Journal of Materials Chemistry C

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsC

Journal of Materials Chemistry C

REVIEW ARTICLE

Recent development in phosphors with different emitting colors via energy transfer for FEDs and UV/n-UV w-LEDs

Kai Li^{ab}, Mengmeng Shang^a, Hongzhou Lian^a and Jun Lin*^a

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 00th January 20xx,

www.rsc.org/

Utilizing energy transfer (ET) between the sensitizer and acceptor in phosphors is a good way to obtain tunable emission color. Therefore, many researchers have devoted their interest to design the phosphors samples with different emission colors via energy transfer properties. It is well known that Ce³⁺ and Bi³⁺ are the good sensitizers, while the Mn²⁺, Dy³⁺, Eu³⁺ and Sm³⁺ can be the useful activators. And Eu²⁺ and Tb³⁺ can be both good sensitizers and activators. Therefore, herein we summary many recent ET systems consisting of Eu²⁺-Mn²⁺/Tb³⁺, Eu²⁺-Tb³⁺-Mn²⁺/Eu³⁺/Sm³⁺, Ce³⁺-Mn²⁺/Tb³⁺/Dy³⁺/Eu²⁺, Ce³⁺-Tb³⁺-Mn²⁺/Eu³⁺/Sm³⁺, B³⁺-Eu³⁺/Sm³⁺ and Tb³⁺-Eu³⁺/Sm³⁺ in this article, which show the tunable emission color from ultraviolet to blue and green, blue to green, yellow, orange and pink/red, cyan to green, orange and pink/red, and green to yellow/orange and red. Based on this, this review would be a good reference to benefit the design and investigation of phosphors potentially applied in FEDs and LEDs with ET in them.

1. Introduction

In the past decades, the utilization of inorganic phosphor materials gives a fast growing development due to their broad aspects of applications, such as cathode ray tubes (CRTs), light-emitting diodes (LEDs), field-emission displays (FEDs), vacuum fluorescent displays (VFDs), plasma display panels (PDPs).¹ The global issues of energy saving and environmental protection inspire the substitution of white-LEDs (w-LEDs) for conventional fluorescent and incandescent lamps, which is ascribed to its special merits such as high efficiency, long operation lifetime, portal compactness and etc. besides energy saving and non-pollution.² Moreover, in the display field, the FEDs is considered to be a well potential candidate for liquid crystal displays (LCDs) currently applied in the mart because of their many superiorities on viewing, lighting, power depletion, operatedtemperature range, response time, and so on.³ Therefore, the attention focused on them is especially increasing all the time. Nowadays, there mainly exist two methods to obtain white light in LEDs, eg., commercial way is combining a blue chip with YAG:Ce³⁺ phosphors, the other is employing different color-emitting LEDs (blue+green+red LEDs).⁴ However, the deficiency of former is lacking of red component, which results in the poor color rendering indices (CRI < 80) and a high correlated color temperature (CCT > 4500 K), restricting the vivid application for indoor lighting in the future.⁵ As to later one, many practical problems should be considered, such as different driving voltage, lighting output, temperature characteristic, lighting decay velocity, working lifetime,

fabrication price and etc. for different color-emitting LEDs. To improve and avoid these issues, another alternative two routes involving the employments of ultraviolet/near-ultraviolet (UV/n-UV) LEDs with blue, green and red phosphors or singly-phased white light-emitting phosphors are advocated to generate w-LEDs in recent years.⁶ Generally, to build highly efficient w-LED devices, three related factors including semiconducting components (general Al_{1-x}Ga_xN semiconductor chips), phosphor components and packaging technologies, should be considered and optimized. As the indispensable components of w-LED devices, phosphors with different emission colors are being explored and developed for use in lighting and display backlight sources, which is considered to be one of the most critical and urgent challenges in lighting field. It is well known the Eu²⁺, Ce³⁺ and Bi³⁺ can emit broad bands with different colors in various hosts based on their 4f⁶5d¹-4f⁷, 5d¹-4f¹ and ${}^{3}P_{1}$ - ${}^{1}S_{0}$ allowed transitions,⁷ respectively, and different crystal fields around them. Therefore, the tuning of emission color can be realized in Eu^{2+} , Ce^{3+} and Bi^{3+} singly doped phosphors by ions substitution methods, which have been presented in recent review by Li et al.⁸ and paper by Kang et al.⁹ However, Eu²⁺, Ce³⁺ and Bi³⁺ also can be served as efficient sensitizers to transfer their energy to activators such as Mn²⁺, Tb³⁺, Dy³⁺, Eu³⁺ and Sm³⁺ to produce abundant and tunable emission colors including white via adjusting doped ions concentrations.¹⁰ Sometime, Tb³⁺ also can be an efficient sensitizer to transfer its energy to Eu^{3+} or Sm^{3+} to obtain the tunable emission color from green to orange/red under UV excitation.¹¹ Therefore, it is a good way to control and adjust the emission colors of phosphors via utilizing the ET properties between doped ions. Table 1 summaries the transitional characteristics of singly-doped ions in phosphors mentioned above, which is useful for us to interpret the photoluminescence features of them.

