
Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/toxicology

1	Salvianolic acid B protects against doxorubicin-induced cardiac dysfunction via
2	inhibition of er-stress-mediated cardiomyocyte apoptosis
3	Rongchang Chen, PhD, ^a Guibo Sun, PhD, ^{ac} * Longpo Yang, PhD, ^b Jian Wang, PhD, ^b Xiaobo Sun, PhD, ^{ac} *
4	^a Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College,
5	No 151, North Road Malianwa, Haidian District, Beijing 100094, China
6	^b Harbin University of Commerce, Xuehai Street, Songbei District, Harbin, Heilongjiang 150028, China
7	^c Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products
8	*Correspondence authors. Address: Institute of Medicinal Plant Development, Chinese Academy of Medical
9	Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, PR
10	China. Tel: +86-010-57833013; Fax: +86-010-57833013. sunxiaoboyzs@163.com (Xiao-bo Sun).
11	Abstract
12	Salvia miltiorrhiza Bunge is a well-known medicinal plant in China. Salvianolic acid B (Sal B) is
13	the most abundant bioactive compound extracted from the root of Salvia miltiorrhiza Bunge. The
13 14	the most abundant bioactive compound extracted from the root of Salvia miltiorrhiza Bunge. The present study investigates the effect of Sal B on cardiac function and cardiomyocyte apoptosis in
14	present study investigates the effect of Sal B on cardiac function and cardiomyocyte apoptosis in
14 15	present study investigates the effect of Sal B on cardiac function and cardiomyocyte apoptosis in DOX-treated mice. After pretreatment with Sal B (2 mg/kg i.v.) for 7 d, male BALB/c mice were
14 15 16	present study investigates the effect of Sal B on cardiac function and cardiomyocyte apoptosis in DOX-treated mice. After pretreatment with Sal B (2 mg/kg i.v.) for 7 d, male BALB/c mice were injected with a single dose of DOX (20 mg/kg i.p.). The cardioprotective effect of Sal B was
14 15 16 17	present study investigates the effect of Sal B on cardiac function and cardiomyocyte apoptosis in DOX-treated mice. After pretreatment with Sal B (2 mg/kg i.v.) for 7 d, male BALB/c mice were injected with a single dose of DOX (20 mg/kg i.p.). The cardioprotective effect of Sal B was observed in 7th day after DOX treatment. DOX caused retarded body growth, apoptotic damage,
14 15 16 17 18	present study investigates the effect of Sal B on cardiac function and cardiomyocyte apoptosis in DOX-treated mice. After pretreatment with Sal B (2 mg/kg i.v.) for 7 d, male BALB/c mice were injected with a single dose of DOX (20 mg/kg i.p.). The cardioprotective effect of Sal B was observed in 7th day after DOX treatment. DOX caused retarded body growth, apoptotic damage, and Bcl-2 expression disturbance. In contrast, Sal B pretreatment (2 mg/kg i.v. before DOX
14 15 16 17 18 19	present study investigates the effect of Sal B on cardiac function and cardiomyocyte apoptosis in DOX-treated mice. After pretreatment with Sal B (2 mg/kg i.v.) for 7 d, male BALB/c mice were injected with a single dose of DOX (20 mg/kg i.p.). The cardioprotective effect of Sal B was observed in 7th day after DOX treatment. DOX caused retarded body growth, apoptotic damage, and Bcl-2 expression disturbance. In contrast, Sal B pretreatment (2 mg/kg i.v. before DOX administration) attenuated the DOX-induced apoptotic damage in heart tissues. Futher study
14 15 16 17 18 19 20	present study investigates the effect of Sal B on cardiac function and cardiomyocyte apoptosis in DOX-treated mice. After pretreatment with Sal B (2 mg/kg i.v.) for 7 d, male BALB/c mice were injected with a single dose of DOX (20 mg/kg i.p.). The cardioprotective effect of Sal B was observed in 7th day after DOX treatment. DOX caused retarded body growth, apoptotic damage, and Bcl-2 expression disturbance. In contrast, Sal B pretreatment (2 mg/kg i.v. before DOX administration) attenuated the DOX-induced apoptotic damage in heart tissues. Futher study indicated that Sal B protected against DOX-induced cardiotoxicity, at least, partially, by inhibiting
14 15 16 17 18 19 20 21	present study investigates the effect of Sal B on cardiac function and cardiomyocyte apoptosis in DOX-treated mice. After pretreatment with Sal B (2 mg/kg i.v.) for 7 d, male BALB/c mice were injected with a single dose of DOX (20 mg/kg i.p.). The cardioprotective effect of Sal B was observed in 7th day after DOX treatment. DOX caused retarded body growth, apoptotic damage, and Bcl-2 expression disturbance. In contrast, Sal B pretreatment (2 mg/kg i.v. before DOX administration) attenuated the DOX-induced apoptotic damage in heart tissues. Futher study indicated that Sal B protected against DOX-induced cardiotoxicity, at least, partially, by inhibiting ER stress, and by being involved in an PI3K/AKT pathway. These findings elucidated the
 14 15 16 17 18 19 20 21 22 	present study investigates the effect of Sal B on cardiac function and cardiomyocyte apoptosis in DOX-treated mice. After pretreatment with Sal B (2 mg/kg i.v.) for 7 d, male BALB/c mice were injected with a single dose of DOX (20 mg/kg i.p.). The cardioprotective effect of Sal B was observed in 7th day after DOX treatment. DOX caused retarded body growth, apoptotic damage, and Bcl-2 expression disturbance. In contrast, Sal B pretreatment (2 mg/kg i.v. before DOX administration) attenuated the DOX-induced apoptotic damage in heart tissues. Futher study indicated that Sal B protected against DOX-induced cardiotoxicity, at least, partially, by inhibiting ER stress, and by being involved in an PI3K/AKT pathway. These findings elucidated the potential of Sal B as a promising reagent for treating DOX-induced cardiotoxicity.

