypes of cells – such as their deformability and size 
– are associated with cancer cell invasion would provide insights into mechanisms of 

invasion, and could also enable physical phenotypes to be used as a label-free biomarker 

for invasion. However, physical phenotyping measurements have been limited due to 

challenges in measurement throughput. Here, we use the high throughput quantitative 

deformability cytometry (q-DC) technology that we recently developed to rapidly measure 

physical phenotypes of across 19 distinct samples of human breast, ovarian, and pancreatic 

cancer  cell  lines.  Using  the  data  to  train  a  machine  learning  algorithm,   we 

develop the physical phenotyping model for invasion, which enables us to predict the 

invasion of cancer cell lines. More broadly, this methodology provides a framework for 

predicting functional behavior of cells based on physical phenotypes. 
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ABSTRACT  

The physical properties of cells are promising biomarkers for cancer diagnosis and 

prognosis. Here we determine the physical phenotypes that best distinguish human cancer 

cell lines, and their relationship to cell invasion. We use the high throughput, single-cell 

microfluidic method, quantitative deformability cytometry (q-DC), to measure six 

physical phenotypes including elastic modulus, cell fluidity, transit time, entry time, cell 

size, and maximum strain at rates of 10
2
 cells/s. By training a k-nearest neighbor machine 

learning algorithm, we demonstrate that multiparameter analysis of physical phenotypes 

enhances the accuracy of classifying cancer cell lines compared to single parameters 

alone. We also discover a set of four physical phenotypes that predict invasion; using 

these four parameters, we generate the physical phenotype model of invasion by training 

a multiple linear regression model with experimental data from a set of human ovarian 

cancer cells that overexpress a panel of tumor suppressor microRNAs. We validate the 

model by predicting invasion based on measured physical phenotypes of breast and 

ovarian human cancer cell lines that are subject to genetic or pharmacologic 

perturbations. Taken together, our results highlight how physical phenotypes of single 

cells provide a biomarker to predict the invasion of cancer cells. 

 

KEYWORDS 

Physical phenotyping, cancer invasion, mechanotype, machine learning, cell 

classification. 
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INTRODUCTION  

Predicting disease and treatment outcomes based on single-cell phenotypes is critical in medicine 

from cancer diagnosis to stem cell therapies. In clinical oncology and immunology, single-cell 

analysis of protein markers and DNA content using flow cytometry is valuable in diagnosis, 

prognosis, and monitoring patient response to therapy (1). Yet pathological and physiological 

changes can also manifest as altered cell physical phenotypes, including cell and nuclear size, 

stiffness, and viscosity. For example, grading of tumor biopsies based on nuclear morphology is 

widely used for cancer prognosis (2–4). The deformability of cancer cells is also emerging as a 

convenient biomarker as more invasive cancer cells have altered deformability compared to less 

invasive cells (5–17). Since cellular physical phenotypes, such as deformability, are inherent 

properties of cells, they can be rapidly measured without the use of fluorescent markers or 

labeling agents (18). However, the utility of cell deformability in predicting the invasion of 

cancer cells remains unclear: many studies show that more invasive cancer cells tend to be more 

compliant than less invasive or benign cells (5–12); but there are also contexts where more 

invasive cells are found to be stiffer (13–17). These contrasting findings suggest that the invasion 

of cancer cells cannot be universally predicted based on cell deformability, and incite studies into 

which additional physical phenotypes may collectively predict invasion. 

Microfluidic methods are especially valuable for physical phenotyping, as they enable rapid 

measurements of single cells. One such method is transit-based deformability cytometry, which 

probes physiologically-relevant deformations of cells through narrow gaps across varying 

deformation time and length scales (10,19–22). While transit time TT is a relative measurement, 

this parameter can distinguish cancer cell lines from benign cells (10,21). However, it is 

challenging to compare common metrics of cell physical phenotypes, such as deformability and 

transit time, across experiments because such measurements are not typically calibrated (23). We 

recently developed the quantitative deformability cytometry (q-DC) method, which uses 

calibration particles and power law rheology to obtain calibrated single-cell measurements of 

elastic modulus E and fluidity β, as well as four additional physical phenotypes (24). Performing 

such calibrated measurements across studies enables comparisons across cell types that can 

address how multiple cell physical phenotypes can be leveraged to predict cell invasion. 

Using multiple features of clinical samples to train machine learning algorithms is showing value 

in diagnosis and predicting disease outcomes (25–33). Since physical phenotypes are inherent 

properties of cells, such measurements can provide a low-cost way to increase the feature space 

for machine learning algorithms and to generate more robust models. For example, biophysical 

signatures of mesenchymal stromal cells can predict their regenerative capability in vivo as 

indicated by ectopic bone formation in mouse models (34). Analysis of sets of physical 

phenotypes also improves the classification of stem cells and their progenitors as demonstrated 

by studies using atomic force microscopy (AFM) (34–40), cross-slot deformability cytometry 

(41), and optofluidic time-stretch microscopy (42). Thus, we hypothesized that multiparameter 

physical phenotyping could be used to train a machine learning algorithm to predict the invasion 

of cancer cells.  

Here we use calibrated, physical phenotype measurements obtained by q-DC to predict the 

invasion of human cancer cell lines. We perform multiparameter analysis of six physical 

phenotypes for eleven different cancer cell lines with eight genetic or pharmacologic 

perturbations, resulting in nineteen distinct cell samples. To measure the physical phenotypes of 
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single cells, we use quantitative deformability cytometry (q-DC) to obtain calibrated 

measurements of elastic modulus E and cell fluidity β, as well as transit time TT, entry time TE, 

cell size Dcell, and maximum strain ϵmax, at rates of 10
2
 cells/s (24). We show that multiparameter 

analysis of these physical phenotypes can enhance classification of cancer cell lines. From 

measurements across well-established pancreatic cancer cell lines as well as ovarian cancer cells 

that overexpress tumor-suppressor microRNAs, we build the predictive physical phenotyping 

model for invasion, which we validate using both genetic and pharmacologic perturbations of 

cancer cells. Our results demonstrate the value of rapid physical phenotyping for predicting 

invasion.  

