

Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method

Manuscript ID FO-A Article Type: Pape	ART-11-2017-001814.R1 er
Article Type: Pape	er
Date Submitted by the Author: 15-F	Feb-2018
Complete List of Authors: McCl Peng Key Li, Z Univ Zou, and Liu, Tech Liu, and	Clements, David; University of Massachusetts, Food Science g, Shengfeng; Nanchang University - Qingshanhu Campus North, State Laboratory of Food Science and Technology Ziling; State Key Laboratory of Food Science and Technology, Nanchang versity, Nanchang 330047, Jiangxi, PR China , Liqiang; Nanchang University, State Key Laboratory of Food Science Technology Wei; Nanchang University, State Key Laboratory of Food Science and hnology Chengmei; nanchang university, State Key Laboratory of Food Science Technology

SCHOLARONE[™] Manuscripts

1	Improving curcumin solubility and bioavailability by
2	encapsulation in saponin-coated curcumin nanoparticles
3	prepared using a simple pH-driven loading method
4	
5	Shengfeng Peng ^a , Ziling Li ^{ab} , Liqiang Zou ^a , Wei Liu ^{*a} , Chengmei Liu ^a , David
6	Julian McClements * ^c .
7	
8	^a State Key Laboratory of Food Science and Technology, Nanchang University,
9	Nanchang 330047, Jiangxi, PR China
10	^b School of Life Science, Jiangxi Science and Technology Normal University,
11	Nanchang, 330013, Jiangxi, PR China
12	^c Biopolymers and Colloids Laboratory, Department of Food Science, University
13	of Massachusetts, Amherst, MA 01003, USA
14	
15	Journal: Food and Function
16	Submitted: November 2017
17	
18	Corresponding author:
19	E-mail: liuwei@ncu.edu.cn; Fax: +86 791 88334509; Tel: +86 791
20	88305872x8106.
21	E-mail: mcclements@foodsci.umass.edu; Fax: +1 413 545 1262; Tel: +1 413 545
22	1019.
23	

24 Abstract

25 Curcumin is a bioactive phytochemical that can be utilized as a nutraceutical 26 or pharmaceutical in functional foods, supplements, and medicines. However, the 27 application of curcumin as a nutraceutical in commercial food and beverage 28 products is currently limited by its low water-solubility, chemical instability, and 29 poor oral bioavailability. In this study, all-natural colloidal delivery systems were 30 developed to overcome these challenges, which consisted of saponin-coated 31 curcumin nanoparticles formed using a pH-driven loading method. The 32 physicochemical and structural properties of the curcumin nanoparticles formed 33 using this process were characterized, including particle size distribution, surface 34 potential, morphology, encapsulation efficiency, and loading capacity. Fourier 35 transform infrared spectroscopy and X-ray diffraction indicated that curcumin 36 was present in the nanoparticles in an amorphous form. The curcumin 37 nanoparticles were unstable to aggregation at low pH values (< 3) and high NaCl 38 concentrations (> 200 mM), which was attributed to a reduction in electrostatic 39 repulsion between them. However, they were stable at higher pH values (3 to 8) 40 and lower NaCl levels (0 to 200 mM), due to a stronger electrostatic repulsion 41 between them. They also exhibited good stability during refrigerated storage 42 (4 °C) or after conversion into a powdered form (lyophilized). A simulated 43 gastrointestinal tract study demonstrated that the *in vitro* bioaccessibility was 44 around 3.3-fold higher for curcumin nanoparticles than for free curcumin. 45 Furthermore, oral administration to Sprague Dawley rats indicated that the in vivo 46 bioavailability was around 8.9-fold higher for curcumin nanoparticles than for 47 free curcumin. These results have important implications for the development of 48 curcumin-enriched functional foods, supplements, and drugs. 49 50 Keywords: curcumin; pH-driven; saponin; biosurfactant; nanoparticles, 51 bioavailability.

Page 3 of 35

53	1. Introduction
54	Curcumin is a hydrophobic polyphenol derived from turmeric (Curcuma
55	longa) that exhibits a range of potentially beneficial biological and
56	pharmacological effects, including antioxidant, antimicrobial, anti-inflammatory,
57	and anticancer activities ¹ . However, it is difficult to formulate curcumin-
58	enriched functional foods and beverages due to its poor water-solubility, chemical
59	instability (particularly under neutral and basic conditions), and low and variable
60	oral bioavailability ² . Consequently, researchers are developing various kinds of
61	colloidal delivery systems to overcome these challenges, including micelles,
62	microemulsions, nanoemulsions, emulsions, solid lipid nanoparticles, and
63	microgels ³⁻⁶ . Micellar systems are particularly attractive for this purpose
64	because they are thermodynamically stable, optically transparent, water-
65	dispersible, and may be designed to enhance bioavailability ⁷ . Traditionally,
66	micellar systems are assembled from small molecule synthetic surfactants, which
67	consist of a polar head-group and a non-polar tail-group ⁸ . The surfactants
68	spontaneously self-assemble in water due to the hydrophobic effect, which leads
69	to the formation of micelles where the non-polar tails form a hydrophobic
70	environment within the interior, and the polar heads form a hydrophilic shell at
71	the exterior. Hydrophobic nutraceuticals, such as curcumin, can then be loaded
72	into the interior of the micelles to form a water-dispersible colloidal delivery
73	system ⁹ . There is currently great interest in the food industry in replacing
74	synthetic surfactants with natural alternatives due to increasing consumer demand
75	for "clean label" products ¹⁰ . Hence, it would be beneficial to be able to load
76	curcumin into micelles formed from natural surfactants.
77	In the current study, we examined the possibility of incorporating curcumin
78	into surfactant micelles assembled from saponins ¹¹ . Saponins are secondary
79	metabolites produced at appreciable levels by many types of plant species
80	because of their ability to act as chemical defense systems against pathogens and
81	herbivores ¹² . Early research led to saponins being classified as anti-nutritional

Page 4 of 35

82	factors because of their ability to disrupt cell membranes, such as those in red
83	blood cells and fungi ¹³ . However, more recent research has led some researchers
84	to question this classification ¹⁴ . For instance, consumption of certain types of
85	saponins has been reported to decrease blood cholesterol levels, reduce cancer
86	risk, and inhibit cancer cell growth ¹⁵ . Saponins have also been widely evaluated
87	for their ability to form and stabilize oil-in-water emulsions and nanoemulsions
88	^{16, 17} . However, there have been few studies on their use to form curcumin-loaded
89	lipid nanoparticles based on a surfactant micelle loading mechanism.
90	The main objective of the current study was therefore to investigate the
91	potential of saponins for encapsulating curcumin and increasing its oral
92	bioavailability. Curcumin was solubilized within the saponin micelles using a
93	pH-driven loading method, and then the impact of environmental conditions on
94	the properties and stability of the curcumin nanoparticles formed was measured.
95	The potential gastrointestinal fate of the curcumin nanoparticles was then
96	established using both in vitro (simulated gastrointestinal tract) and in vivo (oral
97	administration to rats) studies. The results of this research may lead to novel
98	food-grade colloidal delivery systems suitable for incorporating curcumin into
99	food, supplement, or pharmaceutical products.
100	2 Materials and methods

