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Pennsylvania 19104, USA

(Dated: 28 February 2018)

We investigate rates of electron transfer for generalized Anderson-Holstein models in

the limit of weak molecule-metal coupling, using both surface hopping and electronic

friction dynamics in one and two dimensions. Overall, provided there is an external

source of friction, electronic friction can sometimes perform well even in the limit of

small metal-molecule coupling and capture nonadiabatic effects. However, we show

that electronic friction dynamics is likely to fail if there is a competition between

nonequivalent pathways. Our conclusions provide further insight into the recent

observation by Ouyang et al. [JCTC, 12, 4178 (2016)] regarding the applicability of

Kramer’s theory in the adiabatic limit to recover Marcus theory in the nonadiabatic

limit.
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I. INTRODUCTION

Many critical electron transfer (ET) phenomena occur in the nonadiabatic limit, where

the Born-Oppenheimer approximation is no longer valid. One such case is that of a molecule

near a metal surface1–5, where an electron can transfer between a molecule and metal at rela-

tively long distances. Such an ET process is at the heart of many electrochemical systems6–9,

molecular junctions, and even some scattering problems10,11. In general, these nonadiabatic

dynamics are challenging to model quantitatively because the systems are very large.

In this work, we focus exclusively on the high temperature limit, ~ω < kT (ω being a

typical nuclear frequency), so as to allow for a separation of nuclear and electronic motion

and a classical treatment of the nuclear degrees of freedom (DoFs). There are today two

common approaches for modeling such coupled nuclear-electronic dynamics: surface hopping

(SH) and generalized electronic friction with Langevin dynamics (EF-LD). First, according

to SH, one propagates dynamics independently on two diabatic surfaces, while the influence

of the metal surface acts as a coupling between impurity occupied/unoccupied diabatic

states12. Second, the EF-LD method entails running effectively adiabatic dynamics along a

potential of mean force (PMF), subject to an external friction and random force (that arises

from the continuum of electronic states in the bath13). Many electronic friction models

have been implemented, based on bootstrapping14, perturbation theory in quasi-classical

or reduced coordinates15–18, bosonization techniques19,20, a nonequilibrium Green function

approach21–25, and influence functionals and more generally path integrals26–28. Recently,

our group has demonstrated that all of these results emerge from one universal electronic

friction tensor29–31 based on the quantum-classical Liouville equation32,33 plus projection

operators34,35. In general, because the SH method is a perturbative treatment in Γ, the

hybridization function that describes the elctron-metal coupling, SH should be valid only in

the limit where the electron-metal coupling is small compared to kT (Γ < kT ). By contrast,

EF-LD is based on a slow velocity approximation and should require fast equilibration,

meaning that Γ > ~ω (and small electron-phonon couplings). Recent work has shown

that there are ways to bridge the gaps between the two methods, i.e. by employing SH

trajectories moving along broadened diabatic surfaces36, or by discretizing the continuum

of electronic states and assuming independent single electron states using an independent-

electron surfaced hopping (IESH) method37,38. For increased accuracy, one can incorporate
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nuclear quantum effects into a master equation39,40. For efficient dynamics, a local density

approximation can be used; see the recent studies by Juaristi and Reuter where electronic

friction was used to study the relaxation of CO on Cu and N on Ag41.

Now, despite the formal arguments above, in a previous work Ouyang et al.42 found a

very curious result: EF-LD dynamics unexpectedly agree with SH dynamics in the limit

Γ < ~ω, as long as there is 1) a sufficiently large exit barrier from one diabatic well with a

single exit channel, 2) a source of external (nuclear/phononic) friction, and 3) the coupling

Γ doesn’t depend on position. Under these restrictive conditions, which preclude any im-

portant excited state dynamics, Marcus theory is approximately equal to Kramer’s theory

in the small Γ limit42. Our goal in the present article is to further examine the EF-LD

approach and assess its performance in the small Γ limit. It is clear that electronic fric-

tion cannot agree with surface hopping in the absence of external friction for weak-molecule

metal coupling12, as shown recently for a 2-D scattering model43, and yet what if we relax

the other two conditions? How will EF-LD perform? We will be particularly interested in

multidimensional problems where multiple channels are possible, as well as violations of the

Condon approximation.