As mentioned above, ET, a good strategy to control the emission color, has been extensively utilized in phosphors. 39 Fig. 1a simply

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. Email: jlin@ciac.ac.cn (Jun Lin); Fax: +86-431 -85698041; TEL: 86-431-85262031

^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China.

ARTICLE

describes the energy migration process in luminescence materials. Sometimes, the exciting energy can not or little be absorbed by the activator (A), therefore, another ion (S) was added into the host lattice to absorb exciting radiation and subsequently transfer its energy to the activator, then the emission was produced. This process can be expressed with a simple expression analogous to a chemical reaction $S^* + A \rightarrow S + A^*$ (Fig. 1b), where the asterisk represents the excited state of doped ions. The excited state A* has two ways to fall to ground state A, one is radiation transition method (lighting), the other is non-radiate transition route (quenching). In former case, the S is called a sensitizer of A, while in later one, the A is said to be a quencher of S. ET between two centers requires a certain interaction between them. Considering two centers, S and A, separate in a solid by distance R, if the R is so short that the center S and A have a non-vanishing interaction with each other. Therefore, the relaxed excited state S* may transfer its energy to A. The rate of this ET process had been calculated by Forster before, after whom Dexter extended this treatment to other interaction types.⁴⁰ In general, resonant ET is dominant in the generation of up-conversion (UC) and down-conversion (DC) in most rare-earth (RE) doped phosphors systems. It can only occur if the energy gap between ground and excited state of S and A is equal, as well as a suitable interaction between S and A (Fig. 1c). The interaction types include an exchange interaction (if it has the wave function overlap) and an electric or magnetic multipolar interactions. The ET rate had been proposed by considering the spectral overlap between the emission spectrum of S and absorption spectrum of A with following equation:⁴¹

$$P_{\mathcal{S}A} = \frac{2\pi}{\hbar} |\langle S, A^* | H_{\mathcal{S}A} | S^*, A \rangle|^2 \cdot \int g_s(E) g_A(E) dE$$
(1)

Where the integral represents the spectral overlap, $g_s(x)$ is the normalized line shape function of center x, where it is hatched in Fig. 1d, H_{SA} is the interaction Hamiltonian, the matrix element is the interaction between the original state | S*,A> and the final state | S,A*>. If the ET process from S to A occurs, the rate P_{SA} should not be zero, therefore, neither term $|\langle S, A^*|H_{S4}|S^*, A\rangle|^2$ nor

 $\int g_s(E)g_A(E)dE$ is zero, which means (1) the emission band of S should spectrally overlap the excitation band of A, (2) the S and A need to be interacted with each other including the electric multipole-multipole interactions type or exchange interaction. The transitional intensity determines the strength of electric multipole interactions. High ET rate can be only anticipated if the transition processes concerned are allowed electric dipole transitions. Although the disappreance of absorption intensity results in the disappearance of electric multipole interaction, the transfer rate may not vanish because exchange interaction can contribute to it. The exchange interaction depends on the wave function overlap, which decays exponentially to the distance of R. While for electric multipole interactions, the distance dependence is given by R⁻ⁿ, in which n = 6, 8, 10 corresponds to electric dipole-dipole, dipolequadrupole, quadrupole-quadrupole interactions. The excited state S^* can not only decay to ground themselves with a rate P_S (radiate rate) but also transfer its energy to A with a rate P_{SA} . The critical distance (R_c) is defined when the P_s equals to P_{sA} , that is to say, if the distance between S and A equals to R_c , the radiate rate equals to ET rate. Therefore, the radiate transition of S prevails for $R > R_c$ Page 2 of 24