Toxicology Research Accepted Manuscript

2

26 Introduction

27 Doxorubicin (DOX) is an anthracycline derivative widely used to treat various cancers. However, the clinical use of DOX may cause hepatotoxicity 1 , nephrotoxicity 2 , and cardiotoxicity 3 , which 28 29 severely limit its clinical application. The most dangerous side effect of DOX is cardiotoxicity. 30 Lots of studies are looking for measures to attenuated DOX-induced heart injury⁴. The 31 mechanisms for DOX-induced cardiotoxicity are multifactorial, including the increase in oxidant production, altered calcium handling and mitochondrial injury ^{5, 6}. It has been accepted that 32 33 DOX-induced ROS generation and oxidative stress play an important function in triggering cardiomyocyte apoptosis ⁷⁻¹⁰. Antioxidants reportedly exert protective effects on DOX-induced 34 cardiotoxicity in animal models¹¹. Besides, DOX-induced intrinsic activation of the endoplasmic 35 reticulum (ER) stress also serves an important function in myocardial dysfunction ^{12, 13}. 36

ER is responsible for protein translocation, folding and post-translational modifications ¹⁴. ER 37 38 stress occurs when ER homeostasis and function are disrupted. Excessive ER stress may 39 ultimately trigger the unfolded protein response (UPR). UPR activation depresses the translational 40 process, then reduces the synthesis of new proteins and activates transcriptional of genes for chaperones and folding enzymes to remove misfolded proteins in ER¹⁵. However, excessive and 41 prolonged activation of the UPR results in cell apoptosis ¹⁶. Three main ER stress sensors, 42 43 PKR-like ER kinase (PERK), inositol requiring enzyme 1 (IRE1), and activating transcription 44 factor-6 (ATF-6), will be activated in response to ER stress and then trigger the caspase cascade 45 and ultimately induce apoptosis. Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway is important in cell growth, survival and proliferation ¹⁷. Akt activation can 46 reduce ER stress-induced cell death and apoptosis 18-20. 47

Salvia miltiorrhiza Bunge (SM), also known as Danshen in China, has been widely used in clinic in China, Japan, and Korea ²¹. The roots of SM have been used for the treatment of various diseases, including coronary heart disease ²², cerebrovascular disease ²³, Alzheimer's disease ²⁴, Parkinson's disease ²⁵, renal deficiency ²⁶, hepatocirrhosis ²⁷, cancer ²⁸, and bone loss ²⁹. Recent studies found that the principal bioactive components of SM are diterpenoid quinines and hydrophilic phenolic acids ³⁰. Salvianolic acid B (SalB) is the major water-soluble component

54 extracted from SM. Sal B has strong cardiovascular protective effects by promoting cell survival, inhibiting apoptosis and preserving normal cellular functions ³¹⁻³³. Our group also found that Sal B 55 could reduce arsenic trioxide-induced cardiotoxicity and ischemia/reperfusion injury on isolated 56 heart of rats ^{34, 35}. There is still no documentation for the amelioration of Sal B against 57 58 DOX-induced cardiotoxicity in mice to date. We observed for the first time, to the best of our 59 knowledge, that Sal B significantly attenuated DOX-induced cardiac dysfunction in mice. The 60 mechanisms may involve the inhibition of ER stress and activation of PI3K/Akt signaling 61 pathway.

62 Materials and methods

63 Materials

- 64 Sal B standard was purchased from the Shanghai Winherb Medical S & T Development (Shanghai,
- 65 China, purity > 99%). All antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz,
- 66 CA, USA). All chemicals were purchased from Sigma (St. Louis, MO, USA).

67 Animals and experimental protocols

68 Male BALB/c mice (6-8 weeks old) used in our study were obtained from Vital River Laboratory 69 Animal Technology (Beijing, China). The mice were maintained under standard environmental 70 conditions (room temperature at $25 \pm 1^{\circ}$ C and humidity of 60% with 12 h light/dark cycle). The 71 mice were randomly divided into the following groups: (1) Control group: Mice in this group were 72 injected intravenous (i.v.) with normal saline (solvent for DOX and Sal B); (2) Sal B group: Mice 73 in this group were treated with Sal B at a dose of 2 mg/kg i.v. every day for one week; (3) DOX 74 group: Mice in this group were treated with a single dose of DOX at 20 mg/kg i.p.. The dosage of DOX was based on previous reports 36 ; (4) Sal B + DOX group: Mice in this group were treated 75 with Sal B at a dose of 2 mg/kg i.v. every day for one week followed by DOX at 20 mg/kg i.p., 76

77 Mice were euthanized 7 days after the DOX administration for morphological and cellular studies.

- 78 The body weights were measured. Echocardiographic measurements and electrocardiography
- 79 were conducted. Mice were sacrificed and serum was collected for analysis of the enzymatic

- 80 activity of LDH, CK and AST by corresponding kit. All mice used in this study were handled in
- 81 compliance with the guideline for the care and use of laboratory animals established by the
- 82 Chinese Council on Animal Care.

83 Echocardiographic measurements

84 AUBM system (Vevo 770, VisualSonics, Toronto, Canada) equipped with a 7.5 MHz imaging 85 transducer was used for all the examinations. After treatment, the mice were anaesthetized, and 86 the chests were shaved. The mice were placed in recumbent position. Left ventricle internal 87 diameter in systolic phase (LVIDs), left ventricular internal diameter at diastolic phase (LVIDd), 88 fractional shortening (FS) and ejection fraction (EF) were digitally measured on M-mode tracing. 89 In a separate experiment, the mice were injected with a selective PI3K antagonist wortmannin 90 (WM; 1 mg/kg body weight) 1 h before DOX administration (n = 15/group). PI3K inhibitor doses were selected on the basis of previous studies ^{37, 38}. 91

92 Electrocardiography (ECG)

ECG recording was taken after the treatment in conscious animals. After treatment with DOX for
7 days, mice were anesthetized with pentobarbital (60 mg/kg, i.p.), and electrodes were inserted in
the right hind limb, right front limb, and left hind limb. Data were collected and the heart rate was
calculated using 16-Channel Advanced Research Workstation (MP150, BIOPAC Systems, Inc.,
CA, USA).

98 Measurement the activity of LDH, CK and AST

Blood samples were obtained from the inner canthus using a capillary tube. The samples were centrifuged at $3000 \times g$ for 15 min within 1 h after collection. The activities of lactate dehydrogenase (LDH), creatine kinase (CK), and aspartate transaminase (AST) in the plasma were measured with the corresponding detection kit according to the manufacturers' instruction (Nanjing Jiancheng Bioengineering, China).

104 Histological studies

Heart tissues were excised and fixed with a 4% solution of formalin in PBS. Following dehydration, the ventricular tissue was embedded in paraffin and was serially cut to produce 4 μm thick sections, which were stained with haematoxylin and eosin and then examined under a light microscope (CKX41, 170 Olympus, Tokyo, Japan) by a pathologist blinded to the groups under study.

110 Electron microscopy

After treatment, heart tissues of the mice were isolated. The left ventricle was cut into 1 cubic millimeter size and was immersion fixed in phosphate-buffered 2.5% glutaraldehyde (pH 7.4) immediately. Ultrathin sections were fixed with 1% osmium tetroxide, dehydrated through a graded ethanol series, embedded in Epon medium, stained with uranyl acetate and lead citrate and observed under H-7600 electron microscope (HITACHI Medical Corp, Tokyo, Japan).