To make progress, our approach will be to construct several generalized Anderson-Holstein

model44,45 problems, with non-Condon effects. The AH model is the simplest model possible

for studying an electronic impurity coupled to a bath of phonons and electrons, and is often

used to quantify ET near a metal surface. Our generalized AH model will employ two

diabatic potential energy surfaces (PESs), where the two PESs correspond to the impurity

being either occupied or unoccupied, and will be of the form

H = Hs +Hb +Hc (1a)

Hs = E(x)d†d+ V0(x) +
N∑
α=1

p2α
2mα

(1b)

Hb =
∑
k

(εk − µ)c†kck (1c)

Hc =
∑
k

Wk(x)(c†kd+ d†ck) (1d)

Γ(ε,x) = 2π
∑
k

|Wk(x)|2δ(εk − ε). (1e)

Here, µ is the chemical potential, Wk is the coupling between the bath and system

modes, Γ is the hybridization function, V0 is the impurity unoccupied diabatic state, E is
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the difference in energy between unoccupied and occupied states, and ck(c
†
k), d(d†) are the

annihilation (creation) operators in the bath and system, respectively. We utilize a small

molecule-metal coupling (Γ < kT ) where SH must be reliable regardless of non-Condon

contributions. In this regime we will be able to benchmark EF-LD dynamics against SH

dynamics. In what follows, we will construct three model Hamiltonians with different forms

for E, V0, and Γ. These three Hamiltonians will be designed to tease out how non-Condon

effects can influence the final dynamics.

The organization of this paper is as follows. In Sec. II we present the models under inves-

tigation and we define the requisite theory and formulae needed to carry out the dynamics

being studied. We will then present the results in Sec. III, discuss our results in Sec. IV,

and conclude in Sec. V.

II. THEORY

We begin by introducing three different generalized AH model problems for analyzing

dynamics. Thereafter, we will briefly review how to propagate SH and EF-LD trajectories.

A. Models

1. Model A, Two Minima in One Dimension

Our first model is inspired by conical intersections in solutions, where the diabatic cou-

pling is zero at the actual crossing point. Thus, we define two diabatic PESs,

V0(x) = 1
2
mω2x2 (2a)

V1(x) = 1
2
mω2(x− g)2 + ∆G◦. (2b)

V0(x) and V1(x) are the potentials corresponding to an impurity unoccupied or occupied

and ∆G◦ is the free energy difference between the two states; x is the reaction coordinate.

These PESs are plotted in Fig. 1(a). The difference in energy as a function of position is

E(x) = V1(x)− V0(x) =
1

2
mω2(g2 − 2xg) + ∆G◦. (3)
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We work in the wide band approximation, and the density of states weighted metal-molecule

coupling between these two diabats is chosen to be

Γ(x) = Γ1(Γ0 +
K(x− d)2

1 +K(x− d)2
) (4)

where d = g
2
+ ∆G◦

mω2g
is the x value that minimizes E(x), the crossing point of the two diabatic

PESs. Note that Γ(x) is minimized at x = d, see Fig. 1(b).

2. Model B, Two Minima in Two Dimensions

For our second model problem, we introduce another spatial dimension (y) and modify

the molecule-metal coupling so as to investigate how the dynamics change when Γ depends

on y (rather than the reaction coordinate x). To visualize these potentials and couplings,

see Figs. 3(a) and 3(b). The two diabats for this model are

V0(x, y) = 1
2
mω2(x2 + y2) (5a)

V1(x, y) = 1
2
mω2((x− g)2 + y2) + ∆G◦. (5b)

The coupling is now chosen to be

Γ(y) = Γ0 + Γ1e
−α(y−δ)2 (6)

which results in a coupling that is approximately Γ0 far from δ and Γ1 + Γ0 ≈ Γ1 (Γ1 � Γ0)

at y = δ.

3. Model C, Three Minima in Two Dimensions

Our final model problem considers a case with three minima located near the following

points: the reactant minima is centered near r1 = (0, 0) and the product minima are near

r2 = (g, yA) or r3 = (g,−yA). With three minima, one can now analyze the relative

probabilities of r1 → r2 and r1 → r3. The reactant (unoccupied) diabat is chosen to be the

same as V0 from Eqn. 5(a), while the product (occupied) diabat V1 is as follows:
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V1(x, y) =
1

2
m(ω2(x− g)2 + ω2

y(y
2 + y2

A)) +
∆G◦L + ∆G◦R

2

−
√

(mω2
yyyA +

∆G◦L −∆G◦R
2

)2 + ε2.