while the ET from S to A is dominant for $R < R_c$. If the ET occurs in a system, the fluorescent decay lifetimes of sensitizer should decline with the increase of activator content, the decay curves may be fitted with single, double, especially three exponential functions,⁴² which are expressed below:

$$I(t) = I_0 + A_1 \exp\left(-\frac{t}{\tau_2}\right) + \cdots + A_n \exp\left(-\frac{t}{\tau_n}\right)$$
(2)

$$\tau = \left(A_1\tau_1^2 + \cdots + A_n\tau_n^2\right) / \left(A_1\tau_1 + \cdots + A_n\tau_n\right)$$
(3)

n = 1, 2 and 3 correspond to single, double and three exponential functions, respectively. Sometimes, none of the exponential decay function is proper with the decay curves, the effective lifetime should be defined as follow:⁴³

$$\tau = \frac{\int_{0}^{\infty} tI(t)dt}{\int_{0}^{\infty} I(t)dt}$$
(4)

$$\tau = \int_0^\infty I(t)dt \tag{5}$$

t is the time with the decay of fluorescent intensity; τ is the fluorescent decay lifetime.

In order to determine the ET mechanism from sensitizers to activators, the ET formula of exchange interaction and electric multipolar interactions proposed by Dexter's and Reisfeld's was utilized:⁴⁴

$$\eta_{S0}/\eta_S \propto C^{n/3} \tag{6}$$

in which η_{s0} is the intrinsic luminescence quantum efficiency of the sensitizer; η_s is the luminescence quantum efficiency of the sensitizer with the existence of activator; and *C* is the sum of dopant ion concentration. The n = 3, 6, 8 and 10 correspond to exchange interaction, electric dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions, respectively. However, the value of η_{s0}/η_s is hard to be acquired, therefore, it can be replaced approximately from the correlated intensity (I_{s0}/I_s) or lifetime ratio (τ_{s0}/τ_s).⁴⁵

$$I_{so}/I_s \propto C^{n/3}$$
 or $\tau_{so}/\tau_s \propto C^{n/3}$ (7)

By examinating the linear fitting factor R^2 of the relationship above, the biggest R^2 indicates the corresponding ET mechanism. Sometimes, the Inokuti-Hirayama (I-H) model is also applied to analyze the ET mechanism through fluorescent decay curves, which is satisfactory to describe ET processes if the donor-acceptor transfer is much faster than the diffusion among the donors. As to electric multipolar interactions, the following equation can depict the time evolution of the emission from the donor:⁴⁶

$$I(t) = I_0 \exp\left[-\frac{t}{\tau_0} - \alpha \left(\frac{t}{\tau_0}\right)^{3/s}\right]$$
(8)

where I(t) corresponds to the emission intensity after pulsed excitation, I_0 refers to the emission intensity at t = 0, τ_0 is the intrinsic decay time of the donor ion, α is a parameter involving the ET probability, and *S* is an indication of the electric multipolar interactions character; S = 6, 8 and 10 for electric dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions,

2 | J. Mater. Chem. C, 2016, 00, 1-19

respectively. After modification, the expression can be depicted as follow:

$$In\left[-In\frac{I(t)}{I_0} - \left(\frac{t}{\tau_0}\right)\right] \propto In\left(\frac{t}{\tau_0}\right)^{3/S}$$
(9)

After plotting the curves according to the equation above, a fitting straight line will be yielded with the slope equal to 3/S. Therefore, the *S* can be determined. To certify the correction of ET mechanism deduced by two methods above, the ET R_c calculated via concentration quenching and spectral overlap methods should be identical. The R_c is calculated using follow formula:⁴⁷

$$R_c = 2 \left(\frac{3V}{4\pi x_c N}\right)^{1/3} \tag{10}$$

In the formula, *V* is the volume of the unit cell, *N* is the number of cations in the unit cell of the host, x_c is the sum of donor and acceptor concentrations, at which the emission intensity of the donor in the presence of the acceptor is half that in the absence of the acceptor. Since the values of parameters can be readily obtained , the R_c can be determined. As for dipole-dipole and dipole-quadrupole interactions, the R_c can be calculated approximately using spectral overlap method, which are expressed below:⁴⁸