MATERIALS AND METHODS  

Cell culture. Nontransformed human pancreatic ductal epithelial (HPDE) cells are obtained 

from Dr. Ming-Sound Tsao (University Health Network-Princess Margaret Hospital, Canada and 

University of Toronto, Canada). HPDE cells are cultured in Keratinocyte-SFM medium 

supplemented with prequalified human recombinant Epidermal Growth Factor 1-53, Bovine 

Pituitary Extract, and 1% penicillin-streptomycin. The human pancreatic ductal adenocarcinoma 

(PDAC) cell lines (AsPC-1, Hs766T, MIA PaCa-2, and PANC-1) are from the American Type 

Culture Collection (ATCC). AsPC-1, Hs766T, MIA PaCa-2 and PANC-1 cells are grown in high 

glucose, L-glutamine without sodium pyruvate DMEM medium with 10% heat-inactivated fetal 

bovine serum and 1% penicillin-streptomycin. Fetal bovine serum and penicillin-streptomycin 

are from Gemini BioProducts, West Sacramento, CA. All cell media and additional media 

supplements are from Thermo Fisher Scientific Inc., Canoga Park, CA. To test the effects of 

microRNAs that are associated with improved patient survival (43), we overexpress microRNA 

mimics (microRNA-508-3p, microRNA-508-5p, microRNA-509-3p, microRNA-509-5p and 

microRNA-130b-3p) in human ovarian cancer (HEYA8) cells; microRNA mimics, mock, and 

scrambled (SCR) negative controls are from Dr. Preethi Gunaratne (University of Houston, 

USA) (43,44). HEYA8 cells are cultured in RPMI 1640 medium supplemented with 10% fetal 

bovine serum and 1% of penicillin-streptomycin. Cells are transiently transfected at 24 nM using 

Lipofectamine 2000 in serum-free OptiMEM medium, followed by the addition of 10% fetal 

bovine serum after 4 hours in serum-free conditions. All assays are performed 72 hours post 

transfection. Human ovarian cancer (OVCA433-GFP, OVCA433-Snail) cells are from Dr. 

Ruprecht Wiedemeyer (Cedars-Sinai Medical Center, USA) (45). OVCA433 cells are cultured in 

DMEM medium with L-Glutamine, Glucose, and Sodium Pyruvate. Medium is supplemented 

with 10% fetal bovine serum, 1% Anti-anti, and 2.5 µg/ml Plasmocin Prophylactic with 5 µg/ml 

blasticidin S HCl. 

A highly metastatic variant of MDA-MB-231 cells (MDA-MB-231-HM, gift from Dr. Zhou Ou, 

Fudan University Shanghai Cancer Center, China)(46) is cultivated in DMEM medium with L-

Glutamine, Glucose, and Sodium Pyruvate, supplemented with 10% fetal bovine serum and 1% 

penicillin-streptomycin. The agonist (isoproterenol) for the β-adrenergic receptor is from Sigma-

Aldrich (St. Louis, MO). Cells are treated for 24 hours prior to measurements.  

All cells are cultured at 37
o
C with 5% CO2. Cell line authentication is performed using short 

tandem repeat (STR) profiling (Laragen Inc., Culver City, CA, USA and CellBank Australia, 

Westmead, NSW, Australia). Prior to deformability measurements, 0.01% (v/v) Pluronic F-127 

surfactant (Sigma-Aldrich, St. Louis, MO, USA) is added to the cell suspension to reduce cell 
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adhesion to the PDMS walls. While F-127 treatment does not significantly affect E values of 

suspended cells (24), we observe a significant decrease in cell-to-PDMS adhesion in some cell 

types such as HPDE cells (23).  

Microfluidic chip fabrication. Negative photomasks are designed in AutoCAD (Autodesk, Inc., 

San Rafael, CA) and printed on chrome by the Nanolab at UCLA. The design of the q-DC 

devices is described previously (23). Silicone masters are fabricated using soft photolithography 

techniques (47). Polydimethylsiloxane (PDMS) (Sylgard Dow Corning, Midland, MI, USA) with 

a 10:1 w/w ratio of base and curing agent is poured onto the master wafer and placed under 

vacuum to degas for 1 hour. To cure the PDMS, the wafer and PDMS mixture is placed in a 

65
o
C oven for 2 hours. Inlets and outlets are created using a biopsy punch with a 0.75 mm bore 

size (Sigma-Aldrich, St. Louis, MO, USA). The devices are then bonded to coverglass (#1.5 

thickness) by plasma and baked at 80
o
C for 5 minutes to facilitate bonding. To ensure consistent 

device surface properties, q-DC experiments are performed 24 h after plasma treatment (23). 

Under these conditions, PDMS has an elastic modulus on the order of 1 MPa (48). As the typical 

mechanical stress associated with a cell deforming through the constricted channel is ~ 10 kPa 

(24), the deformation of the PDMS is minimal while the cell transits through the constriction. 

q-DC microfluidic experiment. To measure the physical properties of single cells, we use the q-

DC method as previously reported (24). In brief, q-DC microfluidic devices are mounted onto an 

inverted microscope (Zeiss Observer, Zeiss, Oberkochen, Germany) that is equipped with a 

20×/0.40 NA objective. A constant air pressure (69 kPa) drives cell suspensions to flow through 

the channels. As cells deform through microfluidic constrictions with 10 µm height and 9 µm 

width, a CMOS camera (MicroRNAcoEx4, Vision Research, Wayne, NJ, USA) is used to 

capture brightfield images at rates of 600 to 2000 frames per second. For cell suspensions with a 

density of 2 x 10
6
 cells/mL that are driven by an applied pressure of 69 kPa (10 psi), single-cell 

measurements can be acquired at rates of 10
2
 cells/s. While the timescale of the initial cell 

deformation into microfluidic constrictions is largely determined by cell deformability (49–51), 

0.01% (w/v) pluronic F-127 surfactant (Sigma-Aldrich, St. Louis, MO, USA) is added to the cell 

media to minimize cell-surface interactions.  

Measurements of cell physical properties using q-DC. To conduct multiparameter analysis of 

cell physical properties, the displacement and shape of single cells are tracked using a MATLAB 

code (Mathworks, Natick, MA, USA; code available online on GitHub) (24). This enables us to 

acquire cell size Dcell, the time required for a cell to deform into the constriction TE, and the time 

required for a cell to transit completely through the constriction TT (24). We also measure the 

time-dependent strain as ���� = 	 ��–	��
�
��

, where C is the circularity, ���� = �
��
�

��
��
. We set the 

initial circularity value as �� = 	1, since the cells exhibit a circularity close to a perfect circle 

prior to entering the constriction. At the end of the entry time, the cell reaches a minimum 

circularity and corresponding maximum strain ϵmax.  