(7)

Obviously, the product holds two minima that are centered at the same position in the

x-direction (at x = g) but with two possibilities in the y direction (roughly y = ±ya). ε is

a small parameter chosen as 10−6 to ensure that the diabatic potential is smooth. ∆G◦L is

roughly the energy difference between the minima of V0 and the minima located at −yA,

while ∆G◦R is roughly the energy difference between the minima of V0 and the minima located

at yA. The coupling in this model is expressed as a logistic function,

Γ(y) = Γ0 +
Γ1 − Γ0

1 + e−κ(y−η)
(8)

where Γ1 � Γ0 and we chose η = 1 which ensures the coupling is ≈ Γ1 near the minima

centered at +yA, whereas the coupling is ≈ Γ0 at the minima centered at −yA. To visualize

these potentials and couplings, see Figs. 4(a) and 4(b). This model provides a mechanism

to study dynamics in the case where the reaction and coupling coordinates are mixed, as

well as when multiple exit channels are present.

B. Dynamics

We now review the relevant dynamics protocols.

1. Surface Hopping

There are two necessary prerequisites when performing SH dynamics, the small coupling

limit (Γ < ~ω) and the high temperature limit (~ω < kT ). The basic premise of SH is that

one runs dynamics along individual diabatic surfaces with hops between surfaces. We define

the phase space probability densities for the nuclear DoFs as P0(x,p, t) and P1(x,p, t) at

time t, where P0(P1) is the probability density for the electronic impurity to be unoccupied

(occupied), assuming the nuclei is at position x with momentum p. The time evolution of

these probability densities is given by the following equations
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∂P0(x,p, t)

∂t
= ∇xV0(x,p) · ∇pP0(x,p, t)

− p

m
∇xP0(x,p, t)

+ γ0→1P0(x,p, t)− γ1→0P1(x,p, t)

(9a)

∂P1(x,p, t)

∂t
= ∇xV1(x,p) · ∇pP1(x,p, t)

− p

m
∇xP1(x,p, t)

+ γ0→1P0(x,p, t)− γ1→0P1(x,p, t)

(9b)

where γ0→1 (γ1→0) is the hopping rate from surface 0 to 1 (1 to 0)

γ0→1 = Γ(x)
~ f(E(x)) (10a)

γ1→0 = Γ(x)
~ (1− f(E(x))) (10b)

and f(E(x)) is the fermi function, f(E(x)) = 1
1+eβ(E(x)) , β = (kBT )−1. These SH dynamics

are very different from Tully’s energy conserving fewest switches surface hopping method;

in the present case, the system is open with respect to energy flow between the system and

bath and therefore energy conservation is not imposed with each hop.

2. Electronic Friction

We first define some mathematical identities that are needed for the presentation of EF-

LD. For a general problem on a metal surface with multiple nuclear degrees of freedom, the

relevant EF-LD dynamics take the form46:

−mαẍα = −Fα +
∑
β

γαβẋβ + δfα(t). (11)

Here α is an index for a nuclear DoF and Fα is the mean force

Fα = −(
∂V0

∂xα
+

∫ Λ

−Λ

dε

2π
(
∂E

∂xα
+

(ε− E)

Γ

∂Γ

∂xα
)A(ε,x)f(ε)). (12)

γαβ is the αβ element of the electronic friction tensor
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γαβ =
~
2

∫
dε

2π
(
∂E

∂xα
+

(ε− E)

Γ

∂Γ

∂xα
)

× (
∂E

∂xβ
+

(ε− E)

Γ

∂Γ

∂xβ
)A(ε,x)2f(ε)(1− f(ε))

kT

(13)

and δfα(t) is the random force with associated correlation functionDαβδ(t−t′) = 〈δfα(t)δfβ(t′)〉,

Dαβ = ~
∫

dε

2π
(
∂E

∂xα
+

(ε− E)

Γ

∂Γ

∂xα
)

× (
∂E

∂xβ
+

(ε− E)

Γ

∂Γ

∂xβ
)A(ε,x)2f(ε)(1− f(ε)).