$$R_{c}^{6} = 3.024 \times 10^{12} f_{d} \int \frac{f_{s}(E) F_{A}(E)}{E^{4}} dE$$
(11)

$$R_{c}^{8} = 3.024 \times 10^{12} \lambda_{s}^{2} f_{q} \int \frac{f_{s}(E) F_{A}(E)}{E^{4}} dE$$
(12)

where f_d and f_q refer to the oscillator intensities of the transition absorption for the activator, R_c represents the distance between the activator and the sensitizer, E is the energy (in eV)involved in the transfer process, $\int f_s(E) f_A(E) / E^4 dE$ refers to the spectral overlap between the normalized shapes of the emission $f_s(E)$ from sensitizer and the excitation $f_A(E)$ from activator, λ_s (in angstroms) is the wavelength position of the sensitizer's emission. Accordingly, the R_c are evaluated after the acquirement of parameters above. Commonly, the R_c calculated by two ways can be close to each other, which illustrates the correction of the discussion of ET mechanism between doped ions in phosphors.

Recently, Liu et al.^{49a} reviewed the ET in bulk and nanoscale luminescence materials involving metal ions, guantum dots (QDs), organic species, 2D materials and plasmonic nanostructures. Shinde et al. $^{\rm 49b}$ reviewed the europium-activated orthophosphate phosphors for solid lighting, they discussed the synthesis of a family of orthophosphate phosphor doped with europium (Eu^{2+} and Eu^{3+}) by traditional and novel methods. Shang et al. 49c summarized the methods to realize the single-phase white-light-emitting in materials. However, the detailed ET in phosphors is rarely discussed. In this review paper, we focus on the recent development of various phosphors systems potentially applied in FEDs and LEDs with ET in detail because the topic themed has aroused extensive research interest in recent years. Moreover, the overview of luminescence characteristic of doped ions in phosphors can be understood to guide the design and investigation of phosphors with ET in them.

Fig. 1 (a) ET from a sensitizer S to an activator A. (b) Energy levels diagram of ET from S to A, the $S \rightarrow S^*$ is the absorption, $A_2^* \rightarrow A$ is the emission, $A_1^* \rightarrow A_2^*$ is the non-radiative decay. (c) The two centers are at a distance of R, the energy level schemes and interaction H_{SA} are given. (d) The spectral overlap of excitation spectrum of A and emission spectrum of S.

2. Phosphors systems with different emitting colours via energy transfer

2.1 Eu²⁺-Mn²⁺/Tb³⁺ systems

A large amount of Eu²⁺ singly-doped phosphors have been reported recently.¹²⁻¹⁷ The emission color can be varied from blue to red in different hosts, which are represented in Table 1. However, the emission color is generally unchangeable or little changeable in certain systems. In order to tune the emission color and obtain abundant colors, the energy transfer properties from Eu²⁺ to Mn^{2+}/Tb^{3+} are frequently utilized in phosphors. The emission color can be tuned from blue to green, yellow, orange and even pink/red, cyan to pink and green to yellow, orange and pink/red for Eu²⁺-Mn²⁺ system, and from blue or cyan to green for Eu²⁺-Tb³⁺ system.

 $Eu^{2+}-Mn^{2+}$ system is one of the most abundant systems for the emission color adjustment in phosphors. Mn²⁺, a transitional-metal element, can emit different colors from green (tetrahedron field) to red (octahedron field) originated from the different crystal fields Mn²⁺ around, as listed in Table 1. Moreover, its excitation bands often locate in blue and green areas. Therefore, blue or green emission spectra of Eu²⁺ may overlap the excitation spectra of Mn²⁺, which may generate the ET from Eu^{2+} to Mn^{2+} and result in tunable color under appropriate excitation in some hosts. Liu et al. 50 synthesized a novel blue to green phosphor y-AlON:Eu²⁺,Mn²⁺ at 1800 °C under 0.5 MPa N₂ by using the gas-pressure sintering method (GPS). They found Eu^{2+} singly-doped γ -AlON can emit a wide band centered at 470 nm corresponding to the blue color with the excitation band from 200 to 450 nm, and Mn²⁺ singly-doped y-AlON can produce a broad band peaking at 517 nm under 450 nm excitation. Both of them were considered to occupy Al³⁺ sites, however, the mismatch of ionic radii Al^{3+} (0.39 Å, 4CN) and Eu^{2+} (1.17 Å, 4CN) limited the solubility of Eu²⁺ (Fig. 2a). Spectral overlap between Eu²⁺ emission and Mn²⁺ excitation was presented in the paper, which gave a possibility of ET from Eu²⁺ to Mn²⁺ ions in Eu²⁺,Mn²⁺ co-doped samples. Moreover, the similar excitation spectra of Eu²⁺ and Mn²⁺ emissions in Eu²⁺,Mn²⁺ co-doped samples were used to demonstrate it. Therefore, the emission intensity of Mn²⁺ can be enhanced by many times compared to Mn²⁺ singly-