101 **2.1 Materials**

102	Curcumin (98%) and saponin (sapogenin 20-35 %) were purchased from
103	Aladdin Industrial Corporation (Shanghai China). Ethanol, phosphoric acid,
104	sodium hydroxide and all other reagents used were of analytical grade and
105	purchased from Xilong Chemical Co., (Shanghai, China).
106	2.2 Preparation of curcumin nanoparticles
107	Curcumin nanoparticles were prepared using a pH-driven method as described
108	in our previous study with some slight modifications ¹⁸ . A schematic
109	representation of this process is shown in Fig. 1. Briefly, an acidic aqueous

110 surfactant solution was prepared by dissolving saponin in 20 mM phosphoric acid

111	at concentrations of 2, 4, 8, 12 and 16 mg/mL (pH 3). A basic aqueous curcumin
112	solution (2.0 mg/mL) was prepared by dissolving curcumin in 30 mM sodium
113	hydroxide solution (pH 12). Curcumin solutions were then added to saponin
114	solutions (1:1 v/v) while being continuously stirred at 500 rpm on a magnetic stir-
115	plate. The resulting solution was incubated for 0.5 h at room temperature and
116	then centrifuged at 10,000 g for 10 min to remove any free curcumin and larger
117	particulate matter. It is proposed that this process leads to the formation of
118	saponin-coated curcumin nanoparticles due to movement of curcumin molecules
119	into the hydrophobic cores of saponin micelles (Fig. 1). As shown in Fig. 1C,
120	after the basic curcumin was added into the acid saponin solutions, the pH rapidly
121	increased to around pH 6.5 within 10 second. Thus, the whole process was very
122	fast and the system reached equilibrium in a short time.
123	2.3 Characterizations of curcumin nanoparticles
124	The particle size distribution, mean particle diameter, and surface potential (ζ -
125	potential) of the curcumin nanoparticles were measured at 25°C using a
126	combined dynamic laser light scattering (DLS) – electrophoresis instrument
127	(Nicomp 380 ZLS, Santa Barbara, CA, USA). The particle size was determined
128	by measuring the intensity fluctuations of the light scattered at an angle of 90°
129	from the sample, and then fitting an appropriate mathematical model to the data
130	using the instrument software. The ζ -potential of the particles was determined by
131	measuring the velocity and direction that they moved in a well-defined electrical
132	field. The samples were diluted 4-fold in water before analysis to avoid multiple
133	scattering effects. All the data is reported as the mean and standard deviation
134	based on measurements carried out on at least three samples with each sample
135	being analyzed in triplicate.
136	Microstructure images of the samples were obtained using Atomic Force
137	Microscopy (AFM, Agilent 5500, Agilent Technologies, Santa Clara, CA, USA).
138	A small aliquot of a suspension of curcumin nanoparticles was placed on a
139	freshly cleaved mica substrate, and then images of the sample were acquired

Page 6 of 35

140	using the AFM operated at room temperature with a silicon cantilever	force
141	constant of 0.58 N m ⁻¹ in tapping mode.	
142	X-ray diffraction (XRD) patterns of powdered crystalline curcumin	and
143	curcumin nanoparticles were recorded using an X-ray diffractometer (D8
144	Advance, Bruker, Germany). The divergence slit was set at 1°, and th	e receiving
145	slit was set at 0.1 mm for the incident beam. The scan rate was 2° per	min over a
146	2θ angle range of $5^{\circ} - 40^{\circ}$.	
147	Infrared spectra of curcumin, saponin, and curcumin nanoparticles	were
148	obtained using a Fourier transform infrared (FTIR) spectrophotometer	(Nicolet
149	5700, Thermo Electron Co., Waltham, MA, USA). Transmission spec	tra were
150	recorded over the wave number range of 4000-400 cm^{-1} .	
151	The encapsulation efficiency (EE) and loading capacity (LC) of the	;
152	nanoparticles were determined using the methods described in our pre	vious study
153	¹⁸ . Briefly, a suspension of curcumin nanoparticles was centrifuged at	10,000 g
154	for 10 min to remove any non-encapsulated curcumin. The supernatar	nt was then
155	removed and diluted with anhydrous ethanol. The absorbance of the s	amples at
156	420 nm was then measured using a UV-Vis spectrophotometer (Pgene	eral T6,
157	China) and the concentration of loaded curcumin was determined from	n a
158	calibration curve. The encapsulation efficiency and loading capacity of	of the
159	nanoparticles were then calculated using the following expressions:	
160		
161	EE (%) = $m_{C,L} / m_{C,I} \times 100$	(1)
162	LC (%) = $m_{\rm C,L} / m_{\rm M} \times 100$	(2)
163		
164	Here, $m_{C,L}$ is the mass of curcumin loaded into the saponin-coated	curcumin
165	nanoparticles, $m_{C,I}$ is the initial mass of curcumin in the system, and $m_{C,I}$	$n_{\rm M}$ is the
166	mass of the saponin-coated curcumin nanoparticles (curcumin + sapor	nin). The

167 value of $m_{\rm M}$ was determined by freeze drying the suspension of centrifuged 168 curcumin nanoparticles to remove any water. The concentration of curcumin

169	remaining after lyophilization and rehydration was determined as described
170	above.
171	2.4 Physical stability of curcumin nanoparticles
172	Influence of pH: Aqueous dispersions of curcumin nanoparticles were adjusted
173	to pH values ranging from 2.0 to 8.0 using either HCl or NaOH solutions.
174	Influence of ionic strength: Different amounts of sodium chloride were added
175	to aqueous dispersions of curcumin nanoparticles and then stirred for 1 hour at
176	ambient temperature to obtain a series of samples with different salt levels: of 10,
177	20, 50, 100, 200 and 1000 mM NaCl.
178	Storage stability: The stability of curcumin nanoparticles was measured
179	during storage in powdered form (lyophilized) at 25 °C or during storage in
180	aqueous solutions at 4 or 25 °C.
181	The stability of the curcumin nanoparticles was assessed by measuring
182	changes in their appearance, particle size, and ζ -potential after exposure to the
183	above conditions.
184	2.5 In vitro bioavailability
185	2.5.1. Simulated gastrointestinal tract
186	The potential gastrointestinal fate of the curcumin nanoparticles was
187	established by passing them through a simulated gastrointestinal tract (GIT)
188	consisting of mouth, stomach, and small intestine phases, as described in our
189	previous study ¹⁸ .
190	Mouth phase: 7.5 mL of curcumin nanoparticle suspension were mixed with
191	7.5 mL of simulated saliva fluid containing mucin (30 mg/mL), together with
192	various salts, as described elsewhere ¹⁹ . The resulting mixtures were then
193	adjusted to pH 6.8 and shaken at 90 rpm for 10 min at 37 °C to mimic oral
194	conditions.
195	Stomach phase: Simulated gastric fluid was prepared by adding NaCl (2
196	mg/mL), HCl (7 mg/mL), and pepsin (3.2 mg/mL) to distilled water and then
197	warming to 37 °C. 15 mL of this simulated gastric fluid was then added to the 15