(14)

In the above equations A(ε,x) is the spectral function,

A(ε,x) =
Γ(x)

(ε− E(x))2 + (Γ(x)
2

)2
(15)

and Λ is the electronic bandwidth, which is chosen such that Λ � Γ. When the Condon

approximation holds ( ∂Γ
∂xα

= 0) the above equations simplify considerably. The PMF is given

by

VPMF (x) = −
∫ x

x0

F (x′) · dx′ (16)

where F is given in Eqn. 12. For graphical purposes, VPMF can be evaluated numerically on

a grid.

C. Simulation Details

Below, we wish to study dynamics in the presence of a thermal environment. Thus,

we will include an additional non-electronic source of friction, γn. Trajectories for each

model are initialized on diabat V0 with a Boltzmann distribution of position and velocity.

Rates for SH were obtained by fitting the impurity population as a function of time with an

exponential, while rates for EF-LD were found by fitting the position as a function of time to

an exponential. Unless stated otherwise, 200 trajectories were run for both SH and EF-LD

simulations, and all simulations were performed with Γ1 = 0.0001, m = 2000, ω = 0.0002,

g = 20.6097, ∆G◦ = −0.0038, γn = 2mω = 0.4, Λ = 0.1, and kT = 0.00095. All parameters

are in atomic units.
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FIG. 1. (a) Diabatic potentials (Eqn. 2) and PMF (Eqn. 16) for model A. The crossing point is

located at x = 8 (b) Γ(x) and γ(x) as a function of position (Γ(x) is in units of Γ1), Γ0 = 0.01,

K = 0.1.

III. RESULTS

A. Model A

In Fig. 1(b) we plot Γ(x), γe(x) for model A. Note that the friction increases dramatically

near the crossing point, x = d, which should significantly reduce the rate of barrier crossings

according to EF-LD. Fig. 2(a) shows the ratio of rates obtained from SH versus EF-LD,

kSH
kEF

, for a wide set of parameters for model A. Under a broad set of Γ(x) parameterizations,

EF-LD underestimates the rate by as much as an order of magnitude compared to SH.

One might suppose that the rates from SH are higher due to the ability for hops to occur

at positions far from the crossing point, where Γ(x) is at a minimum, whereas all EF-LD

trajectories must pass through the crossing point region where the friction is very large. To

test this, we looked at the positions where hops from diabat 0 to diabat 1 were most likely
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FIG. 2. Results from model A. (a) Ratio of rates of ET from SH and EF-LD for multiple com-

binations of parameters K and Γ0. SH and EF-LD rates agree in the limit of large Γ0, since the

positional dependence weakens as Γ0 increases. (b) Histogram of positions where hops occur for

the parameters in Fig. 1(b). The green trace, ρ, is a rescaled distribution capturing the proba-

bility of being at a given position multiplied by the hopping probability from diabat 0 to diabat

1: ρ(x) = Ne−βV0(x) ∗ Γ(x) ∗ f(E(x)). In general, EF-LD appears to disagree with SH when the

hopping probability is bimodal.

to occur. Fig. 2(b) shows a histogram of such positions, for the case Γ0 = 0.01, K = 0.1

where the EF-LD and SH rates are very different. Note that, as expected, the hops occur far

from the crossing point, x = d, and form a bimodal distribution. Indeed, by investigation

one concludes that EF-LD and SH disagree more as the hopping distribution becomes more

bimodal.47
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FIG. 3. (a) PMF for model B. Parameter values are Γ0 = 1e − 5, α = 0.5, δ = 3. The black

arrows indicate the overall reaction coordinate. (b) Normalized effective force on a particle in the

negative x-direction for the parameterization in (a), assuming a velocity vx = vy = vrms =
√

3kT
m .

See Eqn. 11-13; here we plot ∂V0
∂x − Fx + γxxvx + γxyvy. While the PMF predicts equally likely

crossings over a wide set of y values, the frictional effects shown in (b) suggest that there is only a

narrow channel through which trajectories can pass from the left minima to the right minima. (c)

Rates for SH and EF-LD for the same model as Fig. 3(a), as a function of δ. Note the success of

the EF-LD approach in effectively recovering the correct SH rate.