 

To extract elastic modulus E and cell fluidity β, we determine the applied stress, ��, during cell 

deformation using agarose calibration particles with well-characterized Young’s moduli. 

Measuring the stress-strain relationship for the calibration particles enables us to determine the 

stress as a function of driving pressure in both 9 x 10 µm
2
 and 7 x 10 µm

2
 device geometries 
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(24). By fitting a power law rheology model to the time-dependent strain data obtained for 

individual cells, we can extract elastic modulus E and cell fluidity β: 

 

  ���� = 	 ��
�
� 

��
��	,    Eq. 1 

where E is the elastic modulus when t = τ; τ is the characteristic timescale, set to 1 s; and β is the 

power law exponent, which represents cell fluidity. For purely elastic materials, β = 0; for purely 

viscous materials, β = 1. As elastic modulus E, cell fluidity β, entry time TE, and transit time TT 

depend on cell size, we analyze cells that have Dcell that is the population median ± 1 µm. 

Classifying cell lines using q-DC. To evaluate the power of q-DC parameters to classify cells, 

we perform supervised machine learning using the k-nearest neighbor (k-NN) algorithm (S. Fig. 

1A). K-NN is a non-parametric algorithm that does not assume the underlying data fits a 

particular model and is among the simplest machine learning algorithms to conceptualize and 

execute (25). To implement the k-NN classification algorithm, we first map each cell sample into 

a multidimensional feature space of physical phenotypes (Fig. 2B). We train the algorithm by 

considering the k nearest neighbors of individual data points based on their Euclidean distance; 

the resultant clusters of data have the highest overlap in feature space or the most similar 

physical signatures. The class assigned to new data points is determined by the most common 

class of the k number of nearest neighbors in the training set. When selecting the integer, k, there 

is a tradeoff between overfitting and underfitting (52–54): when k = 1, the class is assigned based 

on only one closest neighbor in the feature space, and the algorithm is thus subject to noise and 

overfitting. By contrast, if k is the same size as the sample size, then the class assigned is the 

most common class in the feature space, and multiple classes cannot be assigned. Here we use k 

= 10, as it yields similar accuracies compared to k > 3, but spans a greater distance in the feature 

space to reduce overfitting; k = 10 also ensures that we can identify multiple classes as k is still 

significantly smaller than the training set of 400 samples per cross validation step (S. Fig. 1B, S. 

Table. 1). 

To implement k-NN, we first log-transform the physical phenotype data as single-cell 

populations exhibit non-normal distributions. Since training a k-NN algorithm is computationally 

expensive for large data sets (52), we use the median values of physical phenotypes as a proof-

of-concept demonstration. We supply a known set of input data using statistical bootstrapping: 

for each cell line, we generate a representative training set of median q-DC predictors from 500 

subsets of experimental data, which each contain 100 randomly-sampled cells with replacement. 

To determine classification accuracy, we execute the training and testing with 5-fold cross 

validation: the data is evenly partitioned into 5 subsets. For each round of cross validation, we 

combine 4 subsets to generate a training set, and use the fifth subset as the testing set. 

Classification accuracy is defined as the percentage of correct classifications over total 

classifications across each of the training sets. 

Physical phenotype model of invasion using q-DC. To evaluate if rapid physical phenotyping 

can predict cancer cell invasion, we build the physical phenotype model of invasion. We perform 

multiple linear regression using physical phenotype data obtained by q-DC to predict invasion 

rates that we previously measured using a 3D scratch wound invasion assay (12–14) (MATLAB, 

Mathworks, Natick, MA, USA) and were previously reported in the literature (55–58). As q-DC 
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measurements of cell physical phenotypes depend on cell size (Fig. 1E)(24), we bin our data 

based on the median cell size for each panel ± 1 µm. We perform a log-transform as our data is 

non-normally distributed. To evaluate linear regression error, we utilize the single-cell q-DC data 

to train linear regression models using 1000 bootstrapped samples of single-cell physical 

phenotypes. Each bootstrapped sample generates a linear combination of physical phenotypes to 

predict invasion and their associated coefficients that minimize residuals. The physical 

phenotype model is determined by the median coefficient for each parameter. The correlation 

coefficient between predicted invasion and measured invasion is determined as the average 

correlation coefficient. Similar to the training analysis, we predict invasion using the physical 

phenotype model with 1000 bootstrapped samples of the q-DC data of single-cells; this enables 

us to determine the average predicted invasion. To evaluate the predictive accuracy of the model, 

we compare the ranking of measured invasion determined from both previous experiments 

(13,14) and literature (55–58) with the invasion values obtained from the physical phenotyping 

model for invasion. 

RESULTS 

Multiparameter physical phenotyping by q-DC. To rapidly measure the physical phenotypes 

of single cells, we use transit-based deformability cytometry; this method uses a microfluidic 

device that consists of an array of branching channels (20,22,23,59,60), which lead to micron-

scale constrictions (Fig. 1A,B). The timescale for cells to transit through these narrow channels 

provides a simple measure of cell deformability (Fig. 1B,C): stiffer cells tend to have longer 

transit times (TT) compared to more compliant cells (61). To extract additional parameters from 

transit-based microfluidic measurements, we recently developed quantitative deformability 

cytometry (q-DC), which enables calibrated single-cell measurements of physical phenotypes 

including elastic modulus E and fluidity β that are extracted using power law rheology.  

 

We find that a population of single cells exhibits variability in physical phenotypes, as shown in 

Fig 1B. For this example showing the stiffness E of HPDE cells, we find the interquartile range 

of E spans 1.2 to 4.2 kPa, and displays a median E of 2.7 kPa, which is consistent with previous 

measurements by AFM (62). The heterogeneity in physical phenotypes across a population of 

single cells that we observe may be attributed to cell-to-cell variability in protein expression 

(63), F-actin organization (64,65), cell cycle stage (66–68), and nuclear-to-cytoplasmic ratio 

(69).  

 

In addition to E, TT, and β, we also obtain cell size Dcell, from the diameter of the unconstrained 

cell prior to deformation; maximum strain ϵmax, based on the minimum circularity that occurs as 

the cell deforms through the constriction; and entry time TE, which is the time required for a cell 

to reach maximum strain (Fig 1B). While q-DC enables measurements of multiple physical 

phenotypes, it is not clear how this additional information improves the accuracy of cell 

classification and prediction of invasion over standard measurements of TT alone.  