116 **TUNEL staining**

117 Cardiomyocyte apoptosis was detected using terminal deoxynucleotidyl transferase-mediated 118 dUTP nick end-labelling (TUNEL) assay. This method was performed according to the 119 manufacturer's protocol. After dewaxing and rehydration, the heart sections were incubated with 120 proteinase K for 15 min at room temperature. After rinsing with PBS, the slices were incubated 121 with working-strength terminal deoxynucleotidyl transferase enzyme for 1 h at 37 °C in a 122 humidified chamber, rinsed in a stop/wash buffer and incubated with working-strength 123 anti-digoxigenin conjugate for 30 min at room temperature. After staining with 124 4'6-diamidino-2-phenylindole, the slices were observed under a fluorescence microscope (Leica, 125 Heidelberg, Germany).

126 Western blot analysis

Heart tissues were added with saline at a ratio of 1:9 (mg/mL) to form a homogenate. After centrifugation at 7000 rpm for 5 min, precipitation was lysed on ice with tissue protein extraction reagent containing 0.1 mM dithiothreitol and proteinase inhibitor cocktail. The protein concentration was determined using a BCA kit (Pierce Corporation, Rockford, USA). Equal

131	amounts of protein fractions were separated by 12% SDS-PAGE and were then transferred onto
132	nitrocellulose membranes (Millipore Corporation, USA) in tris-glycine buffer at 100 V for 55 min.
133	The membranes were blocked with 5% (w/v) non-fat milk powder in tris-buffer that containing
134	0.05% (v/v) Tween-20 (TBST) for 2 h at room temperature. After overnight incubation with
135	appropriate primary antibodies at 4 °C, the membranes were washed thrice with TBST, incubated
136	with secondary antibodies for 2 h at room temperature and then washed again thrice with TBST.
137	Protein blots were developed using an enhanced chemiluminescence solution. Protein expression
138	levels were visualised with Image Lab Software (Bio-Rad, USA).

139 Statistical analysis

- 140 Results from at least three independent experiments were expressed as mean \pm SE. Statistical 141 comparisons between different groups were measured using Student's *t*-test or ANOVA with 142 Prism 5.00 software. Statistical significance was considered at p < 0.05.
- 143 **Results**

Pretreatment with Sal B attenuated DOX-induced body weight reduction and heart dysfunction in mice

146 The body and heart weights of mice in the DOX group were lower than those in the control group. 147 Sal B pretreatment caused a recovery of body and heart weights (Fig. 1B and 1C). The relative 148 heart weight index (heart weight to body weight ratio) was similar among all four groups after 149 (Fig. 1D). DOX administration significantly decreased the cardiac function in mice as evidenced 150 by reducing EF and FS and increasing LVIDd and LVIDs compared with saline-treated mice (Fig. 151 2B). All these pathological changes were attenuated by pre-treatment with Sal B. However, Sal B 152 alone had no influence on body weight and heart function on mice compared with the control 153 group (Figs. 1-2).

154 Pretreatment with Sal B prevented against DOX-induced heart demage

7

155 DOX significantly increased the serum levels of LDH, CK and AST in mice, which indicated a 156 severe cardiac injury. Pretreatment with Sal B inhibited these elevations (Fig. 3A). In the DOX 157 group, the arrangement of cardiac fibres was disrupted, nuclear loss existed in some 158 cardiomyocytes and the intercellular border was obscure (Fig. 3B). Using transmission electron 159 microscopy, clear heart tissue abnormities, such as cytoplasmic vacuolisation, myofibrillar loss, 160 mitochondrial oedema, chromatin condensation and cardiomyocyte necrosis, were observed in 161 DOX-treated mice (Fig. 3C). Pre-treatment with Sal B partially prevented DOX-induced structural 162 abnormalities of heart tissues in mice. Besides, Sal B pretreatment significantly increased 163 DOX-induced reduction of heart rate (Figs. 3D and 3E).

Pretreatment with Sal B inhibited DOX-induced apoptosis and regulated apoptosis-related protein expression in the myocardium

TUNEL assay was performed to investigate the effects of Sal B on cardiomyocyte apoptosis. Few TUNEL-positive cells were detected in the control group, while TUNEL-positive cells increased dramatically in DOX group $(2.43\% \pm 0.51\%$ and $23.05\% \pm 0.77\%$, respectively). Pretreatment with Sal B significantly decreased the amount of TUNEL-positive cardiomyocytes (Fig. 4A). The levels of cleaved cas-3 and cas-12 increased significantly in DOX group but were neutralized by Sal B pretreatment (Fig. 4B). Bcl-2/Bax ratio was down-regulated in the mice injected with DOX, which was up-regulated by pretreatment with Sal B (Fig. 4C).

Pretreatment with Sal B attenuated DOX-induced ER stress and regulated ER-related apoptotic protein expression

To explore the potential mechanism responsible for Sal B-offered protection against DOX-induced myocardial damage, protein levels of ER stress markers, GRP78 and CHOP, were evaluated. DOX significantly increased the expression of GRP78 and CHOP. Pretreatment with Sal B effectively ameliorated these changes (Fig. 5A). We next evaluated the expression levels of ER-related apoptotic proteins. DOX treatment significantly up-regulated protein levels of p-IRE-1, P-JNK, ATF-6 and p-PERK, which was inhibited by Sal B-pretreatment (Fig. 5B).

Pretreatment with Sal B attenuated DOX-induced decrease in myocardial phospho-Akt and phospho-GSK3β

183 PI3K/Akt is a survival regulation pathway, which can rescue cardiac contractile dysfunction by inhibiting ER stress ³⁹. PI3K/Akt serves an important function in DOX-induced cardiac 184 dysfunction ⁴⁰. The present study also found that DOX decreased phosphorylation of Akt and 185 186 GSK3 β , which can be ameliorated by pretreatment with Sal B (Fig. 6A). To further assess the 187 involvement of PI3K signaling in the cardioprotective effects of Sal B, a selective PI3K antagonist 188 (WM) was used in the next experiment. Sal B-preserved expression in phospho-Akt and 189 phospho-GSK3ß was partially abrogated by WM. Also, WM mitigated the inhibition effect of Sal 190 B on GRP78 and CHOP expression. These results suggested that PI3K/Akt may be upstream 191 regulator of ER stress in this pathophysiological process. Sal B may attenuate DOX-induced ER 192 stress partially through PI3K signaling (Fig. 6B). We also evaluated the cardiac function in mice 193 by echocardiography upon stimulation with DOX, Sal B and WM. Data shows that WM decreased 194 EF and FS but increased LVIDs and LVIDd compared with Sal B and DOX co-administrated 195 group (Figs. 7A and 7B).