Page 8 of 35

198	mL of sample resulting from the mouth phase. The mixture was then adjusted to
199	pH 2.5 and shaken at 100 rpm for 2 h to mimic stomach conditions.
200	Small intestine phase: Samples from the simulated gastric phase were adjusted
201	to pH 7.0 using 2 M NaOH solution. Simulated small intestinal fluids containing
202	pancreatin (24 mg/mL, 2.5 mL), bile extract solution (50 mg/mL, 3.5 mL) and
203	saline solution (0.5 M CaCl ₂ and 7.5 M NaCl, 1.5 mL) were then added. The pH
204	of the resulting mixture was then maintained constant at pH 7.0 by addition of 50
205	mM NaOH using an automatic titration device (pH-stat).
206	2.5.2. Curcumin stability and bioaccessibility
207	The in vitro bioavailability of the curcumin was assumed to be primarily
208	determined by its chemical transformation and bioaccessibility within the GIT
209	model ²⁰ . After passage through the simulated mouth, stomach, and small
210	intestine phases, the raw digesta were collected and centrifuged at 40,000 g for 30
211	min at 4°C. The resulting supernatants were collected and assumed to be the
212	dietary mixed micelle fraction, in which the curcumin was solubilized in a
213	bioaccessible form. The solubilized curcumin was diluted with methanol and
214	assayed using a 1260 HPLC system (Agilent Technologies, Santa Clara, CA,
215	USA) equipped with a UV-vis detector. Curcumin was separated on a Sunfire C
216	18 column (250 mm \times 4.6 mm, 5 μm ; Waters Corporation, Milford, MA, USA),
217	using a mobile phase consisting of 0.1% (v/v) acetic acid and acetonitrile (45:55
218	v/v) at a flow rate of 1.0 mL min ⁻¹ , with detection by UV absorption at 420 nm.
219	The stability and bioaccessibility of the curcumin were calculated using the
220	following equations:
221	Stability (%) = $C_{\text{Digesta}} / C_{\text{Initial}} \times 100$ (3)
222	Bioaccessibility (%) = $C_{\text{Micelles}}/C_{\text{Digesta}} \times 100$ (4)
223	Here, C _{Initial} is the initial concentration of curcumin in the system (taking into
224	account the various dilution steps), while C_{Micelles} and C_{Digesta} are the curcumin
225	concentrations in the mixed micelle fraction and in the overall digesta after
226	exposure to the simulated GIT, respectively. The C _{Initial} value is equal to the

amount of curcumin that would be present in the small intestine phase if there
were no losses due to chemical degradation during passage of the sample through
the simulated GIT.

230 2.6 In vivo bioavailability

231 The *in vivo* bioavailability of free curcumin and curcumin nanoparticles was 232 evaluated using 12 male Sprague Dawley (SD) rats that weighed between 260 233 and 300 g. All experimental procedures were performed in accordance with the 234 Guidelines for Care and Use of Laboratory Animals and approved by the Animal 235 Ethics Committee of Nanchang University, and animal handling followed the 236 dictates of the National Animal Welfare Law of China. The rats were randomly 237 divided into two groups (n=6). Group 1 was administrated 100 mg/kg body 238 weight of free curcumin suspensions and Group 2 was administrated 100 mg/kg 239 body weight of curcumin nanoparticles by oral gavage. Free curcumin 240 suspensions (10 mg/mL) were prepared by dispersing powdered curcumin 241 crystals in 1.0% sodium carboxymethyl cellulose, while curcumin nanoparticle 242 suspensions (10 mg/mL) were prepared by dispersing lyophilized curcumin 243 nanoparticles into distilled water. A total of 0.5 mL of blood samples were 244 collected from the retro-orbital plexus of the rats at different times (0.5, 1, 2, 4)245 and 8 h) into heparinized microcentrifuge tubes (containing 20 µL of 1000 IU 246 heparin/mL of blood). The samples were immediately centrifuged at 4000 g for 10 min at 4 °C to isolate the plasma, which was then stored at -80 °C until 247 analysis by LC–MS/MS. According to previous studies ²¹⁻²³, curcumin is mainly 248 249 conjugated as curcumin glucuronide when it is absorbed through the intestinal 250 cells of rats. So, the concentration of curcumin and curcumin glucuronide in the 251 rat plasma were determined.

Plasma (100 μL) was mixed with 200 μL acetonitrile by vortexing and
centrifuged at 10,000 g for 5 min at 4 °C. Aliquots of the extracts were injected
onto a C18 column (Zorbax Eclipse Plus C18 column, 100mm×2.1mm, I.D., 3.5
μm, Agilent, USA) kept at 40 °C. The mobile phase consisted of two

256	components: A, acetonitrile and B, 0.1% formic acid. The gradient profile used
257	during the analysis was as follows: 0-1 min, 80%B \rightarrow 20%B; 1-3 min, 20%; 3-3.5
258	min, 20%B \rightarrow 80%B. A flow rate of 0.3 ml/min was used. Curcumin and curcumin
259	glucuronide were analyzed using a 6410 QQQ MS/MS system
260	(Agilent Technologies, USA) equipped with an electrospray ionization source
261	(ESI), operating in positive mode. The mass spectrometer ion source parameters
262	were as follows: gas temperature, 350°C; gas flow rate, 10 L/min; nebulizer gas
263	pressure, 40 psi; spray voltage, 4000 kV. Nitrogen gas served as the
264	nebulizer and collision gas. Curcumin and curcumin glucuronide were
265	determined using the multiple reaction monitor mode as follows: curcumin, m/z
266	369 > 285, m/z 369 >177. curcumin glucuronide, m/z 545 > 369, m/z 545 >177.
267	2.7. Statistical analysis
268	All measurements were replicated at least three times. The results are
269	expressed as means ± standard deviations. Data were subjected to statistical
270	analysis using SPSS software, version 18.0 (SPSS Inc., Chicago, IL, USA). The
271	Student-Newman-Keuls test was performed to check significant comparisons and
272	P<0.05 was considered statistically significant.
273	3 Results and discussion
274	3.1 Optimization and characterization of curcumin nanoparticles
275	Initially, experiments were carried out to characterize the properties of the
276	saponin-coated curcumin nanoparticles prepared using the pH-driven loading
277	method. The impact of saponin concentration on the physicochemical and
278	structural properties of the curcumin nanoparticles is summarized in Table 1.

- 279 Experiments were carried out with fresh nanoparticle suspensions, and with
- 280 nanoparticle suspensions that had been converted into a powder using freeze-

drying, and then rehydrated.