ARTICLE

Doped ions category	Main energy levels transition	Representative samples	Emission colors	Ref.
Eu ²⁺	$4f^65d^1 \rightarrow 4f^7$	$Ca_3Mg_3(PO_4)_4:Eu^{2+}$	blue	12
		$Ca_3(PO_4)_2:Eu^{2+}$	cyan	13
		$CaZrSi_2O_7:Eu^{2+}$	green	14
		$Ca_3Si_2O_7:Eu^{2+}$	yellow	15
		α-SrNCN:Eu ²⁺	orange	16
		Sr[LiAl ₃ N ₄]:Eu ²⁺	red	17
Ce ³⁺	$5d^1 \rightarrow 4f^1$	$Sr_5(PO_4)_2(SiO_4):Ce^{3+}$	blue	18
		$Ca_6BaP_4O_{17}:Ce^{3+}$	Blue-green	19
		$Ca_2GdZr_2(AIO_4)_3:Ce^{3+}$	green	20
		(La,Gd)Sr ₂ (Al,B)O ₅ :Ce ³⁺	yellow	21
		$Y_3AI_{5-x}Si_xO_{12-x}N_x:Ce^{3+}$	orange	22
		SrS:Ce ³⁺	red	23
Bi ³⁺	${}^{3}P_{1} \rightarrow {}^{1}S_{0}$	$CaSb_2O_6:Bi^{3+}$	blue	24
		Ca ₁₂ Al ₁₄ O ₃₂ Cl ₂ :xBi ³⁺	cyan	25
		$Ca_3Al_2O_6$: Bi ³⁺	green	26
		LuVO ₄ :Bi ³⁺	yellow	27
		ScVO ₄ :Bi ³⁺	orange	28
		NaZnPO ₄ :Mn ²⁺	green	29
Mn ²⁺	${}^{4}T_{1} \rightarrow {}^{6}A_{1}$	CdSiO ₃ :Mn ²⁺	yellowish orange	30
		$Na_2CaMg(PO_4)_2:Mn^{2+}$	red	31
Tb ³⁺	${}^{5}D_{4} \rightarrow {}^{7}F_{J(J=6,5,4,3)}$	CaMoO ₄ :Tb ³⁺	green	32
Dy ³⁺	${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$	Sr ₃ RE ₂ (BO ₃) ₄ :Dy ³⁺ (RE = Y, La, Gd)	cyan	33
		(Sr _{0.85} Mg _{0.14}) ₃ (P _{1-x} Si _x O ₄) ₂ :Dy ³⁺	white	34
	$F_{9/2} \rightarrow H_{13/2}$	$Y_2(MoO_4)_3:Dy^{3+}$	yellow	35
Sm ³⁺	${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{5/2,7/2,9/2}$	SrMoO ₄ :Sm ³⁺	red	36
- 3+	5 7 F	Ba_2CaWO_6 : Eu^{3+}	orange red	37
EU	$D_0 \rightarrow F_{J(J=0,1,2,3,4)}$	RbZnPO ₄ :Eu ³⁺	red	38