 

Pairwise correlation analysis of q-DC parameters. To assess the value of multiple biophysical 

parameters for classification of different cell types, we use q-DC to measure physical phenotypes 

of human pancreatic ductal adenocarcinoma (PDAC) cell lines that are derived from primary 

tumors (PANC-1 and MIA PaCa-2), and secondary sites (AsPC-1 and Hs766T), as well as a non-
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transformed human ductal pancreatic epithelial (HPDE) control cell line. These cell lines exhibit 

distinct differences in invasion (13), and therefore provide a model system for testing q-DC 

classification of cells. 

 

Fig 1. Overview of cell physical phenotyping by quantitative deformability 

cytometry (q-DC). (A) Image of q-DC microfluidic device mounted on a glass coverslip 

next to an American penny for scale. Scale, 19 mm. (B) Schematic overview of physical 

phenotyping by q-DC. By deforming cells through microfluidic constrictions, we obtain 

measurements of elastic modulus E, cell fluidity β, transit time TT, entry time TE, cell size 

Dcell, and maximum strain ϵmax for individual cells. (C) A representative cell deforming 

through a microfluidic channel of the q-DC device. Entry time TE is the time required for 

a cell to reach maximum strain ϵmax; transit time TT is the time required for the cell to 

transit through the constriction. Scale bar, 20 µm. (D) Black dots represent the strain of 

the single cell shown in panel C as a function of time. Red solid line represents power 

law fit to single-cell strain trajectory over the entry timescale, TE. Using power law 

rheology, we extract elastic modulus, E, and fluidity exponent, β. (E) Representative 

scatter plot of E and Dcell for human pancreatic ductal epithelial (HPDE) cells. Each dot 

represents a single cell and color denotes number density. Shown here are a total of N = 

3231 cells. 

To identify which physical phenotypes provide unique information for classifying populations of 

single cells and which ones are statistically redundant, we first evaluate the correlation strength 

between pairs of the six q-DC outputs, E, β, TT, TE, Dcell, and ϵmax (S. Fig. 2, S. Table. 2). 

Spearman’s rank correlation coefficients of -1 and +1 reflect pairs of parameters that are highly 

correlated and statistically dependent on each other. By contrast, correlation coefficients with a 

low absolute value indicate pairs of parameters that are weakly correlated with each other; each 

parameter from a weakly correlated pair will more likely provide unique information, as they are 

more statistically independent from each other. 
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Analysis of the Spearman’s correlation coefficients reveals that TT and TE are highly correlated (r 

= 0.95; p ≪ 0.001) (Fig. 1C, S. Fig. 2, S. Table. 2); this is expected as transit time is defined as 

the time for a cell to enter and exit the constriction. We also find that β and E are strongly 

correlated (r = -0.77; p ≪ 0.001); this scaling of E and β is consistent with the behavior of soft 

glassy materials (19,70). All other pairwise comparisons between parameters, such as Dcell to 

ϵmax, TT, E, are weakly correlated with -0.48 < r < 0.64 (S. Table. 2), suggesting that 

combinations of these parameters could provide unique information for characterizing cell lines. 

Multiparameter analysis for classification of pancreatic cells. To assess the value of q-DC 

data sets in classifying PDAC cell lines, we use the k-nearest neighbors (k-NN) algorithm to 

classify cell lines based on physical phenotypes. In the k-NN method, training data establishes a 

multidimensional feature space, where q-DC parameters define each dimension; cell lines are 

then classified based on the identity of their k nearest neighbors in the pre-established feature 

space. To evaluate how the number of predictors and combinations thereof affect classification 

accuracy, we first assess the ability of single physical phenotypes to classify cells. We find that 

single parameters alone offer low classification accuracy of cell lines: TT yields 65% accuracy in 

predicting the correct cell line from our panel of PDAC cell lines, E yields 59% accuracy, and 

Dcell gives 52% (Fig. 2A).  

Including additional physical phenotypes significantly enhances classification accuracy: {E, TT} 

provide a model accuracy of 87% and with {TT, Dcell}, the model accuracy increases to 91% (Fig. 

2A, S. Fig. 3). Other combinations of two parameters yield accuracies ranging from 69% to 89% 

(S. Fig. 3). Including an additional third parameter further improves accuracy, but with smaller 

gains: both {E, TT, Dcell} and {E, ϵmax, Dcell} result in 94% accuracy. The highest accuracy of 

96% can be obtained using four parameters {E, TT, Dcell, ϵmax} (Fig. 2A,B). Surprisingly, we find 

that using additional q-DC parameters does not improve classification accuracy, which ranges 

from 92% to 96% when using five and six physical phenotypes; this highlights how certain pairs 

of parameters, such as TT and TE, are highly correlated. Therefore, we use {E, TT, Dcell, ϵmax} as a 

reduced set of parameters, which minimizes cross-correlations and provides the highest 

classification accuracy with the least amount of parameters.  

Since transit time TT is a common metric for cell deformability that is obtained by transit-based 

deformability cytometry (22), we next evaluate the benefit of q-DC parameters by comparing the 

performance of the k-NN algorithm using the reduced set of parameters to TT alone (Fig. 2C, D). 

For the k-NN algorithm using TT as a single predictor, we find the algorithm performs poorly: the 

true positive rate for each cell line ranges from 0.33 to 0.86 (Fig. 2C). For example, the true 

positive rate for PANC-1 cells is 0.33, indicating that only 33% of PANC-1 samples are 

correctly identified as PANC-1 cells, 41% are incorrectly identified as HPDE cells, and 26% as 

AsPC-1 cells (Fig. 2C). When {TT} is used, the true positive rate averaged across all cell lines is 

0.65 and the false positive rate is 0.35. By contrast, the reduced set of q-DC parameters {E, TT, 

Dcell, ϵmax} significantly improves the average true positive rate to 0.96. For example, the true 

positive rate for PANC-1 cells is 1.0, where 100% of PANC-1 samples are correctly identified. 