It should be noted that curcumin is known to chemically degrade when stored at alkaline conditions ², and therefore there is some concern that it may be lost

284	during the pH-driven loading step. However, previous studies have shown that
285	less than 6% of curcumin was lost after incubation in aqueous solutions at pH
286	12.0 for one hour $^{18, 24}$. In the present study, the curcumin was only incubated at
287	pH 12.0 for 5 min, and so the loss of curcumin from this process should be small.
288	3.1.1. Impact of saponin concentration
289	Initially, the impact of surfactant concentration on the formation of the
290	curcumin nanoparticles was investigated. The mean particle diameter decreased
291	from around 109 to 52 nm as the saponin level increased from 1 to 4 mg/mL, but
292	then remained relatively constant (around 51 nm) when the saponin level was
293	increased from 4 to 8 mg/mL. The polydispersity index of the nanoparticle
294	suspensions was somewhat higher at low saponin levels (PDI = $0.19-0.28$ at 1 to 4
295	mg/mL) than at higher levels (PDI = $0.16-0.17 = at 6 to 8 mg/mL$). The
296	encapsulation efficiency of the curcumin nanoparticles increased from around 71
297	to 92% when the saponin concentration increased from 1 to 4 mg/mL, but then
298	remained relatively constant when it was increased further. Taken together these
299	results suggest that a certain amount of saponin is required to form small particles
300	with a narrow size distribution and high encapsulation efficiency. The critical
301	micelle concentration (CMC) of quillaja saponin has been reported to be around
302	0.5 to 0.8 mg/mL 25 . Consequently, at the lowest saponin levels used only a small
303	fraction of the surfactant molecules actually self-assembled into micelles that
304	could solubilize the curcumin. In addition, above the CMC, the solubilization
305	capacity of the surfactant micelles would be expected to decrease with decreasing
306	quillaja saponin concentration because there are less hydrophobic domains
307	present to incorporate the curcumin. Thus, all of the curcumin could not be
308	solubilized inside the surfactant micelles at relatively low saponin levels, leading
309	to the presence of some free curcumin that formed relatively large crystals in the
310	aqueous phase.
311	The curcumin-loaded nanoparticles were all negatively charged, however the
312	magnitude of the ζ -potential depended on saponin concentration (Table 1). The

313	magnitude of the ζ -potential remained relatively high and constant (around -30
314	mV) when the saponin concentration increased from 1 to 4 mg/mL, but then
315	decreased when it was further increased to 8 mg/mL (around -19 mV). A number
316	of possible physicochemical phenomenon may account for this observation.
317	First, commercial saponin ingredients have been reported to contain some
318	residual mineral ions ²⁶ , and so there may have been some electrostatic screening
319	of the surface potential of the colloidal particles at higher saponin levels due to
320	accumulation of oppositely charged counter-ions around them ⁸ . Second, there
321	may have been an increase in the viscosity of the aqueous phase surrounding the
322	colloidal particles at higher surfactant levels, which would cause the measured ζ -
323	potential to decrease ⁸ . Third, the composition of the colloidal particles
324	(curcumin-to-saponin ratio) changed as the saponin concentration was increased,
325	which may have altered their electrical characteristics. Fourth, there may have
326	been some free curcumin crystals dispersed in the aqueous phase that contributed
327	to the ζ -potential signal at low saponin levels, but these were solubilized at
328	higher levels. Further research is clearly required to establish the
329	physicochemical origin of this effect.
330	In general, a higher absolute value of the ζ -potential on colloidal particles
331	leads to an increase in the electrostatic repulsion between them, which should
332	increase their aggregation stability ⁸ . However, this was not the case for the
333	colloidal dispersions prepared in this study, since the particles with the highest
334	absolute value of the ζ -potential (low saponin levels), had the largest particle size
335	(Table 1). This suggests that other factors were more important, such as the
336	incorporation of all of the curcumin into the interior of the colloidal particles, and
337	steric repulsion by the surfactant head groups.
338	3.1.2. Impact of freeze drying
339	In many commercial applications, it is more convenient to deliver curcumin in
340	a powdered form, rather than in a liquid form. For this reason, the impact of
341	freeze-drying and rehydration on the properties of the curcumin nanoparticles

342	was determined (Table 1).
343	As with the freshly prepared systems, the particle size and polydispersity of
344	the colloidal particles decreased with increasing saponin concentration, but the
345	values of the mean particle diameter and polydispersity index at low saponin
346	levels (1 to 4 mg/mL) were appreciably higher than those for the equivalent fresh
347	systems. On the other hand, the mean particle diameter and polydispersity index
348	were fairly similar at higher saponin levels for the two systems. These results
349	suggest that some particle aggregation occurred during the freeze-drying and/or
350	rehydration process when there was insufficient saponin present. Again, this may
351	have been due to the presence of some curcumin that had not been incorporated
352	into the hydrophobic interior of the colloidal particles, thereby leading to the
353	presence of curcumin crystals in the system. Presumably, these large curcumin
354	crystals are more susceptible to aggregation during dehydration/rehydration than
355	the small curcumin nanoparticles. These results show that curcumin-loaded
356	nanoparticles can be successfully converted into a powdered form that can be re-
357	dispersed in an aqueous solution, provided there is sufficient surfactant present.
358	For commercial applications, it is usually important to limit the total amount
359	of surfactant used in a product due to cost, taste, and toxicity concerns. For this
360	reason, a saponin level of 4 mg/mL was used in the remainder of the studies
361	because it was the lowest amount that led to relatively small curcumin
362	nanoparticles with a narrow particle size distribution and high encapsulation
363	efficiency.
364	3.2 Characterization of curcumin nanoparticles

3.2 Characterization of curcumin nanoparticles

365 In this section, a range of analytical methods was used to provide some insight 366 into the characteristics of the curcumin nanoparticles formed using the pH-driven 367 loading method.

- 368 3.2.1. Particle size, morphology, and charge
- 369 As discussed earlier, the dynamic light scattering measurements indicated that 370 the nanoparticles formed were relatively small (d = 52 nm) and had a narrow size

distribution (PDI = 0.242). Interestingly, the mean diameter of the curcumin-

371

372 loaded colloidal particles was appreciably larger than the reported mean diameter (around 7 nm) of pure saponin micelles in aqueous solution 26 . This suggests that 373 374 the saponin micelles must have incorporated an appreciable quantity of curcumin 375 molecules into their hydrophobic interiors during the pH-driven loading process 376 and thereby becoming highly swollen (Fig. 1). A relatively large mean particle 377 diameter (130 nm) has also been reported for saponin micelles loaded with lutein esters using a direct mixing process ⁹. As discussed earlier, the curcumin-loaded 378 nanoparticles had a relatively high negative surface potential ($\zeta = -30.4 \text{ mV}$), 379 which can be attributed to carboxyl groups on the sugar residues 11 . 380 381 Atomic force microscopy was used to provide additional information about the 382 size and morphology of the particles in the nanoparticle suspensions. The AFM 383 images indicated that the saponin-coated curcumin nanoparticles were spherical 384 and evenly distributed throughout the system, with dimensions consistent with 385 those determined by dynamic light scattering (Fig. 2). 386 3.2.2. Encapsulation properties 387 The amount of a bioactive component that can be successfully loaded into a 388 colloidal delivery system is important for commercial applications. The 389 encapsulation efficiency and loading capacity of curcumin in the nanoparticles 390 prepared in this study using the pH-driven loading method were $91.8 \pm 2.8\%$ and 391 $15.3 \pm 0.4\%$, respectively. These values compare well with several previous 392 studies. An EE of 46% and LC of 4.4% were reported for curcumin solubilized 393 in non-ionic surfactant micelles (1% Pluronic P123) in aqueous solutions using a heating method ²⁷. An EE of 89.3% and LC of 20.7% were reported for curcumin 394 loaded into copolymer mPEG-PCL micelles using a nanoprecipitation method ²⁸. 395 396 An EE of 81% and LC of 4% were reported for curcumin loaded into casein micelles by a pH-driven method 24 . Consequently, the saponins used in our study 397 398 appear to be as effective as other types of synthetic and natural surfactants at 399 encapsulating curcumin.