 Table 1
 The transitional character of singly-doped ions in phosphors

Fig. 2 (a) Site occupation of Eu^{2+} and Mn^{2+} in crystal structure of γ -AION and comparison of photoluminescence (PL) spectra of γ -AION: Eu^{2+} (blue), γ -AION: Mn^{2+} (red), and γ -AION: Mn^{2+} , Eu^{2+} (green). (b) Temperature-dependent luminescence of γ -AION: Eu^{2+} , Mn^{2+} ($Eu^{2+} = 2 \mod \%$, $Mn^{2+} = 5 \mod \%$) and γ -AION: Mn^{2+} ($Mn^{2+} = 5 \mod \%$). Excitation wavelength is 405 nm. (Reproduced with permission from ref. 50 copyright 2015, American Chemical Society.)

doped situation (Fig. 2b). Good thermal stability was deduced because the emission intensity of γ -AlON:Eu²⁺,Mn²⁺ measured at 150 °C maintained 80% of that at room temperature (Fig. 2c), which was 8% larger than that of γ -AlON:Mn²⁺. This may be originated from a serious lattice distortion when Eu²⁺ and Mn²⁺ were co-doped into γ -AlON with appreciable difference ionic radii. As to Ca₉Mg(PO₄)₆F₂:Eu²⁺,Mn²⁺ system,⁵¹ the new solid solution of Ca₉Mg(PO₄)₆F₂ was obtained via a substitution of Mg for Ca with the similar crystal structure of Ca₅(PO₄)₃F. As is well known to us, the Ca₅(PO₄)₃F belongs to the apatite hexagonal structure with a space

group $P_{63/m}$ in which there are two kinds of crystallographic lattices consisting of 9-fold-coordinated 4f sites with C_3 point symmetry [denoted as $Ca^{2+}(1)$] and 7- fold-coordinated 6h sites with C_5 point symmetry [denoted as $Ca^{2+}(2)$] (Fig. 3a). Therefore, Eu^{2+} would like to occupy both two sites, resulting in an asymmetrically broad band and it can be decomposed into two Gaussian bands (Fig. 3b), which was demonstrated by the different fluorescent decay lifetimes for two deconvoulted bands (Fig. 3c). Intense tunable emission color from blue to yellow including white along with the CIE chromatic coordinates was observed under a 365 nm UV lamp excitation in Eu^{2+},Mn^{2+} co-doped $Ca_9Mg(PO_4)_6F_2$ by adjusting the ratio of Eu^{2+}

and Mn²⁺ concentrations (Fig. 3d). This phenomenon is based on the ET from Eu^{2+} to Mn^{2+} ions, which was also demonstrated by the similar excitation spectra of Eu^{2+} and Mn^{2+} and decline of fluorescent decay lifetimes of Eu²⁺ (Fig. 3e) in $Ca_9Mg(PO_4)_6F_2:Eu^{2+},Mn^{2+}$. When four Ca atoms were substituted by two Y and two Na atoms to balance the charge in $Ca_{10}(PO_4)_6F_2$, the similar phenomenon was also presented and observed in apatite crystal structure phosphor $Ca_6Y_2Na_2(PO_4)_6F_2:Eu^{2+},Mn^{2+,52}$ The substitution of all Ca atoms by Sr atoms in this kind of crystal structure also can produce the tunable emission color from blue to yellow in $Sr_5(PO_4)_3F:Eu^{2+},Mn^{2+,53}$ Another good blue-white-yellow system $Ca_2YF_4(PO_4):Eu^{2+},Mn^{2+}$ was also investigated by Geng et al.⁵ Huang et al.55 successfully combined the as-prepared $Ca_4Si_2O_7F_2:Eu^{2+},Mn^{2+}$ phosphors with a 400 nm n-UV chip to fabricate a w-LED, producing a good CIE chromatic coordinate of (0.347,0.338) and CCT of 4880 K compared to commercial w-LED with the CIE chromatic coordinate of (0.302,0.315) and CCT of 7272K. Commonly, the as-prepared blue-yellow phosphors are often lack of red component for the white light generation, that is cool white light, therefore, blue-orange and blue-red phosphors were investigated based on ET from Eu²⁺ to Mn^{2+} ions to obtain warm white light, such as $Ca_2PO_4CI:Eu^{2+},Mn^{2+}$, $Na(Sr,Ba)PO_4:Eu^{2+},Mn^{2+}$, Sr_{1.7}Mg_{0.3}SiO_{4-x}F_x:Eu²⁺,Mn²⁺, Ca₉Lu(PO₄)₇:Eu²⁺,Mn²⁺, Ca_{6-x-v}Mg_{x-} $_{z}(PO_{4})_{4}$:yEu²⁺,zMn²⁺, Ba₂MgP₄O₁₃:Eu²⁺,Mn^{2+,56} Good thermal stability for $Ca_2PO_4Cl:Eu^{2+}$, Mn^{2+} was observed in Fig. 4a. Moreover, the CIE color coordinates of (0.3102, 0.3096), a CCT of 4296 K, and CRI of 86 (Fig. 4b) when $Ca_2PO_4CI:Eu^{2+}$, Mn^{2+} was fabricated with a 400 nm n-