Additionally, the true positive rate for Hs766T is 0.94, where 94% of Hs766T samples are 

correctly identified, while 6% are identified as MIA PaCa-2 (Fig. 2D). We also observe the 

reduced set {E, TT, Dcell, ϵmax} decreases the false positive rate, which ranges from 0 to 0.06 

(average = 0.04) (Fig. 2D). Taken together, these findings indicate that q-DC predictors increase 

the accuracy for classifying PDAC cell lines compared to TT alone.  
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Fig. 2. Predictive power of q-DC outputs for cell classification. (A) Accuracy of k-

nearest neighbor machine learning algorithm for classifying human pancreatic cell lines. 

Each bar represents the accuracy of models built with varying combinations of q-DC 

predictors as indicated by the colored dots; grey dots represent excluded predictors. 

Orange bars and dots represent the highest accuracy that can be achieved with a set of 

one, two, three, and four physical phenotypes. Turquoise bars and dots show accuracy 

obtained by all other combinations of physical phenotypes. Asterisk shows the reduced 

set of predictors that provides the greatest accuracy with the least number of parameters. 

White numbers show the accuracy, which is calculated as the percentage of data subsets 

that are correctly identified as one of the five pancreatic cell lines. S. Fig. 3 illustrates the 

accuracy of models using additional combinations of q-DC predictors. (B) Scatter plot of 

training and test sets for a single, representative cross-validation step. Data is shown in a 

visual interactive stochastic neighbor embedding (viSNE) scatter plot (41,71), which 

projects the reduced set {E, TT, Dcell, ϵmax} data onto a 2D vector space. Transparent 

markers illustrate the data used in the training set. Opaque markers represent the test set. 

Circles show samples that are correctly identified (true). Triangles represent samples that 

are incorrectly classified (false). See S. Fig. 5 for more detailed representation of the 
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incorrectly classified samples, where the internal color of the triangle represents the true 

identity and the external color represents the false identity. (C-D) Confusion matrices 

show the performance of the k-NN algorithm for (C) transit time TT, and (D) reduced set 

of q-DC predictors: elastic modulus E, transit time TT, cell size Dcell, and maximum strain 

ϵmax. Rows represent the true cell line; columns represent the predicted cell line. Color 

scale denotes the proportion of cells predicted as each cell type.  

Relationship of physical phenotypes to cancer cell invasion. To identify which physical 

phenotypes are the strongest indicators of cancer cell invasion (Fig. 3A), we first evaluate the 

correlation between invasion and single physical phenotypes of the reduced set, {E, TT, Dcell, 

ϵmax}. Across the panel of PDAC cell lines, we find that individual parameters from the reduced 

set have poor to moderate correlations with invasion as measured using a 3D scratch wound 

invasion assay (13,44): Pearson’s correlation yields R
2
 that range from RD-Inv

2 
= 0.05 ± 0.001 to 

RE-Inv
2 

= 0.45 ± 0.006 (Fig. 3B). We find the strongest correlation of a single parameter with 

invasion for E (RE-Inv
2 

= 0.45 ± 0.006), whereby cells that are more invasive tend to have lower E 

(Fig. 3B). This trend of more invasive cells being more compliant is consistent with previous 

reports in breast and ovarian cancer cells (5–11). However, the inverse relationship between 

invasion and E does not hold across all PDAC cell lines as MIA PaCa-2 cells exhibit the lowest 

elastic modulus yet reduced invasion compared to Hs766T and PANC-1 cells (Fig. 3B).  

We also measure the physical phenotype of seven ovarian cancer cell samples that overexpress 

distinct microRNAs (microRNA-508-3p, microRNA-508-5p, microRNA-509-3p, microRNA-

509-5p and microRNA-130b-3p); higher levels of expression of these microRNAs are associated 

with improved patient survival, as identified through Cancer Genome Atlas (TCGA) data (43). 

We previously found that microRNA-509-3p, microRNA-509-3p, microRNA-508-3p, and 

microRNA-130b-3p decrease cell invasion (43,44) and increase cell transit time (44). Physical 

phenotyping by q-DC reveals that individual phenotypes of microRNA-overexpressing cells also 

exhibit only moderate correlations to invasion (Fig. 3B). While we find that higher E and TT are 

associated with decreased invasion across both established pancreatic cancer cell lines and 

ovarian cancer cells with manipulated microRNA levels, we find opposite trends for Dcell and 

ϵmax (Fig. 3B); these discrepancies further substantiate the low predictive power of individual 

physical phenotypes. As single physical phenotypes are not sufficient to predict invasion, we 

next investigate if multiparameter analysis using the reduced set of four physical phenotypes can 

collectively predict cancer invasion. 

To develop a model that can predict cell invasion on the basis of physical phenotypes, we train a 

multiple linear regression model using {E, TT, Dcell, ϵmax} and invasion data. While we use data 

from numerous cell samples, linear regression can be susceptible to overfitting when the number 

of fitting parameters approaches the number of data points. Therefore, we utilize the data set 

with the largest number of samples, which is the ovarian cancer cells overexpressing microRNAs 

that tend to decrease cell invasion (43,44). We account for the number of predictors in the 

strength of correlation between the measured and predicted invasion using the adjusted-R
2
 

(R
2

adj), 

 ����
� = 1 − [

"#$%�&�'$#�

'$($#
],     Eq. 2 
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where n is the number of observations and m is the number of predictors. For the PDAC cell 

lines, an R
2

adj value does not exist, as there are four fitting parameters in the reduced set and five 

cell lines. However, building the linear regression model using invasion and physical phenotype 

data {E, TT, Dcell, ϵmax} from seven ovarian cancer cell lines that overexpress distinct microRNAs 

results in invasion values that are highly correlated with experimental observations, as indicated 

by the high R
2

adj = 1.00 ± 0.002 (Fig. 3D); we call this multiple linear regression model built 

with the reduced set of parameters the ‘physical phenotype model for invasion’. We also train 

models with smaller sets of predictors; however, we find that the reduced set of physical 

phenotypes (E, TT, Dcell, ϵmax) yields the highest Radj
2
 value, and thus generates the strongest 

predictive model with the smallest number of parameters (Fig. 3D). 

 

Fig. 3. q-DC parameters as predictors of invasion across cancer cell types. (A) 

Schematic illustration the reduced set of physical phenotypes, which we use to predict 

cell invasion, elastic modulus E, transit time TT, cell size Dcell, and maximum strain ϵmax, 

as measured using 3D invasion assay. (B) Plots showing invasion versus single physical 

phenotypes for pancreatic adenocarcinoma (PDAC) cell lines (blue circles) and ovarian 

cancer (HEYA8) cells that overexpress a panel of tumor suppressor microRNAs (red 

triangles). Each data point represents the median value for a cell sample. Error bars 

represent standard deviation. Dashed lines show best linear fits. (C) Correlation between 

measured and predicted invasion using the physical phenotype model for invasion. 