196 Discussion

197 The results of the present study showed that Sal B protected against DOX-induced cardiac 198 dysfunction and cardiomyocyte apoptosis. The salient finding of our study revealed that Sal B 199 significantly inhibited DOX-induced ER stress in mice myocardium, which may be mediated by 200 PI3K/Akt activation.

Several studies have demonstrated that Sal B possesses cardioprotective effects in different models ³³. The present study demonstrated that Sal B significantly increased EF and FS and decreased LVIDs in DOX-treated mice. Sal B also reduced serum levels of AST, LDH and CK in DOX-treated mice. All these results showed that Sal B could prevent DOX-induced cardiac dysfunction and injury. In our preliminary studies, two other methods of Sal B administration were applied, oral administration and intraperitoneal injection. Only pretreatment with Sal B by tail vein injection showed a significant protection against DOX-induced cardiotoxicity 208 (Supplemental Table S1). The reason for this difference may be attributed to the bad membrane209 permeation of Sal B.

DOX-induced cardiomyocyte apoptosis has been reported in many studies ⁴¹⁻⁴³ and contributes to 210 the progression of heart failure ⁴⁴. TUNEL assay showed that DOX exposure significantly 211 212 increased DNA fragmentation in the heart of mice, which were inhibited by pretreatment with Sal B. Caspase-3 and Caspase-12 are important in driving the terminal events of apoptosis ⁴⁵. Our 213 214 study showed that DOX increased the protein expression of caspase-3 and caspase-12 in the heart tissues of mice. Moreover, in accordance with previous reports ^{10, 46}, DOX treatment increased 215 216 pro-apoptotic protein (Bax) expression and decreased anti-apoptotic protein (Bcl-2) expression. 217 However, Sal B could antagonize all these DOX-mediated pro-apoptotic events, suggesting that 218 Sal B protected against DOX-induced cardiotoxicity via inhibiting the apoptosis of 219 cardiomyocyte.

220 Three different signaling pathways of ER stress transducers have been identified which were 221 mediated by IRE1, ATF6, or PERK. Activated IRE1 interacts with the adaptor protein TRAF2 and 222 initiates a cascade of phosphorylation events that ultimately activates JNK. JNK may induce 223 apoptosis through the pro-apoptotic Bcl-2 family members. Besides, PERK and ATF6 pathways 224 are also involved in the ER stress-associated apoptosis. Activated ATF6 can trigger CHOP, a 225 special pro-apoptosis protein of ER stress. CHOP can down-regulate Bcl-2 and up-regulate BIM. 226 Activation of PERK can also trigger CHOP through phosphorylated $eIF2\alpha^{47}$. Consistent with another study ¹³, DOX increased the expression of GRP78 and CHOP in cardiac tissues. We also 227 228 found that ER stress-related apoptosis proteins increased significantly after DOX treatment, 229 including p-IRE-1, p-JNK, ATF-6 and p-PERK. However, pretreatment with Sal B ameliorated 230 these changes, which indicated that Sal B may inhibit DOX-induced apoptosis in mice 231 cardiomyocyte via alleviating ER stress.

232 PI3K/Akt signaling pathway is involved in many pathophysiological processes and serves an 233 important function in cardiomyocyte survival ¹⁷. Activation of Akt can rescue ER stress-impaired 234 murine cardiac contractile function ^{20, 39}. Our present study revealed that DOX exposure decreased 235 the phosphorylation of Akt and GSK3 β in the heart of mice, which was neutralized by pre-treatment with Sal B. In order to verify whether PI3K/Akt was involved in Sal B-mediated inhibition of ER stress, mice were pretreated with a selective PI3K antagonist Wortmannin (WM) before DOX administration. The results showed that WM abolished the protection of Sal B against DOX-induced cardiac dysfunction. WM also abrogated the inhibition of Sal B on DOX-induced activation of ER stress-related proteins. These results suggested that Sal B may ameliorate DOX-induced ER stress via activating PI3K/Akt signaling pathway.

242 Conclusion

In conclusion, our study demonstrated that Sal B attenuated DOX-induced myocardial dysfunction by inhibiting cardiomyocyte apoptosis. The mechanisms may involve the activation of PI3K/Akt signaling pathway and down-regulation of ER stress. These findings demonstrated the potential of Sal B for the treatment of DOX-induced cardiac dysfunction. If the therapeutic roles of Sal B are fully explored in patients and animal models, Sal B treatment can be a promising strategy for reducing the DOX-induced cardiotoxicity in cancer patients.

249 Acknowledgements

This work was supported by grants (No. 81374011) from the National Natural Sciences Foundation of China and the Major Scientific and Technological Special Project for "Significant New Drugs Formulation" (No. 2012ZX09501001 and No. 2012ZX09301002). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

255 Conflict of interest

256 The authors declared no conflict of interest.

257 Ethics Statement

All animal experiments were approved by the Medical Ethics Committee of Peking Union Medical College and were in accordance with the national institutes of health regulations for the care and use of animals. All efforts were made to minimize suffering. The acute toxicity study was

- 261 carried out according to the up-and-down dosing procedure for testing of chemicals of the
- 262 Organisation for Economic Cooperation and Development (OECD) guidelines (OECD 2008a).