400	3.2.3. Molecular interactions and physical state
401	Information about the molecular interactions and physical state of the
402	curcumin in the saponin-coated nanoparticles was obtained using Fourier
403	transform infrared and X-ray diffraction. The FTIR spectra of pure curcumin (a),
404	pure saponin (b) and saponin-coated curcumin nanoparticles (c) are shown in Fig.
405	3. A number of peaks were observed in the pure curcumin spectrum, which were
406	assigned to different functional groups based on previous research: 3508 cm^{-1} (–
407	OH stretching vibration on benzene ring); 1628 cm ⁻¹ (C=C and C=O vibration);
408	1601 cm ⁻¹ (stretching vibrations of benzene ring); 1508 cm ⁻¹ (C=O and C=C
409	vibrations); 1427 cm ⁻¹ (olefinic C–H bending vibrations); 1276 cm ⁻¹ (aromatic
410	C–O stretching vibrations); 1026 cm ⁻¹ (C–O–C stretching vibrations) and
411	961 cm^{-1} (benzoate trans-CH vibrations) ²⁹ . Numerous peaks were also observed
412	in the pure saponin spectrum: 3419 cm^{-1} (O-H stretching vibrations); 2936 cm ⁻¹
413	(the antisymmetric stretching vibration of saturated –CH ₂); 1719 cm ⁻¹ (ketones
414	group C=O stretching vibrations); 1617 cm ⁻¹ (C=C stretching vibrations); 1380
415	cm^{-1} (symmetrical formation vibration of $-CH_3$); and 878 to 1159 cm^{-1} (C–O–C
416	absorption) ^{30, 31} . As expected, when curcumin was loaded into the saponin
417	micelles, some of the peaks corresponded to those observed in the pure saponin
418	spectrum, while others corresponded to those observed in the pure curcumin
419	spectrum. For instance, the FTIR spectrum for the saponin-coated curcumin
420	nanoparticles exhibited peaks at 1628 cm^{-1} , 1516 cm^{-1} and 1282 cm^{-1} , which
421	confirmed that the nanoparticles actually contained curcumin. However, the
422	peaks corresponding to curcumin in the saponin-coated curcumin nanoparticles
423	were shifted when compared to those of pure curcumin (from 1508 to 1516
424	cm^{-1}), which suggested an interaction between curcumin and saponin. The
425	curcumin peak at 1276 cm^{-1} shifted to 1282 cm^{-1} , which may be due to a change
426	in the stretching and bending vibrations of different C-O groups ³² . According to
427	our previous study 33 , the disappearance of the 3508 cm ⁻¹ peak in the spectrum
428	obtained for the curcumin nanoparticles is indicative of an interaction of the
429	phenolic –OH of curcumin with saponin, most likely through hydrogen bonding.

430	A number of the major absorption peaks observed for pure curcumin (e.g., 1427,
431	1152, 961, 856, and 818 cm^{-1}) also disappeared when it was incorporated into
432	saponin-coated nanoparticles, which is again indicative of a change in the
433	environment and interactions of the curcumin molecules after encapsulation.
434	Information about the solid-state properties of the curcumin within the
435	saponin-coated nanoparticles was obtained using X-ray diffraction. Diffraction
436	peaks were detected for pure curcumin at 20 values ranging from 5° to 30° (Fig.
437	4), indicating that it was present in a highly crystalline structure ³⁴ . Conversely,
438	no diffraction peaks were observed for pure saponin, indicating that it was not in
439	a crystalline state. Interestingly, no diffraction peaks were observed when the
440	saponin-coated curcumin nanoparticles were analyzed, which suggests that the
441	curcumin was in an amorphous form inside the particles. This result suggests that
442	confinement of curcumin inside the saponin-coated nanoparticles inhibited its
443	crystallization. This may be beneficial for certain delivery applications, since the
444	bioavailability of amorphous forms of drugs has been shown to be higher than
445	that of crystalline forms ^{35, 36} .

447

3.3.1. Impact of environmental stresses

3.3 Stability of curcumin nanoparticles

448 The physical stability of colloidal delivery systems under different 449 environmental conditions is important because it determines the range of 450 commercial products that they can be successfully incorporated into, as well as their gastrointestinal fate⁸. For this reason, the influence of pH and ionic 451 452 strength on the physicochemical properties of the curcumin nanoparticles was 453 determined. Nanoparticle dispersions were adjusted to different pH values, then 454 stored for 30 minutes, and then their appearance and mean particle diameter were 455 measured. There was no visible change in the appearance of the colloidal 456 dispersions after exposure to pH values ranging from 3 to 8, with all of them 457 being transparent yellow/orange-colored fluids (Fig. 5A). Moreover, there was 458 little change in the particle size in this pH range, with the mean particle diameter

remaining around 60 nm from pH 8 to 4, but increasing to around 81 nm at pH 3
(Fig. 5A). This result suggests that the saponin-coated curcumin nanoparticles
were relatively stable to aggregation in this pH range, which can be attributed to a
relatively strong electrostatic repulsion between them. Indeed, previous studies
on saponin-coated lipid nanoparticles have shown that they are highly negatively
charged at pH values of 4 and above, but lose their charge at lower pH values due
to protonation of the carboxyl groups ³⁷.

466 The appearance of the colloidal dispersions became cloudy and the mean 467 particle diameter increased steeply when the pH was reduced to 2.0 and 1.5 (Fig. 468 5A). This effect can be attributed to extensive aggregation of the saponin-loaded 469 curcumin nanoparticles at pH values well below the pK_a values of the carboxyl 470 groups on the saponin (around pH 3.5), since this leads to a reduction in the electrostatic repulsion between the nanoparticles ^{37, 38}. Indeed, electrophoresis 471 472 measurements indicated that the surface potential of the curcumin nanoparticles 473 was relatively low (-2.4 mV) at pH 2 in these systems. Other researchers have 474 also reported extensive aggregation of saponin-coated lipid nanoparticles at low pH values ³⁷, which was attributed to a similar mechanism. 475

476 The influence of ionic strength on the stability of the saponin-coated curcumin 477 nanoparticles was determined by incubating them in aqueous solutions containing 478 different NaCl levels (Fig. 5B). When the NaCl concentration was below 500 479 mM, the curcumin nanoparticles were relatively stable to aggregation without any 480 appreciable changes in their appearance or mean particle diameter. Visible 481 observation and particle size measurements indicated that they became unstable 482 to particle aggregation at 500 and 1000 mM NaCl. This phenomenon can be 483 attributed to the ability of cationic counter-ions (Na^+) in the salt solution to screen the electrostatic repulsion between the saponin-coated nanoparticles ³⁹. As a 484 485 result, the net repulsive forces between the nanoparticles would not be strong 486 enough to overcome the net attractive forces (such as van der Waals), thereby 487 leading to aggregation⁸.