B. Model B

Having analyzed how reactions proceed when the Condon approximation is violated along

a reaction coordinate, we now address how reactions proceed when the Condon approxima-

tion is violated in an orthogonal coordinate (i.e. the reaction coordinate is x but Γ depends

on y). The PMF for Model B is shown in Fig. 3(a). While the PMF is not drastically

affected by the y dependence of Γ(y), the main dynamical effects can be seen in the friction.
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Fig. 3(b) shows the “effective” force on a particle in the negative x-direction, assuming the

velocity in both coordinates is equal to the root-mean square velocity, chosen so as to illus-

trate the force under a typical velocity. Unlike the one-dimensional case, EF-LD allows for

barrier crossing in the direction of the reaction coordinate through a narrow channel where

Γ is maximized and the friction is minimized.

In Fig. 3(c) we plot the rates for SH and EF-LD as a function of δ. Although EF-LD

slightly underestimates the rate compared to SH, the agreement between the two is obviously

much, much closer than that from model A (see Fig. 2(a)). We tentatively conclude that, for

this two-dimensional problem, similar to what was found in Ref. 42 for a one-dimensional

problem, EF-LD agrees with SH dynamics when the problem is effectively one dimensional

and the trajectories proceed through an area where the velocities are thermally equilibrated.

C. Model C

One final example investigates the case where multiple reaction channels exist and the

coupling and reaction coordinate are mixed. Fig. 4(b) shows the PMF for model C, while

Fig. 4(c) shows the “effective” force on a particle in the positive y-direction, assuming a

positive x velocity and negative y velocity with magnitude equal to the root-mean square

velocity. One expects that the minima centered near +yA will be favored when ∆G◦R = ∆G◦L,

since the coupling Γ(y) is higher for y > 0. However, as the energy difference is increased

by lowering ∆G◦L, we expect to see more trajectories equilibrate in the minima centered at

−yA. To test this, we change the value of ∆G◦L and monitor what fraction of trajectories

finish in each minima for both SH and EF-LD.

Fig. 5(a) shows the ratio of trajectories in each of the two product wells at long times

as a function of ∆G◦L. We find that, as the energy bias grows, EF-LD does not recover the

correct statistics at long times. Presumably, this failure of EF-LD is caused by the kinetic

barrier introduced by the low coupling/high friction separating the two minima (see Fig.

4(c)). This barrier will result in EF-LD subsequently underestimating the correct ET rate,

as shown in Fig. 5(b).

In Figs. 5(c) and 5(d) we address the question of non-Condon effects and study the

equilibrium population and trajectory data when Γ is kept constant, equal to Γ1. In this

case, EF-LD yields much more similar rates and equilibrium populations compared to SH:
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FIG. 4. (a) Γ(y) for model C; the metal-molecule coupling is stronger for the right minima versus the

left minima. (b) PMF for model C, ωy = 5ω = 0.001, ∆G◦R = ∆G◦L = −0.0038, yA = 5, Γ0 = 2e−5,

κ = 5, η = 0. The arrows show the two possible reactive pathways to the product minima at −yA

or +yA. For ∆G◦L = ∆G◦R, because of Γ(y), we expect more trajectories to propagate towards the

+yA well rather than the −yA well. (c) Normalized effective force on a particle in the negative

x-direction for the parameterization in (a), assuming a velocity −vy = vx = vrms =
√

3kT
m . See

Eqn. 11-13: here we plot ∂V0
∂x − Fx + γxxvx + γxyvy. Note the frictional barrier between the two

minima in (c), as well as a frictional preference for trajectories to move towards the +yA well rather

than the −yA well.

thus, the existence of non-Condon effects strongly strains the ability of EF-LD dynamics to

recover the correct relative rates of transfer. After all, when the metal-molecule coupling

changes significantly, the electronic friction can change dramatically as well. However, within

the Condon approximation, EF-LD can treat the competition between two pathways far

better apparently.