263 References

- 2641.S. AlGhamdi, V. Leoncikas, K. E. Plant and N. J. Plant, Synergistic interaction between265lipid-loading and doxorubicin exposure in Huh7 hepatoma cells results in enhanced266cytotoxicity and cellular oxidative stress: implications for acute and chronic care of obese267cancer patients, *Toxicol Res (Camb)*, 2015, **4**, 1479-1487.
- R. J. Church., J. E. McDuffie., M. Sonee., M. Otieno., J. Y. Ma., X. Liu., P. B. Watkins. and A. H.
 Harrill., MicroRNA-34c-3p is an early predictive biomarker for doxorubicin-induced
 glomerular injury progression in male Sprague-Dawley rats, *Toxicol Res (Camb)*, 2014, 3,
 384-394.
- S. Yamanaka, T. Tatsumi, J. Shiraishi, A. Mano, N. Keira, S. Matoba, J. Asayama, S. Fushiki, H.
 Fliss and M. Nakagawa, Amlodipine inhibits doxorubicin-induced apoptosis in neonatal rat
 cardiac myocytes, *Journal of the American College of Cardiology*, 2003, **41**, 870-878.
- A. Jirkovská-Vávrová., J. Roh., O. Lenčová-Popelová., E. Jirkovský., K. Hrušková., E.
 Potůčková-Macková., H. Jansová., P. Hašková., P. Martinková., T. Eisner., M. Kratochvíl., J. Šůs.,
 M. Macháček., L. Vostatková-Tichotová., V. Geršl., D. S. Kalinowski., M. T. Muller., D. R.
 Richardson., K. Vávrová., M. Štěrba and T. Šimůnek., Synthesis and analysis of novel
 analogues of dexrazoxane and its open-ring hydrolysis product for protection against
 anthracycline cardiotoxicity in vitro and in vivo, *Toxicol Res (Camb)*, 2015, **4**, 1098-1114
- R. Arun., S. Dhivya., S. K. Abrahamb. and K. Premkumar., Low-dose chemotherapeutic drugs
 induce reactive oxygen species and initiate apoptosis-mediated genomic instability, *Toxicol Res (Camb)*, 2016, 5, 547-556.
- G. Takemura and H. Fujiwara, Doxorubicin-induced cardiomyopathy from the cardiotoxic
 mechanisms to management, *Progress in cardiovascular diseases*, 2007, 49, 330-352.
- J. Yang, B. Maity, J. Huang, Z. Gao, A. Stewart, R. M. Weiss, M. E. Anderson and R. A. Fisher,
 G-protein inactivator RGS6 mediates myocardial cell apoptosis and cardiomyopathy caused
 by doxorubicin, *Cancer research*, 2013, **73**, 1662-1667.
- J. Ma, Y. Wang, D. Zheng, M. Wei, H. Xu and T. Peng, Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways, *Cardiovascular research*, 2013, **97**, 77-87.
- H. Gao, F. Wang, W. Wang, C. A. Makarewich, H. Zhang, H. Kubo, R. M. Berretta, L. A. Barr, J. D.
 Molkentin and S. R. Houser, Ca(2+) influx through L-type Ca(2+) channels and transient
 receptor potential channels activates pathological hypertrophy signaling, *Journal of molecular and cellular cardiology*, 2012, 53, 657-667.
- H. C. Lai, Y. C. Yeh, L. C. Wang, C. T. Ting, W. L. Lee, H. W. Lee, K. Y. Wang, A. Wu, C. S. Su and T.
 J. Liu, Propofol ameliorates doxorubicin-induced oxidative stress and cellular apoptosis in rat
 cardiomyocytes, *Toxicology and applied pharmacology*, 2011, 257, 437-448.
- 29911.E. J. Ladas, J. S. Jacobson, D. D. Kennedy, K. Teel, A. Fleischauer and K. M. Kelly, Antioxidants300and cancer therapy: a systematic review, Journal of clinical oncology : official journal of the301American Society of Clinical Oncology, 2004, **22**, 517-528.
- 302 12. B. J. Sishi, B. Loos, J. van Rooyen and A. M. Engelbrecht, Doxorubicin induces protein

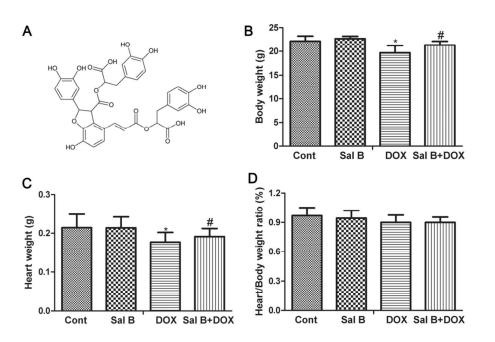
Toxicology Research Accepted Manuscript

303		ubiquitination and inhibits proteasome activity during cardiotoxicity, Toxicology, 2013, 309,
304		23-29.
305	13.	M. Lu, S. Merali, R. Gordon, J. Jiang, Y. Li, J. Mandeli, X. Duan, J. Fallon and J. F. Holland,
306		Prevention of Doxorubicin cardiopathic changes by a benzyl styryl sulfone in mice, Genes &
307		cancer, 2011, 2 , 985-992.
308	14.	R. Sano and J. C. Reed, ER stress-induced cell death mechanisms, Biochimica et biophysica
309		acta, 2013, DOI: 10.1016/j.bbamcr.2013.06.028.
310	15.	M. Koyama, M. Furuhashi, S. Ishimura, T. Mita, T. Fuseya, Y. Okazaki, H. Yoshida, K. Tsuchihashi
311		and T. Miura, Reduction of endoplasmic reticulum stress by 4-phenylbutyric acid prevents the
312		development of hypoxia-induced pulmonary arterial hypertension, American journal of
313		physiology. Heart and circulatory physiology, 2014, DOI: 10.1152/ajpheart.00869.2013.
314	16.	S. Selvaraj, Y. Sun, J. A. Watt, S. Wang, S. Lei, L. Birnbaumer and B. B. Singh,
315		Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of
316		TRPC1 and inhibition of AKT/mTOR signaling, The Journal of clinical investigation, 2012, 122,
317		1354-1367.
318	17.	Y. Fujio, T. Nguyen, D. Wencker, R. N. Kitsis and K. Walsh, Akt Promotes Survival of
319		Cardiomyocytes In Vitro and Protects Against Ischemia-Reperfusion Injury in Mouse Heart,
320		<i>Circulation</i> , 2000, 101 , 660-667.
321	18.	W. Mao, C. Iwai, J. Liu, S. S. Sheu, M. Fu and C. S. Liang, Darbepoetin alfa exerts a
322		cardioprotective effect in autoimmune cardiomyopathy via reduction of ER stress and
323		activation of the PI3K/Akt and STAT3 pathways, Journal of molecular and cellular cardiology,
324		2008, 45 , 250-260.
325	19.	J. Guo, Y. Bian, R. Bai, H. Li, M. Fu and C. Xiao, Globular adiponectin attenuates myocardial
326		ischemia/reperfusion injury by upregulating endoplasmic reticulum Ca(2)(+)-ATPase activity
327		and inhibiting endoplasmic reticulum stress, Journal of cardiovascular pharmacology, 2013,
328		62 , 143-153.
329	20.	M. Dong, N. Hu, Y. Hua, X. Xu, M. R. Kandadi, R. Guo, S. Jiang, S. Nair, D. Hu and J. Ren,
330		Chronic Akt activation attenuated lipopolysaccharide-induced cardiac dysfunction via
331		Akt/GSK3beta-dependent inhibition of apoptosis and ER stress, Biochimica et biophysica acta,
332		2013, 1832 , 848-863.
333	21.	S. Li, Wan, L., Experimental study on the preventive mechanism of salviae miltiorrhizae
334		against atherosclerosis in rabbits models, J. Huazhong Univ. Sci. Technol. Med. Sci.,
335		2004, 24 , 233-235.
336	22.	L. FF., Y. JH., C. JH. and O. PM., Pharmacological evidence for calcium channel inhibition by
337		Danshen (Salvia miltiorrhiza) on rat isolated femoral artery, J Cardiovasc Pharmacol, 2006, 47,
338		139-145.
339	23.	Y. Zhou, W. Li, L. Xu and L. Chen, In Salvia miltiorrhiza, phenolic acids possess protective
340		properties against amyloid beta-induced cytotoxicity, and tanshinones act as
341		acetylcholinesterase inhibitors, Environmental toxicology and pharmacology, 2011, 31,
342		443-452.
343	24.	W. KK., H. MT., L. HQ., L. KF., R. JA., C. RC., F. KP., S. PC. and W. DC., Cryptotanshinone, an
344		acetylcholinesterase inhibitor from Salvia miltiorrhiza, ameliorates scopolamine-induced
345		amnesia in Morris water maze task, Planta Med, 2010, 76, 228-234.
346	25.	H. N. Zhang, C. N. An, H. N. Zhang and X. P. Pu, Protocatechuic acid inhibits neurotoxicity