488	3.3.2. Impact of long-term storage
489	The ability to remain stable during long-term storage is an important attribute
490	of any colloidal delivery system that is going to have commercial viability. The
491	physicochemical stability of the curcumin nanoparticles dispersed in aqueous
492	solutions was therefore studied when they were stored at refrigerator (4 $^{\circ}$ C) or
493	ambient temperature (25 °C) for one month (pH 6.5). In addition, the stability of
494	freeze-dried curcumin nanoparticles was also measured after they were stored at
495	25 °C for one month and then rehydrated in aqueous solution (pH 6.5). There was
496	little change in the appearance of the curcumin nanoparticle dispersions when
497	stored at 4 °C in aqueous solutions or at 25 °C in powdered form (Fig. 6A).
498	However, the appearance of the curcumin nanoparticle suspensions changed from
499	yellow to brown, and there was visible evidence of particle aggregation, in the
500	samples stored at 25 °C in the aqueous solutions. The change in appearance may
501	have been due to chemical degradation and precipitation of curcumin, which is
502	known to occur in aqueous solutions during long term storage at higher
503	temperatures ⁴⁰ .
504	During storage, the mean diameter, ζ -potential, and encapsulation efficiency
505	of the saponin-coated nanoparticles only changed slightly when they were stored
506	at 4 °C in aqueous solutions or at 25 °C in powdered form (Fig. 6B-D).
507	Conversely, there was visible evidence of particle aggregation, a change in ζ -
508	potential (from -29.8 to -11.0 mV), and a decrease in encapsulation efficiency
509	(from 89.5 to 52.9%) when the curcumin nanoparticles were stored at 25 $^{\circ}$ C in
510	aqueous solutions. Surprisingly, the mean diameter of the curcumin
511	nanoparticles determined by dynamic light scattering exhibited little change
512	during storage in the aqueous form at the higher temperature, even though
513	flocculation was clearly visible by eye. This could be explained by the fact that
514	the large slow-moving aggregates did not contribute to the DLS signal, which
515	relies on particle motion to determine particle size. Overall, these results indicate
516	that aqueous dispersions of curcumin nanoparticles were unstable if stored at

517	room temperature, but their stability could be improved by storing them at
518	refrigeration temperatures or by converting them into a powder.

519 **3.4 In Vitro Bioavailability of Curcumin**

520 The *in vitro* bioavailability of curcumin in the saponin-coated nanoparticles 521 was evaluated using a simulated gastrointestinal tract (GIT) and the results are 522 expressed as the stability, bioaccessibility, and bioavailability (Section 2.5.2). 523 The amount of curcumin in the small intestine remaining in the original form was 524 appreciably higher for free curcumin (88.3%) than for encapsulated curcumin 525 (54.0%) (Fig. 7), which suggests that curcumin degradation occurred more 526 rapidly in saponin-coated nanoparticles than in free curcumin. In general, the 527 degradation of curcumin in simulated GIT conditions primarily occurs due to its exposure to aqueous neutral or alkaline solutions ⁴¹. The "free" curcumin used in 528 529 our study consisted of relatively large curcumin crystals suspended in water, 530 which would therefore be expected to have a lower specific surface area than 531 curcumin encapsulated in nanoparticles. As a result, there would be less 532 curcumin exposed to the surrounding aqueous phase for the free curcumin than 533 for the encapsulated curcumin, leading to less chemical degradation. On the other 534 hand, the bioaccessibility of free curcumin (9.1%) was appreciably lower than 535 that of encapsulated curcumin (63.0%), which suggests that the nanoparticles 536 greatly enhanced the solubility of curcumin in the dietary mixed micelles. This is 537 probably because the curcumin nanoparticles had a much higher surface area and 538 were in an amorphous form, and so they were dissolved and solubilized more 539 rapidly than the larger curcumin crystals.

The *in vitro* bioavailability was taken to be equal to the total amount of curcumin solubilized in the mixed micelle phase, which takes into account both the bioaccessibility and transformation of the curcumin ⁴¹. The bioavailability of curcumin in the nanoparticles $(340.4 \pm 13.4 \ \mu g/mL)$ was about 3.3-fold higher than for free curcumin $(80.1 \pm 2.1 \ \mu g/mL)$. This effect can be attributed to the much higher bioaccessibility of the curcumin in the nanoparticles than in the free

546 form. Overall, these results suggest that the *in vitro* bioavailability of curcumin 547 can be greatly increased by loading it into saponin-coated nanoparticles.

- 548 3.5 In Vivo Bioavailability of Curcumin 549 Experiments carried out using a simulated GIT cannot mimic the complexity 550 of an actual gastrointestinal tract, and so additional experiments were carried out 551 to determine the *in vivo* bioavailability using an animal model. Free curcumin and 552 curcumin nanoparticles were orally administered to rats at a dose of 100 mg/kg 553 body weight, and then the change in curcumin serum level over time was 554 measured (Fig. 8). A number of important pharmacokinetic parameters were then 555 calculated from these curves, including C_{max}, T_{max}, and AUC_{0-8 h} (Fig. 8). After oral administration of free curcumin, Cmax was 0.47 µg/mL, Tmax was 1 h, and 556 557 $AUC_{0-8 h}$ was 1.43 µg h/mL. Curcumin was undetectable in the plasma after 4 h, 558 which indicated that it was rapidly removed. There was a significant (P < 0.01) 559 increase in C_{max} (6.91 µg/mL) and AUC_{0-8 h} (14.12 µg h/mL) and decrease in T_{max} 560 (0.5 h) after oral administration of the curcumin nanoparticles, when compared to the free curcumin. The $AUC_{0-8 h}$ value for the curcumin nanoparticles was 561 562 approximately 8.9-fold greater than that of free curcumin. 563 The appreciable increases in AUC_{0-8 h} and C_{max} values after encapsulation of
- 564 curcumin in saponin-coated nanoparticles indicated that they were highly 565 effective at enhancing curcumin bioavailability under *in vivo* conditions. This 566 effect may have been due to the ability of the nanoparticles to increase the bioaccessibility and permeability of the curcumin in the animals GIT ⁴². Indeed, 567 the shorter T_{max} value for the curcumin nanoparticles is indicative of a more rapid 568 569 absorption of curcumin across the epithelium layer. It is possible that saponin, 570 which is a natural surfactant, promoted the intestinal absorption of curcumin by 571 increasing the cell wall permeability, as had been reported for certain lipophilic drugs ⁴³. In addition, a transcellular promoting effect may also have been caused 572 by interaction of the saponin with the membrane stabilizer cholesterol ⁴⁴. 573 574 Nevertheless, more detailed studies are required to establish the precise origin of

Page 21 of 35

Food & Function

575	the ability of the delivery systems to increase curcumin bioavailability.
576	In summary, both the in vitro and in vivo studies demonstrated that
577	encapsulation of curcumin in saponin micelles greatly improved its
578	bioavailability, which may be important for the development of more effective
579	functional foods, supplements, or drugs.