Finally, Fig. 6 plots the population in the product basins as a function of time for ∆G◦L =
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FIG. 5. Results for model C. (a) Ratio of number of trajectories in left minima versus right minima

for SH and EF-LD (ωy = 5ω = 0.001, ∆G◦R = −0.0038, yA = 5, Γ0 = 2e − 5, κ = 5) with ∆G◦L

varying (∆G◦L in units of ∆G◦R). Note that EF-LD fails for large ∆G◦L. (b) Ratio of overall rates

for reactant going to product (either product basin) for SH and EF-LD for the model in Fig. 5(a),

with ∆G◦L varying (∆G◦R in units of ∆G◦R). (c) Ratio of number of trajectories in left minima

versus right minima for SH and EF-LD with parameters from (a), except with constant Γ(y) = Γ1.

Note that EF-LD performs quite well for cases when the Condon approximation is not violated.

(d) Time data for determining and fitting the overall rate for SH and EF-LD for ∆G◦L = 6∆G◦R

for the model in Fig. 5(a), except with constant Γ(y) = Γ1. Again, EF-LD performs well.

6∆G◦R for the parameters in Figs. 5(a) and (b) (i.e. with Γ depending on y). Both the rates

and final populations in each minima differ greatly between the two methods, suggesting

that EF-LD is not suitable for these dynamics.
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to SH and EF-LD for ∆G◦L = 6∆G◦R for model C. All other parameters are the same as in Fig.

5. Note that both the rate and the equilibrium population in each minima are vastly different,

demonstrating that EF-LD fails in this case.

IV. DISCUSSION

In this paper we have worked in the limit of weak molecule-metal and we have used three

different models to assess when EF-LD is a valid description of dynamics. We have found

that the validity of EF-LD seems directly tied to the separability of the reaction coordinate

and the nuclear direction that breaks the Condon approximation. If the reaction pathway

and coupling coordinate are identical, as in Model A, then EF-LD will not recover the correct

dynamics, as evinced by the large disagreement in rates between SH and EF-LD for a wide

set of model parameterizations (see Fig. 2(a)). This disagreement is empirically tied to the

presence of a bimodal hopping distribution. For model B, however, where the coupling and

reaction coordinates are not entangled, Fig. 3(a) shows good agreement between rates of ET
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for SH and EF-LD, revealing that EF-LD can succeed as long as equilibration is fast with

respect to the reaction coordinate. Finally, if we mix the reaction and coupling coordinates,

as illustrated by Model C, Figs. 5 and 6 show that EF-LD again fails to recover the correct

rate and populations. In this case, again, there are two reactive pathways that compete for

trajectories, and EF-LD clearly fails if one cannot rely on the Condon approximation

Now, let us reconsider the theoretical argument in Ref. 42. In that paper, using transition

state theory, the authors showed that an adiabatic EF-LD reaction rate was consistent with

Marcus’s nonadiabatic rate theory if we assumed a single reactive coordinate, equilibrated

velocities, and constant Γ. This equivalence was shown using Kramer’s theory for an adia-

batic EF-LD reaction rate in the limit of large friction. With this fact in mind, we would like

to revisit the original proof in Ref. 42 in the context of a multidimensional Hamiltonian. As

in Ref. 42 we work exclusively in the high friction (overdamped) limit, and in order to make

a simple analytical argument, we will also work in the limit of near separability between

reaction and bath coordinates.

With these assumptions in mind, we begin with the multidimensional Smoluchowski

equation,

∂P (x, t)

∂t
= ∇ ·D(x) · [∇+ β∇U(x)]P (x, t) (17)

where P (x, t) is the probability density, D(x) is the multidimensional diffusion tensor, and

U(x) is the potential, which corresponds to a reactive flux

J(x, t) = −D(x) · [∇+ β∇U(x)]P (x, t). (18)

Since we desire a steady-state solution for P (x, t) = Pss(x), with vanishing probability as

|x| → ∞, we assume the following functional form for the steady-state probability:

Pss(x) = f(x)e−βU(x). (19)

Taking the gradient of both sides and substituting ∇Pss(x) into equation 18 yields

J(x) = −D(x) · [∇fe−βU(x)]. (20)

At this point, we assume that the diffusion tensor is invertible, such that
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∇f = −D(x)−1 · J(x)eβU(x). (21)

We now further assume that {x} = {Q} + {s}, where {s} is the reaction coordinate and

{Q} are the remaining bath coordinates. Because the reaction rate is determined by motion

along s, which may depend on Q (though only weakly in the limit of near separability), we

integrate both sides over a path s′ (which may depend on Q),

f(s,Q) = −
∫ s

∞
ds′ ·D(s′,Q)−1 · J(s′,Q)eβU(s′,Q). (22)