347		induced by MPTP in vivo, <i>Neuroscience letters</i> , 2010, 474 , 99-103.
348	26.	D. G. Kang, H. Oh, E. J. Sohn, T. Y. Hur, K. C. Lee, K. J. Kim, T. Y. Kim and H. S. Lee, Lithospermic
349	20.	acid B isolated from Salvia miltiorrhiza ameliorates ischemia/reperfusion-induced renal injury
350		in rats, <i>Life sciences</i> , 2004, 75 , 1801-1816.
351	27.	W. ZM., W. T., T. YF., L. Y., R. F. and W. H., Effects of salvianolic acid a on oxidative stress and
352	27.	liver injury induced by carbon tetrachloride in rats, <i>Basic Clin Pharmacol Toxicol</i> , 2007, 100 ,
353		115-120.
354	28.	H. S. Zhang and S. Q. Wang, Salvianolic acid B from Salvia miltiorrhiza inhibits tumor necrosis
355	20.	factor-alpha (TNF-alpha)-induced MMP-2 upregulation in human aortic smooth muscle cells
356		via suppression of NAD(P)H oxidase-derived reactive oxygen species, <i>Journal of molecular</i>
357		and cellular cardiology, 2006, 41 , 138-148.
358	29.	T. XH., X. WJ. and D. XM., Application of Danshen injection on early stage of renal
359	25.	transplantation, <i>Zhong guo Zhong Xi Yi Jie He Za Zhi</i> , 2005, 25 , 404-407.
360	30.	S. Chun-Yan., M. Qian-Liang., R. Khalid., H. Ting. and Q. Lu-Ping., Salvia miltiorrhiza:
361	50.	Traditional medicinal uses, chemistry, and pharmacology, Chinese Journal of Natural
362		Medicines, 2015, 13 , 0163-0182.
363	31.	L. Xu, Y. Deng, L. Feng, D. Li, X. Chen, C. Ma, X. Liu, J. Yin, M. Yang, F. Teng, W. Wu, S. Guan, B.
364	01.	Jiang and D. Guo, Cardio-protection of salvianolic acid B through inhibition of apoptosis
365		network, <i>PloS one</i> , 2011, 6 , e24036.
366	32.	Y. Wang, F. Xu, J. Chen, X. Shen, Y. Deng, L. Xu, J. Yin, H. Chen, F. Teng, X. Liu, W. Wu, B. Jiang
367		and D. A. Guo, Matrix metalloproteinase-9 induces cardiac fibroblast migration, collagen and
368		cytokine secretion: inhibition by salvianolic acid B from Salvia miltiorrhiza, <i>Phytomedicine</i> :
369		international journal of phytotherapy and phytopharmacology, 2011, 19 , 13-19.
370	33.	L. Xue, Z. Wu, XP. Ji, XQ. Gao and YH. Guo, Effect and mechanism of salvianolic acid B on
371		the myocardial ischemia-reperfusion injury in rats, Asian Pacific Journal of Tropical Medicine,
372		2014, 7 , 280-284.
373	34.	M. Wang, G. Sun, P. Wu, R. Chen, F. Yao, M. Qin, Y. Luo, H. Sun, Q. Zhang, X. Dong and X. Sun,
374		Salvianolic Acid B prevents arsenic trioxide-induced cardiotoxicity in vivo and enhances its
375		anticancer activity in vitro, Evidence-based complementary and alternative medicine : eCAM,
376		2013, 2013 , 759483.
377	35.	G. F., S. G., R. X., N. Y., S. J., Q. M. and S. X., Protective effect of salvianolic acid B on isolated
378		heart ischemia/reperfusion injury in rats, <i>Zhong guo Zhong Yao Za Zhi</i> , 2012, 37 , 358-361.
379	36.	R. A. Thandavarayan, K. Watanabe, F. R. Sari, M. Ma, A. P. Lakshmanan, V. V. Giridharan, N.
380		Gurusamy, H. Nishida, T. Konishi, S. Zhang, A. J. Muslin, M. Kodama and Y. Aizawa,
381		Modulation of doxorubicin-induced cardiac dysfunction in dominant-negative p38alpha
382		mitogen-activated protein kinase mice, Free radical biology & medicine, 2010, 49, 1422-1431.
383	37.	J. Mersmann, N. Tran, K. Latsch, K. Habeck, F. Iskandar, R. Zimmermann and K. Zacharowski,
384		Akt or phosphoinositide-3-kinase inhibition reverses cardio-protection in Toll-like receptor 2
385		deficient mice, Resuscitation, 2012, 83, 1404-1410.
386	38.	K. Drosatos, Z. Drosatos-Tampakaki, R. Khan, S. Homma, P. C. Schulze, V. I. Zannis and I. J.
387		Goldberg, Inhibition of c-Jun-N-terminal kinase increases cardiac peroxisome
388		proliferator-activated receptor alpha expression and fatty acid oxidation and prevents
389		lipopolysaccharide-induced heart dysfunction, The Journal of biological chemistry, 2011, 286,
390		36331-36339.