580 **4. Conclusions**

581 This study has shown that curcumin nanoparticles can be formed from a 582 natural surfactant (saponin) using a relatively rapid, simple, and inexpensive pH-583 driven method. These nanoparticles are relatively small (around 50 nm) and have 584 a relatively high negative charge (around -30 mV). Moreover, their encapsulation 585 efficiency (around 92%) and loading capacity (around 15%) are comparable or 586 better than those achieved using synthetic surfactants. Encapsulation of curcumin 587 within the nanoparticles greatly increased its in vivo bioavailability (8.9-fold 588 compared to curcumin crystals), which was mainly attributed to their ability to 589 increase the solubility of this hydrophobic nutraceutical within the small 590 intestinal fluids.

591 This type of colloidal delivery system may therefore be useful for application 592 in functional foods, supplements, or pharmaceutical preparations. Nevertheless, 593 further work is required to determine the impact of incorporating these 594 nanoparticles into specific food matrices on their quality attributes (such as 595 appearance, texture, stability, and flavor profile). In addition, the potential 596 toxicity of these nanoparticles should be established using acute and chronic 597 testing methods. Finally, the potential efficacy of these curcumin nanoparticles at 598 improving health outcomes should be established.

599 Acknowledgements

We appreciate the financial support by the National Science Foundation of
China (No. 21766018, 31601468), Technical Leader Training Plan Project of
Jiangxi Province (20162BCB22009) and the Key Project of Natural Science

603 Foundation of Jiangxi Province, China (20171ACB20005). This material is partly

based upon work supported by the National Institute of Food and Agriculture,

605 USDA, Massachusetts Agricultural Experiment Station (MAS00491) and USDA,

606 AFRI Grants (2014-67021, 2016-25147, and 2016-08782).

607 **References**

608	1.	P. Anand, A. B. Kunnumakkara, R. A. Newman and B. B. Aggarwal, Molecular pharmaceutics,
609		2007, 4 , 807-818.
610	2.	M. Heger, R. F. van Golen, M. Broekgaarden and M. C. Michel, Pharmacological reviews, 2014,
611		66 , 222-307.
612	3.	G. Zhou, Y. Peng, L. Zhao, M. Wang and X. Li, Journal of agricultural and food chemistry, 2017,
613		65 , 1518-1524.
614	4.	F. Bai, J. Diao, Y. Wang, S. Sun, H. Zhang, Y. Liu, Y. Wang and J. Cao, Journal of agricultural and
615		food chemistry, 2017, 65 , 6840-6847.
616	5.	J. Xiao, Y. Cao and Q. Huang, Journal of agricultural and food chemistry, 2017, 65, 6727-6735.
617	6.	L. K. Mao and S. Miao, Food Engineering Reviews, 2015, 7, 439-451.
618	7.	P. A. Darne, M. R. Mehta, S. B. Agawane and A. A. Prabhune, RSC Advances, 2016, 6, 68504-
619		68514.
620	8.	D. J. McClements, Food Emulsions: Principles, Practices, and Techniques, CRC Press, Boca
621		Raton, FL, 3rd edn., 2015.
622	9.	J. Tippel, M. Lehmann, R. von Klitzing and S. Drusch, Food Chemistry, 2016, 212, 35-42.
623	10.	D. J. McClements and C. E. Gumus, Advances in Colloid and Interface Science, 2016, 234, 3-26.
624	11.	S. Bottcher and S. Drusch, Advances in Colloid and Interface Science, 2017, 243, 105-113.
625	12.	H. Barakat, V. Reim and S. Rohn, Food Research International, 2015, 76 , 142-149.
626	13.	K. R. Price, I. T. Johnson and G. R. Fenwick, Critical reviews in food science and nutrition, 1987,
627		26 , 27-135.
628	14.	B. Singh, J. P. Singh, N. Singh and A. Kaur, Food Chemistry, 2017, 233, 540-549.
629	15.	J. Shi, S. J. Xue, Y. Ma, D. Li, Y. Kakuda and Y. Lan, Journal of Food Engineering, 2009, 93, 59-65.
630	16.	X. Luo, Y. Zhou, L. Bai, F. Liu, R. Zhang, Z. Zhang, B. Zheng, Y. Deng and D. J. McClements, Food
631		Research International, 2017, 96 , 103-112.
632	17.	C. Chung, A. Sher, P. Rousset and D. J. McClements, Food Research International, 2017, DOI:
633		10.1016/j.foodres.2017.06.060.
634	18.	C. Cheng, S. Peng, Z. Li, L. Zou, W. Liu and C. Liu, RSC Advances, 2017, 7, 25978-25986.
635	19.	Y. Mao and D. J. McClements, Food & function, 2012, 3 , 1025-1034.
636	20.	D. J. McClements, F. Li and H. Xiao, in Annual Review of Food Science and Technology, Vol 6,
637		eds. M. P. Doyle and T. R. Klaenhammer, 2015, vol. 6, pp. 299-327.
638	21.	M. Shoji, K. Nakagawa, A. Watanabe, T. Tsuduki, T. Yamada, S. Kuwahara, F. Kimura and T.
639		Miyazawa, Food Chemistry, 2014, 151 , 126-132.
640	22.	K. Nakagawa, T. Harigae, T. Miyazawa, N. Inoue, F. Kimura, I. Ikeda and T. Miyazawa,
641		International Journal of Nanomedicine, 2016, Volume 11, 3009-3022.
642	23.	R. Vecchione, V. Quagliariello, D. Calabria, V. Calcagno, E. De Luca, R. V. laffaioli and P. A. Netti,
643		Journal of controlled release : official journal of the Controlled Release Society, 2016, 233, 88-