Dashed lines show best linear fit for the microRNA-overexpressing cells. Data points 

represent the average value for a cell sample. Error bars represent standard deviation. (D) 

The strength of correlations between measured and predicted invasion from linear 

regression models built with combinations of physical phenotypes for microRNA-

overexpressing ovarian cancer cells. Colored circles illustrate the set of predictors used in 

the model. Bars represent adjusted-R
2
 (Radj

2
) values, which reflect the average strength of 

the correlation, while accounting for the number of fitting parameters to data points. 

Error bars represent standard deviation. 

 

Predicting invasion using physical phenotypes. To validate the physical phenotyping model 

for invasion, we measure physical phenotypes of seven additional cancer cell samples, and 
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determine how accurately we can predict invasion for samples that are independent of the 

training set. We first use q-DC to physical phenotype three breast cancer cell lines, MDA-MB-

231, MDA-MB-468, and MCF-7 (Fig 4A). These cell lines are well characterized to have 

varying invasive potentials, from highest to lowest: MDA-MB-231 > MDA-MB-468 > MCF-7 

(72,55–58). Other key characteristics of progression are also described for these cell lines, 

including the propensity to form cell colonies (MDA-MB-231 > MDA-MB-468 > MCF-7) (58). 

By physical phenotyping using q-DC, we find that MDA-MB-231 cells have decreased E 

compared to both MDA-MB-468 and MCF-7 cells (EMDA-MB-231 = 1.2 ± 0.3 kPa < EMCF-7 = 2.0 ± 

0.2 kPa < EMDA-MB-468 = 2.7 ± 0.3 kPa). Compared to the ranking of invasion of these cells types, 

we find a weak correlation between E and invasion, which is further quantified by Spearman’s 

correlation coefficient (r = 0.5); these findings support that E alone is not sufficient to predict 

invasion. We find that transit times follow the same ranking as E, whereby TT - MDA-MB-231 = 15 ± 

3 ms < TT - MCF-7 = 25 ± 5 ms < TT – MDA-MB-468 = 57 ± 27 ms (Fig. 4A). Thus, neither E nor TT is 

sufficient to predict invasion. However, we discover that the physical phenotyping model for 

invasion correctly ranks the invasion of these breast cancer cell lines, MDA-MB-231 > MDA-

MB-468 > MCF-7 (Fig. 4D). These results further substantiate the power of multiparameter 

analysis to predict invasion based on physical phenotyping of single cancer cells. 

To further validate the physical phenotyping model for invasion, we predict the invasion of 

ovarian cancer (OVCA433) cells that have been genetically manipulated to generate a pair of 

epithelial- and mesenchymal-like cell lines. Cancer cells with overexpression of Snail (45) 

(OVCA433-Snail), a key transcription factor in epithelial-to-mesenchymal transition (EMT) (73) 

are mesenchymal-like and exhibit increased invasion (73). By contrast, the control cells 

(OVCA433-GFP) are epithelial-type. Using q-DC to physical phenotype this pair of cell lines, 

we find that OVCA433-Snail cells have a reduced E compared to the OVCA433-GFP control 

cells (EOVCA-GFP = 1.8 ± 0.1 kPa; EOVCA-Snail = 1.0 ± 0.7 kPa; p << 0.001) (Fig 4B). We also 

observe that OVCA433-Snail cells exhibit shorter transit times than OVCA433-GFP (TT - OVCA-

GFP = 22 ± 2.8 ms; TT – OVCA-Snail = 16 ± 1.2 ms, p << 0.001), consistent with the decreased 

stiffness of the mesenchymal-type OVCA433-Snail cells (Fig. 4B). Using q-DC outputs, we 

demonstrate that the physical phenotype model for invasion has the power to predict the 

increased invasion of the OVCA433-Snail cells compared to the control OVCA433-GFP cells 

(Fig. 4B); these results also demonstrate that physical phenotypes measured by q-DC are 

consistent with other hallmark characteristics of EMT, such as the increased vimentin to E-

cadherin ratio (74) and ability to form cell colonies (75), which are commonly used to define 

mesenchymal-type cells. 

We next assess how increased cell invasion that is caused by pharmacologic manipulation can be 

predicted by the physical phenotype model of invasion. We previously showed that cancer cells 

treated with the β-adrenergic agonist, isoproterenol, have increased invasion in vitro (14). 

Activation of β-adrenergic signaling also promotes metastasis in clinically-relevant orthotopic 

mouse models of breast cancer (46,76). Following treatment of highly metastatic human breast 

cancer (MDA-MB-231-HM) cells with isoproterenol, we find that E increases from EControl = 0.9 

± 0.4 kPa to EISO = 4.0 ± 0.6 kPa (p = 0.001) (Fig. 4C). Similarly, TT increases from TT - Control = 

18 ± 4.2 ms to TT - ISO = 81 ± 31 ms (p << 0.001) (14) (Fig. 4C). While pharmacological 

perturbation results in altered cell physical phenotypes, the phenotyping model does not 

accurately predict the effects of isoproterenol on cancer cell invasion (Fig 4F). The inability of 

the physical phenotyping model to predict the increased invasion caused by this pharmacologic 
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manipulation suggests that there is a fundamentally different relationship between the effect of β-

adrenergic signaling on physical phenotypes and β-adrenergic regulation of invasion compared 

with the other sets of cancer cells that we investigate here. 

 

Fig. 4. Predicting invasion by multiparameter physical phenotyping. (A-C) The four 

key physical phenotypes that comprise the reduced set for: (A) breast cancer cells, MCF-7, 

MDA-MB-468, and MDA-MB-231; (B) ovarian cancer cells, OVCA433-GFP control, 

and OVCA433 that overexpresses Snail (OVCA433-Snail), a key transcription factor in 

epithelial-to-mesenchymal transition (EMT); (C) Highly metastatic human breast cancer 

(MDA-MB-231-HM) cells with activation of β-adrenergic signaling by treatment with 100 

nM isoproterenol (+ISO) or vehicle (Control) for 24 h. N > 400. (D-F) Average predicted 

invasion as determined by the physical phenotyping model for invasion. Error bars 

represent the standard deviation. Colors represent previously determined invasive 

potentials, as described in literature (14,55–58). 