Toxicology Research Accepted Manuscript

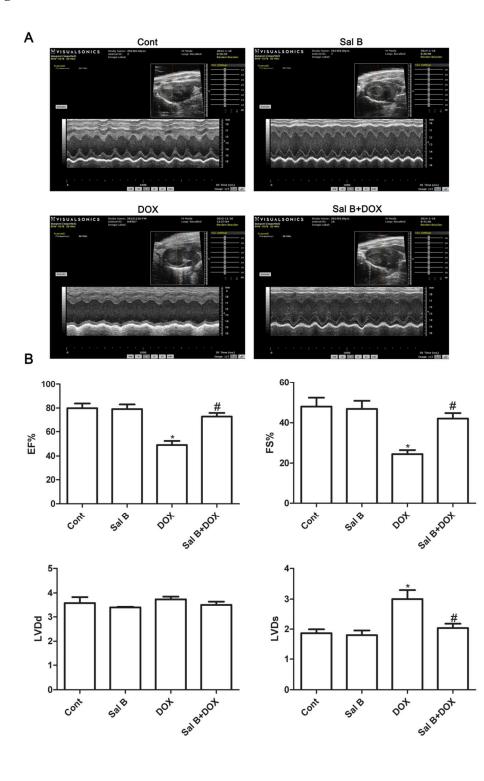
391	39.	Y. Zhang, Z. Xia, K. H. La Cour and J. Ren, Activation of Akt rescues endoplasmic reticulum
392		stress-impaired murine cardiac contractile function via glycogen synthase
393		kinase-3beta-mediated suppression of mitochondrial permeation pore opening, Antioxidants
394		& redox signaling, 2011, 15 , 2407-2424.
395	40.	G. C. Fan, X. Zhou, X. Wang, G. Song, J. Qian, P. Nicolaou, G. Chen, X. Ren and E. G. Kranias,
396		Heat shock protein 20 interacting with phosphorylated Akt reduces doxorubicin-triggered
397		oxidative stress and cardiotoxicity, Circulation research, 2008, 103, 1270-1279.
398	41.	S. Kotamraju, E. A. Konorev, J. Joseph and B. Kalyanaraman, Doxorubicin-induced apoptosis in
399		endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role
400		of reactive oxygen and nitrogen species, The Journal of biological chemistry, 2000, 275,
401		33585-33592.
402	42.	I. Andreadou, F. Sigala, E. K. Iliodromitis, M. Papaefthimiou, C. Sigalas, N. Aligiannis, P. Savvari,
403		V. Gorgoulis, E. Papalabros and D. T. Kremastinos, Acute doxorubicin cardiotoxicity is
404		successfully treated with the phytochemical oleuropein through suppression of oxidative and
405		nitrosative stress, Journal of molecular and cellular cardiology, 2007, 42, 549-558.
406	43.	L. E. Wold, N. S. Aberle, 2nd and J. Ren, Doxorubicin induces cardiomyocyte dysfunction via a
407		p38 MAP kinase-dependent oxidative stress mechanism, Cancer detection and prevention,
408		2005, 29 , 294-299.
409	44.	D. B. Sawyer, R. Fukazawa, M. A. Arstall and R. A. Kelly, Daunorubicin-Induced Apoptosis in
410		Rat Cardiac Myocytes Is Inhibited by Dexrazoxane, Circulation Research, 1999, 84, 257-265.
411	45.	K. N. Kim, Y. M. Ham, J. Y. Moon, M. J. Kim, Y. H. Jung, Y. J. Jeon, N. H. Lee, N. Kang, H. M. Yang,
412		D. Kim and C. G. Hyun, Acanthoic acid induces cell apoptosis through activation of the p38
413		MAPK pathway in HL-60 human promyelocytic leukaemia, Food chemistry, 2012, 135,
414		2112-2117.
415	46.	L. Fujimura, Y. Matsudo, M. Kang, Y. Takamori, T. Tokuhisa and M. Hatano, Protective role of
416		Nd1 in doxorubicin-induced cardiotoxicity, Cardiovascular research, 2004, 64, 315-321.
417	47.	D. Ron and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein
418		response, Nature reviews. Molecular cell biology, 2007, 8 , 519-529.
419		
420		
421		
422		
423		
424		
425		
426		
427		
428		
429		
430		
431		
432		
433		
434		


435	
436	Figure legends
437	Fig. 1. Effects of Sal B and DOX on body weight. (A) Molecular structure of Sal B. (B) Body weights and heart
437	
	weights (C) of mice were measured 7 d after DOX injection. (D) Relative heart weight index (heart
439	weight-to-body weight ratio) was determined. Data are presented as mean \pm SE, *P < 0.05 vs. Cont group; #P
440	<0.05 vs. DOX group.
441	Fig. 2. Effects of Sal B and DOX on cardiac function. (A) Representative M-mode echocardiography images are
442	shown. (B) Echocardiography values are expressed as mean ± SE. EF, ejection fraction; FS, fractional shortening;
443	LVIDd, left ventricular internal diameter at diastolic phase; LVIDs, left ventricular internal diameter at systolic
444	phase. Data are presented as mean \pm SE, *P < 0.05 vs. Cont group; #P <0.05 vs. DOX group.
445	Fig. 3. Effects of Sal B on DOX-induced myocardial injury. (A) Effects of Sal B and DOX on AST, LDH and CK
446	activities. (B) Effects of Sal B and DOX on histological changes in mice hearts by HE staining (scale bar = $10 \mu m$).
447	
	(C) Effects of Sal B and DOX on ultrastructure changes in mice hearts observed under electron microscope (scale
448	bar = 200 pm). (D) Effects of Sal B and DOX on the mice ECG pattern. (E) Effects of Sal B and DOX on the heart
449	rate of mice. Data are presented as mean \pm SE, *P < 0.05 vs. Cont group; #P <0.05 vs. DOX group.
450	Fig. 4. Effects of Sal B and DOX on heart apoptosis and apoptosis related proteins. (A) Representative images of
451	TUNEL and DAPI staining of myocardium tissue and quantification of TUNEL-positive cells (scale bar = $10 \ \mu m$).
452	Arrowheads in the pictures indicate the nuclei of apoptotic cells; blue color represents cell nuclei that were
453	counterstained with DAPI. (B) Effects of Sal B and DOX on protein expression of cleaved caspase-3, caspase-3,
454	cleaved caspase-12 and caspase-12. (C) Effects of Sal B and DOX on protein expression of Bcl-2 and Bax. Data
455	are presented as mean \pm SE, *P < 0.05 vs. Cont group; #P <0.05 vs. DOX group.
150	
456	Fig. 5. Effects of Sal B and DOX on ER stress sensors and ER stress-related apoptotic protein expression in heart
457	tissues. (A) Western blot analysis of GRP78 and CHOP. (B) Western blot analysis of p-IRE1, IRE-1, p-JNK, JNK,
458	ATF-6, p-PERK and PERK. Data are presented as mean \pm SE, *P < 0.05 vs. Cont group; #P <0.05 vs. DOX group.
459	Fig. 6. Effects of Sal B and DOX on protein expression of PI3K/Akt signaling pathway. (A) Protein levels of
460	p-AKT, AKT, p-GSK3β and GSK3β in the myocardium examined by Western blot analysis. (B) Effects of

- 461pharmacological inhibitor WM (a selective PI3K antagonist) on levels of p-AKT, p-GSK3β, GRP78, CHOP, in the462myocardium of Sal B and DOX co-treated mice. Data are presented as mean \pm SE, *P < 0.05 vs. Cont; #P < 0.05</td>463vs. DOX-treated mice; \$P < 0.05 vs. Sal B and DOX co-treated mice.</td>
- **Fig. 7.** Involvement of PI3K/Akt signaling in DOX-induced cardiac dysfunction. (A) Cardiac function was examined by echocardiography 7 d after DOX administration. Representative M-mode echocardiography images are shown. (B) Echocardiography values are expressed as mean \pm SE. EF, ejection fraction; FS, fractional shortening; LVIDd, left ventricular internal diameter at diastolic phase; LVIDs, left ventricular internal diameter at systolic phase. Data are presented as mean \pm SE, *P < 0.05 vs. Cont; #P < 0.05 vs. DOX-treated mice; \$P < 0.05 vs. Sal B and DOX co-treated mice.