644		100.			
645	24.	K. Pan, Y. C. Luo, Y. D. Gan, S. J. Baek and Q. X. Zhong, Soft Matter, 2014, 10 , 6820-6830.			
646	25.	S. Mitra and S. R. Dungan, Journal of agricultural and food chemistry, 1997, 45, 1587-1595.			
647	26.	J. Tippel, K. Gies, B. Harbaum-Piayda, A. Steffen-Heins and S. Drusch, Food Chemistry, 2017,			
648		221 , 386-394.			
649	27.	R. Ganguly, A. Kunwar, B. Dutta, S. Kumar, K. C. Barick, A. Ballal, V. K. Aswal and P. A. Hassan,			
650		Colloids and surfaces. B, Biointerfaces, 2017, 152 , 176-182.			
651	28.	H. Kheiri Manjili, P. Ghasemi, H. Malvandi, M. S. Mousavi, E. Attari and H. Danafar, European			
652		journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur			
653		Pharmazeutische Verfahrenstechnik e.V, 2017, 116 , 17-30.			
654	29.	P. R. K. Mohan, G. Sreelakshmi, C. V. Muraleedharan and R. Joseph, Vibrational Spectroscopy,			
655		2012, 62 , 77-84.			
656	30.	M. S. Almutairi and M. Ali, Natural product research, 2015, 29, 1271-1275.			
657	31.	G. Mandal and A. K. Nandi, International Journal of Pharmacy and Pharmaceutical Sciences,			
658		2013, 5 , 517-523.			
659	32.	C. Sun, C. Xu, L. Mao, D. Wang, J. Yang and Y. Gao, Food Chemistry, 2017, 228, 656-667.			
660	33.	X. Chen, L. Q. Zou, J. Niu, W. Liu, S. F. Peng and C. M. Liu, <i>Molecules</i> , 2015, 20 , 14293-14311.			
661	34.	J. Li, G. H. Shin, I. W. Lee, X. Chen and H. J. Park, Food Hydrocolloids, 2016, 56, 41-49.			
662	35.	R. Jog and D. J. Burgess, Journal of Pharmaceutical Sciences, 2017, 106, 39-65.			
663	36.	P. Kanaujia, P. Poovizhi, W. K. Ng and R. B. H. Tan, <i>Powder Technology</i> , 2015, 285 , 2-15.			
664	37.	B. Ozturk, S. Argin, M. Ozilgen and D. J. McClements, Journal of Food Engineering, 2014, 142,			
665		57-63.			
666	38.	Y. Yang, M. E. Leser, A. A. Sher and D. J. McClements, Food Hydrocolloids, 2013, 30, 589-596.			
667	39.	W. Liu, W. Liu, A. Ye, S. Peng, F. Wei, C. Liu and J. Han, <i>Food Chemistry</i> , 2016, 196 , 396-404.			
668	40.	M. Kharat, Z. Y. Du, G. D. Zhang and D. J. McClements, Journal of agricultural and food			
669		chemistry, 2017, 65 , 1525-1532.			
670	41.	L. Zou, B. Zheng, R. Zhang, Z. Zhang, W. Liu, C. Liu, H. Xiao and D. J. McClements, RSC			
671		Advances, 2016, 6 , 3126-3136.			
672	42.	M. Anwar, I. Ahmad, M. H. Warsi, S. Mohapatra, N. Ahmad, S. Akhter, A. Ali and F. J. Ahmad,			
673		European journal of pharmaceutics and biopharmaceutics : official journal of			
674		Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2015, 96, 162-172.			
675	43.	E. Moghimipour, S. A. S. Tabassi, M. Ramezani, S. Handali and R. Lobenberg, Journal of			
676		Advanced Pharmaceutical Technology & Research, 2016, 7, 75-79.			
677	44.	Shaikh, Journal of Applied Pharmaceutical Science, 2012, DOI: 10.7324/japs.2012.2705.			

679 Tables

Table 1. Physicochemical characteristics and structural properties of (A) fresh
 prepared curcumin-loaded micelles and (B) redispersed lyophilized curcumin loaded micelles with different saponin concentrations (pH 6.5). The curcumin

683 concentration was 1 mg/mL in all samples.

	Saponin concentration (mg/mL)	Mean diameter (nm)	Polydispersity index	ζ-potential (mV)	Encapsulation efficiency (%)
Α	1	108.6 ± 13.9	0.191 ± 0.011 ^a	-31.92 ± 0.45 ^a	71.2 ± 2.7 ^b
	2	87.9 ± 7.0^{b}	0.275 ± 0.057 ^a	-30.31 ± 0.55 ^a	$87.9 \pm 1.9^{\circ}$
	4	51.9 \pm 3.0 ^a	0.242 ± 0.045 ^a	-30.44 ± 0.43 ^a	91.8 ± 2.8 ^c
	6	48.8 ± 0.9^{a}	0.168 ± 0.027 ^a	-25.36 ± 1.59 ^b	$92.9 \pm 1.6^{\circ}$
	8	49.7 ± 2.7 ^a	0.163 ± 0.028 ^a	-19.18 ± 1.63 ^d	93.2 ± 3.9 °
В	1	223.5 ± 38.3 ^c	0.609 ± 0.098 ^c	-29.83 ± 0.57 ^a	44.1 ± 7.1^{a}
	2	115.6 ± 1.6^{b}	0.417 ± 0.025 ^b	-31.22 ± 0.73^{a}	72.8 ± 1.0^{b}
	4	50.3 ± 0.4 ^a	0.217 ± 0.009 ^a	-29.56 \pm 0.57 ^a	87.1 \pm 2.4 ^c
	6	49.5 ± 0.8^{a}	0.164 ± 0.024 ^a	-21.35 ± 0.96 °	89.8 ± 0.6 ^c
	8	50.8 ± 0.5 ^a	0.203 ± 0.020 ^a	-17.40 ± 1.34^{d}	91.2 ± 0.4 ^c

684	
685	Figure captions
686	Fig. 1 Schematic representation of the formation of curcumin nanoparticles using the
687	pH-driven loading mechanism: (A) the chemical structure and symbol of curcumin and
688	saponin, (B) an acidic saponin micelle solution is mixed with a basic curcumin solution,
689	which promotes curcumin molecules to move into the hydrophobic micelle core, (C) the
690	pH change with time when the saponin was mixed with the curcumin.
691	Fig. 2 Atomic forces microscopy image of curcumin nanoparticles formed using the pH-
692	driven loading mechanism.
693	Fig. 3 FTIR spectrum of (a) curcumin, (b) saponin and (c) saponin-coated curcumin
694	nanoparticles.
695	Fig. 4 XRD spectra of curcumin, saponin and saponin-coated curcumin nanoparticles.
696	Fig. 5 Effect of (A) pH values and (B) NaCl concentration on the particle size and
697	appearance of saponin-coated curcumin nanoparticles.
698	Fig. 6 Physicochemical stability of saponin-coated curcumin nanoparticles stored in
699	liquid aqueous suspensions at 4 and 25 °C, or powders at 25 °C for one month: (A)
700	change of appearance, (B) change of encapsulation efficiency, (C) change of average
701	diameter, (D) change of ζ -potential.
702	Fig. 7 The stability and bioaccessibility of free curcumin and saponin-coated curcumin
703	nanoparticles after passing through a simulated gastrointestinal tract.
704	Fig. 8 In vivo bioavailability of curcumin delivered in free form or as saponin-coated
705	nanoparticles. (Inset) Pharmacokinetics parameters of the different curcumin samples.
706	Key: AUC = area under the plasma concentration–time curve from 0 to 8 h; C_{max} = peak

707 concentration; T_{max} = time to reach peak concentration.

722 Fig. 5

723

725 Fig. 6

726

733 **Fig. 8**