Finally, at steady state where J is a constant, given our assumption of near separability

between reaction and bath coordinates, we expect J(s,Q) = J(Q) = |J(Q)|ŝ and thus:

f(s,Q) = |J(Q)|
∫ ∞
s

ds′(ŝ′ ·D(s′,Q)−1 · ŝ′)eβU(s′,Q). (23)

Now, to find the rate, we evaluate the flux divided by the population for every bath

coordinate,

k(Q) =
|J(Q)|∫ sB

−∞ dsPss(s,Q)

k(Q) =

[∫ sB

−∞
ds e−βU(s,Q)

∫ ∞
s

ds′ βγs
′s′

e eβU(s′,Q)

]−1 (24)

where we have used the relationship γe ·D = D · γe = β−11 to replace the element of the

diffusion tensor with the corresponding element of the friction tensor. Obviously, k(Q) is a

simple 1D rate constant analagous to the rate in Ref. 42:

k1D(s) =

[∫ sB

−∞
ds e−βU(s)

∫ ∞
s

ds′ βγee
βU(s′)

]−1

. (25)

And, as shown in Ref. 42, this expression is equivalent to the following expression in the

limit of small Γ (where γe is effectively a delta function), which is also equivalent to Marcus

theory:

k1D ≈ 1

Z0

Γ

β~

∣∣∣∣∣dE(s)

ds

∣∣∣
s=sB

∣∣∣∣∣
−1

e−βU(sB). (26)

17

Page 17 of 23 Physical Chemistry Chemical Physics



Thus, in the end we have shown that a multidimensional problem with electronic friction

can still be reduced to Marcus theory. However, a few conditions must be met. First,

the potential U(s,Q) must be separable in the reaction and bath coordinates, U(s,Q) =

U(s) +U(Q), and the difference in energy E = U1−U0 must be independent of Q. Second,

γs
′s′
e must equal β~

Γ
f(E(s,Q))(1 − f(E(s,Q)))(dE

ds
)2, which only occurs when Γ is constant

with respect to the reaction coordinate s. In other words, given our assumption of near

separability, one can break the Condon approximation, but only in the Q-direction, not the

s-direction, (i.e. ∂Γ
∂s

must be zero, but ∂Γ
∂Q

can be nonzero). Overall, this heuristic argument

provides a mathematical justification for the results we have found above for models A,

B, and C. For model B, where the conditions above hold, we find that EF-LD recovers

SH results. This equivalence does not hold for model A or model C, where the reaction

coordinate and the coordinate over which Γ varies are either identical or mixed, respectively.

V. CONCLUSIONS

In the end, whereas Ref. 42 demonstrated analytically that EF-LD will fail if there are

excited state dynamics, the present results suggest something more general: EF-LD may

fail if there are two different, non-equivalent pathways — along the ground or excited states

— consistent with different hopping locations in phase space and different metal-molecule

couplings. In other words, we have found that (i) separability of the reaction and bath

coordinates and (ii) the validity of the Condon approximation in the reaction coordinate

are not only sufficient but also necessary if one wishes to safely invoke EF-LD trajectories.

Furthermore, we remind the reader that transition state theory does not have any validity

without external friction and equilibrated velocities, and thus EF-LD cannot agree with SH

without any external friction for weak molecule-metal coupling12,42. Thus, in the end, the

promising analytic transition state theory result in Ref. 42 that allowed Kramer’s theory to

recover the Marcus theory result in the nonadiabatic limit would appear to be a very limited

success story.

Looking forward, the most natural next step is to begin investigating both ab initio

and model problems with increasing numbers of nuclear coordinates, where we may test

the electronic friction approach in a truly condensed phase environment. In particular, we

would like to apply EF-LD trajectories to the case of electron transfer at metal surfaces but,
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as a practical matter, we must first ascertain how the metal-molecule coupling changes for

realistic problems and learn when multiple pathways are possible (which is likely the case for

radical chemistry). Many exciting questions remain regarding the intersection of electronic

structure theory and nonadiabatic dynamics at metal surfaces.
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Conditions under which electronic friction dynamics are applicable in the 

nonadiabatic limit are determined by examination of three model systems. 
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