470

471



473

474

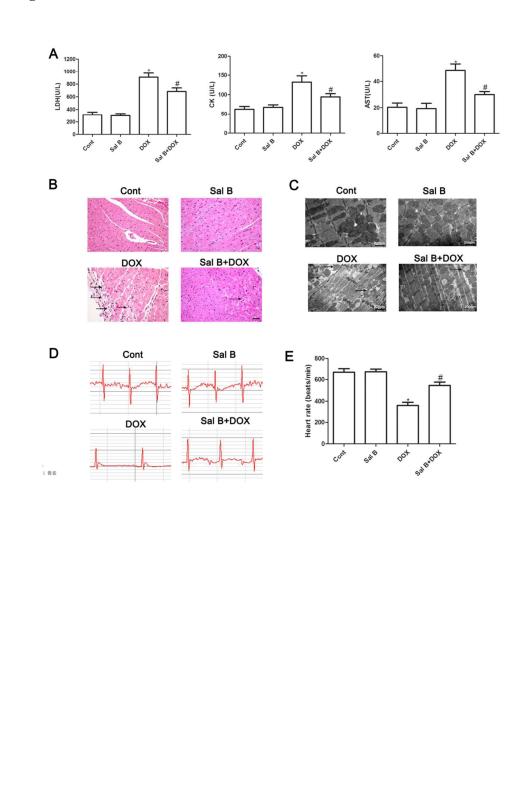
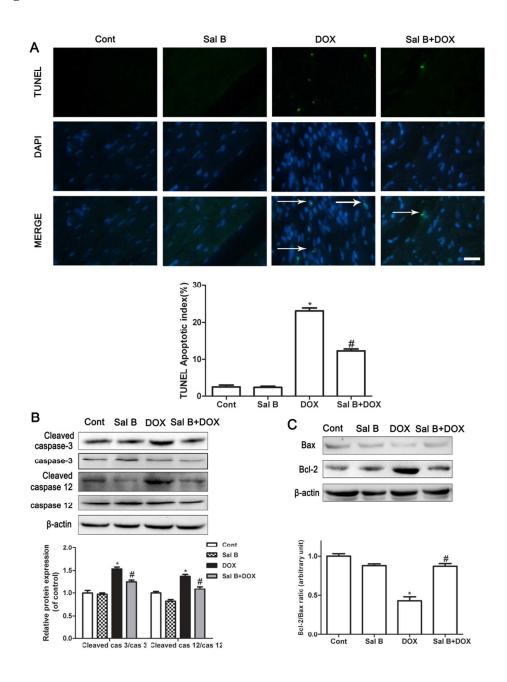
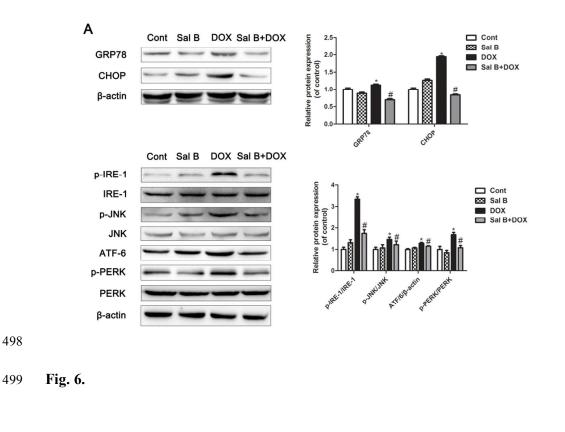

475

Fig. 2.


Toxicology Research Accepted Manuscript

484 Fig. 3.



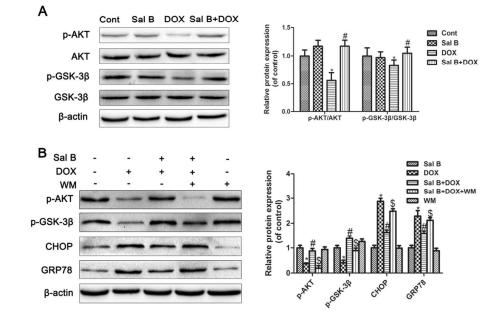
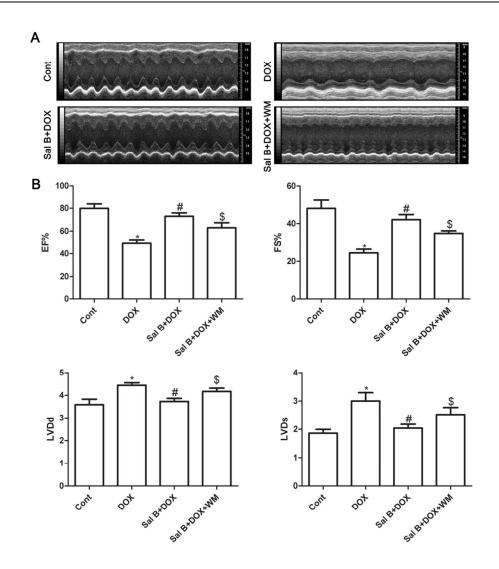

Toxicology Research Accepted Manuscrip

Fig. 4.



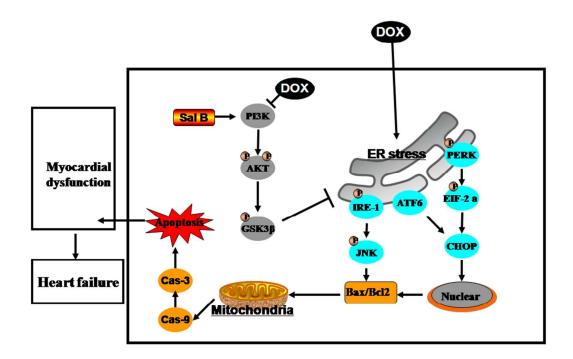


Fig. 7.

Salvianolic acid B protects against doxorubicin-induced cardiac dysfunction via

inhibition of ER-stress-mediated cardiomyocyte apoptosis