 

DISCUSSION 
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Here we develop the physical phenotyping model to predict invasion using four parameters—

elastic modulus E, transit time TT, maximum strain ϵmax, and cell size Dcell—which can be rapidly 

measured using q-DC. We demonstrate the model’s predictive power across ovarian, breast, and 

pancreatic cell lines that have inherent differences in invasive potential, as well as for cells that 

have increased invasive potential caused by genetic modification. To generate the physical 

phenotyping model, we use machine learning methods, which provide a powerful tool to predict 

clinically relevant phenotypes (25–33). Here we assess invasion, which is used as a metric to 

determine molecular mediators of metastasis and to validate therapeutic targets in drug discovery 

(77,78). However, typical invasion assays require hours to days (77,79). The ability to predict 

cancer cell invasion based on physical phenotyping of single cells within minutes would thus 

achieve order of magnitude advances in the time required to assess cell invasion; this could 

enable rapid evaluation of how patient samples, such as cells from pleural effusions or 

dissociated tumors, respond to drugs.  

Physical phenotypes as indicators of invasion. The physical phenotyping model for invasion 

relies on the reduced set of physical phenotypes—elastic modulus E, transit time TT, maximum 

strain ϵmax, and cell size Dcell—which can be rapidly measured using q-DC: 

Elastic modulus. E is an essential indicator of invasion in the physical phenotype model. Our 

investigation of physical phenotypes across nineteen cell samples, including established cell lines 

and a range of genetic and pharmacologic perturbations, provide the opportunity to examine how 

broadly the relationship between cell stiffness and invasion can be generalized. We find that E is 

the physical phenotype that is most highly correlated with invasion (S. Fig. 4), reflecting the 

general trend that more invasive cells tend to be more compliant. Interestingly, we identify 

several contexts where more invasive cells are stiffer. For example, while overexpression of 

many of the microRNAs cause ovarian cancer (HEYA8) cells to become stiffer and less 

invasive, overexpression of microRNA 509-5p causes cells to be stiffer and more invasive. We 

also observe that PANC-1 and Hs766T cells are stiffer and more invasive than MIA PaCa-2 

cells. There are additional examples of more invasive cells being stiffer in the breast cancer 

panel, where MDA-MB-468 cells are stiffer, yet more invasive than MCF-7 cells. Treatment of 

MDA-MB-231 cells with isoproterenol also causes cells to be stiffer and more invasive. While 

the overall trend of our data suggests that elastic modulus and invasion are inversely correlated, 

these and other cases of more invasive cells that are stiffer (13–17), suggest that this inverse 

correlation is context-dependent.  

Transit time. While transit time TT is commonly used to distinguish cancer cell types (22), this 

parameter alone is not a strong indicator of invasion. We find moderate to poor association 

between TT and invasion across well-characterized cell lines and microRNA-overexpressing 

cells. The emergence of TT as an indicator of invasion in the physical phenotyping model 

suggests that the ability of cells to continuously deform may be important in invasion. While E 

reflects the ability of a cell to resist initial deformation, and thus dominates viscoelastic response 

on short millisecond timescales (23), transit time captures the ability of a cell to deform through 

the entire constriction. We showed previously that TT depends on both elastic and viscous 

properties (23); indeed, invasion occurs over hours to days (61), where viscous contributions 

may be more relevant.  

Size. We find that cell size Dcell strengthens the accuracy of the physical phenotype model to 

predict invasion. We and others previously determined that cell size is inversely correlated with 
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invasion potential (9,44). The effects of cell size may also reflect contributions of the cell 

nucleus to q-DC measurements: nuclear size scales with cell size (13), and the nucleus tends to 

be stiffer than the surrounding cytoplasm (11). Moreover, increased nuclear-to-cytoplasmic 

volume is a hallmark of malignant cells that has diagnostic and prognostic value (2,80,81). 

Morphological parameters, such as eccentricity and circularity, are also identified as strong 

predictors of cancer cell types (38); the role of nuclear shape stability in cancer cell physical 

phenotypes that we investigate here remains to be determined. 

This set of physical features {E, TT, Dcell, ϵmax} that we have identified enhances the accuracy of 

the model to predict cell invasion, but the extent to which they are implicated in invasion is still 

not fully understood. It is important to emphasize that a biomarker is not required to have a well-

established physiological role in order to be an accurate predictor of a disease state. For example, 

nuclear shape is widely used for cancer prognosis (2–4), but the physiological consequences of 

aberrant nuclear morphology in cancer cells is still undefined.  

Tradeoffs of using multiple physical phenotypes to predict invasion. Our findings 

demonstrate the enhanced predictive power that can be achieved using multiple physical 

phenotypes obtained by q-DC, such as elastic modulus E, cell fluidity β, entry time TE, and 

maximum strain ϵmax (24). However, extra computation is required to extract these parameters. 

The tradeoff between model accuracy and computational expense will ultimately depend on the 

specific application. For example, certain cancer cell populations can be distinguished using 

measurements of TT and Dcell, which rely on simpler image analysis (10,21–23,59,61). With 

greater computational investment, such as tracking the time-dependent changes in cell shape 

during deformation and fitting power law rheology models to the time-dependent strain of single 

cells, additional parameters such as ϵmax and E can be determined (24). More complex algorithms 

that exploit the variability of physical phenotypes within cell samples may further improve the 

accuracy of prediction. However, such enhanced resolution may not be essential for specific 

applications. For example, the invasion of the epithelial-type OVCA433-GFP cells versus the 

mesenchymal-type OVCA433-Snail cells is accurately ranked by the median E alone (Fig 4E).  

Benefits of q-DC method for machine learning. Since q-DC enables us to obtain calibrated 

measurements of cell physical phenotypes, this approach addresses the lack of measurement 

standardization that often challenges the use of machine learning models to predict cellular 

behaviors (25,26,82,83). Using gel particles as a calibration standard, q-DC enables us to 

compare data across distinct sets of cell types while avoiding batch-to-batch variation. In 

addition, the q-DC method enables us to rapidly train the algorithm using a set of cell samples 

and then evaluate the model performance using a set of seven independent cell samples; this 

reduces the risk of overfitting by increasing the number of samples compared to the number of 

measured biomarkers, which is a major challenge in machine learning methods. The ability to 

rapidly obtain calibrated physical phenotyping data containing multiple features of cells thus 

provides a powerful complementary biomarker to enrich the feature space available for machine 

learning approaches.  

In contrast to calibrated, physical phenotypes obtained by q-DC, measurements of cell invasion 

are inherently relative. As the model is evaluated using invasion data from both previous 

experiments (12–14) and literature (55–58), the predicted invasion cannot be quantitatively 

compared to the measured invasion. For this reason, we present the assessment of the model’s 
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predictive power as a ranking of invasion of cell types. Future studies that investigate a larger 

panel of cell types within a single invasion experiment, or compare the invasion of cell types 

using the same experimental setup, would allow for more detailed evaluation of the accuracy of 

the predictive model for invasion. 

The use of more sophisticated machine learning approaches could further improve performance 

of the model for invasion. Using stack combinations of machine learning methods can overcome 

the limitations of individual algorithms and thereby generate a more robust model (84). More 

advanced algorithms could also minimize the image analysis required for the physical 

phenotyping model for invasion; for example, neural network algorithms can be trained using 

images with minimal processing, and thus do not require the additional computational steps to 

extract physical phenotypes. 

Effects of measurement techniques on the physical phenotyping model for invasion. Since 

different methods for physical phenotyping investigate cells in suspended versus adhered states, 

it is not clear how broadly the predictors of invasion identified by q-DC can be translated to 

other physical phenotyping measurements. Microfluidic methods, such as q-DC, probe cells in 

suspension, where cells exhibit an altered distribution of F-actin compared to when they are 

adhered to a substrate (13,85). In addition, cells attached to a substrate generate intracellular 

tension; this ‘prestress’ (86) can contribute to cell stiffness measurements when using a 

technique such as AFM (85,87). Considering the increased contractility and/or stress fiber 

formation of adhered cells may explain the difference in the ranking of elastic modulus values 

for PDAC cells measured by q-DC and AFM (13). Differences in the time and length scales of 

mechanical measurements by AFM and q-DC may further contribute to differences in measured 

physical phenotypes. 

Measuring the mechanical properties of cells using complementary methods could provide 

valuable insight into the role of cell physical phenotypes at varying steps in the metastatic 

cascade. The stiffness of adhered cells depends on myosin II activity (88–91), which is required 

for cells to generate forces during invasion, extravasation, and intravasation (92,93); 

mechanotyping of adhered cells could provide an additional, complementary physical indicator 

of cell invasion. Indeed, traction stresses scale with cell metastatic potential (94). The ability of 

suspended cells to deform during circulation through the blood and lymphatic vasculature 

(92,93) and resist fluid shear stresses (95) is critical for tumor cell dissemination. 

The method for measuring cancer cell invasion could also impact the physical phenotyping 

model for invasion. Results from the 3D scratch wound invasion assay used here are similar to 

data obtained using a transwell migration assay (13,44). However, the ranking of invasion across 

cancer cell lines could be influenced by tuning matrix stiffness and/or composition; instead of 

Matrigel, as used here, collagen or fibronectin, could recapitulate different physiological 

conditions, where some cell types may be more effective at invading. Since the ability of cells to 

invade through different matrix materials can differ, the relationship between cell physical 

phenotypes and invasion should be defined for each context. Such an approach could extend the 

applicability of this methodology to predict the migration of immune cells or neurons, or wound 

healing response.  
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Navigating the physical fitness landscape of invasion. Invasion is a complex and highly 

dynamic process requiring deformation through micron-scale pores (93,96), protrusion formation 

(97), generation of traction forces (94), and secretion of proteases (98–100). While we cannot 

directly conclude from the predictive model that the reduced set of parameters—elastic modulus 

E, transit time TT, maximum strain ϵmax, and cell size Dcell—contribute to cancer invasion, 

evidence in the literature suggests that these parameters have functional implications. The 

stiffness of cells determines their ability to deform through narrow gaps; thus, changes in cell 

physical properties could have consequences for functional behaviors, such as invasion. Cell size 

may impact how readily cells can invade through a matrix. Indeed, cell size determines the 

probability of cells to occlude narrow capillaries or pores (101,102), and thus may be implicated 

in lodging of cells in metastatic target sites, such as the narrow capillaries of the pulmonary beds 

of the lung (93). Consistent with these findings, we observe that more invasive cells tend to have 

lower elastic modulus and smaller cell size (Fig 3B).  

While the physical phenotype model predicts the invasion of most contexts we investigate here, 

the model does not predict the increased invasion of cancer cells with β-adrenergic activation. 

Specifically, activation of β-adrenergic signaling alters single-cell physical phenotypes and 

invasion in a way that is not consistent with the other cell samples, including both cell lines and 

genetically-modified cells. Further studies of how β-adrenergic signaling alters cell physical 

phenotypes may explain why these cells are stiffer and more invasive, and could facilitate the 

discovery of additional biomarkers, such as contractility, to predict invasion. For example, the 

increased stiffness of cells with activation of β-adrenergic signaling requires myosin II activity 

(14); myosin II is also required for actomyosin contractility, which increases cell stiffness (88–

91) and generates forces required for cells to invade through 3D matrices (103,104).  

It is intriguing to speculate that different physical phenotype signatures may reflect different 

strategies for cancer cell invasion. Deeper investigation of contexts where invasion cannot be 

predicted by the physical phenotype model for invasion may reveal another physical regime that 

is described by a different set of phenotypes that can predict invasion. Identifying additional 

complementary biomarkers could generate a more inclusive—even universal—model to predict 

invasion across varied contexts. Future studies to better elucidate the interplay between physical 

phenotypes in the invasion ‘fitness landscape’ will deepen our understanding of potential 

selective advantages acquired by cancer cells with altered physical phenotypes. In addition, the 

data that we have generated (SI) should be valuable to for the development of future mechanistic 

models of cell invasion (105–107), which could provide further insight into the role of these 

physical phenotypes in regulating invasion. 

CONCLUSION 

The q-DC method for single-cell physical phenotyping coupled with machine learning 

algorithms provides an important step towards enhanced classification of cancer cell types. More 

broadly, the physical phenotyping model provides a framework for understanding and predicting 

clinically relevant phenotypes. While we define here the relationship between physical 

phenotypes and invasion, the approach could be extended to investigate other clinically relevant 

phenotypes, such as sensitivity to chemotherapy agents.  
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