ARTICLE

UV chip. As a kind of cyan to pink phosphor $KCaY(PO_4)_2$: Eu^{2+} , Mn^{2+} , ⁵⁷ its tunable emission color can be generated based on the combination of emission bands, centered at 480 nm $(4f^65d^1 \rightarrow 4f^7)$ transition of Eu²⁺) and 652 nm (${}^{4}T_{1}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ transition of Mn²⁺) in Fig 4c and d. When the emission bands of Eu^{2+} in some hosts locate at green area, it can be possible to transfer it energy to ${\rm Mn}^{2+}$ since the excitation bands of Mn^{2^+} locate at green region. Xia et al.⁵⁸ analyzed the Eu²⁺ occupation site via the X-ray diffraction Rietveld analysis in detail, which indicated the preference of Eu²⁺ occupying Na^+ sites in NaScSi₂O₆ host. An intense green emission can be observed with the emission peak at 533 nm upon 365 nm excitation. In Eu^{2+} , Mn^{2+} co-doped NaScSi₂O₆ phosphors, bright tunable color from green to yellow (Fig. 5a) with Eu²⁺ emission band centered at 533 nm and Mn²⁺ emission band centered at 654 nm can be observed under a 365 nm UV lamp excitation because of the ET from Eu²⁺ to Mn²⁺ ions through adjusting the concentration ratio of Eu^{2+} and Mn^{2+} ions. The ET mechanism from Eu^{2+} to Mn^{2+} was demonstrated to be a dipole-dipole (d-d) interaction by the analysis of equation (7). In addition, they combined the as-prepared phosphor NaScSi₂O₆:0.05Eu²⁺,0.10Mn²⁺ and commercial blue BAM phosphors with 370 nm n-UV chip to produce the warm w-LED with the CIE color coordinate of (0.358, 0.378), CCT of 4666 K and good CRI of 92.2 (Fig. 5b). Similar green-yellow emission color took place in Eu^{2+} , Mn^{2+} co-doped $Na_3LuSi_2O_7$ phosphors⁵⁹ with the corresponding Eu²⁺ emission peak at 508 nm and Mn²⁺ emission peak at 594 nm by adjusting the concentration ratio of Eu^{2+} and Mn^{2+} ions. Another four examples are Eu^{2+}/Mn^{2+} co-doped

Fig. 3 (a) Crystal structure of $Ca_9Mg(PO_4)_6F_2$ host. (b) Photoluminescence emission and excitation spectra of CMPF: 0.18Eu²⁺ sample with corresponding decay curves (monitored at 405 and 520 nm and excited at 300 nm), inset is the photograph excited under a 365 nm UV lamp. (c) CIE chromaticity coordination of CMPF: $0.18Eu^{2+}$, yMn^{2+} samples (A–H corresponds to y = 0, 0.02, 0.06, 0.10, 0.18, 0.26, 0.34, 0.38, respectively.) with corresponding photographs excited under a 365 nm UV lamp on the right of the picture. (d) Decay curves and lifetimes of Eu^{2+} in representative samples CMPF: $0.18Eu^{2+}$, yMn^{2+} (monitored at 454 nm excited at 300 nm). (Reproduced with permission from ref. 51, copyright 2014, American Chemical Society.)

ARTICLE

 $Sr_3Y/Lu/Sc/Gd(PO_4)_3$.⁶⁰ In $Sr_3Lu(PO_4)_3$: Eu^{2+} , Mn^{2+} , the CIE chromatic coordinate varied from green to yellow including white area (Fig. 5c) because their emission bands consisted of some appropriate blue, green and red components upon 355 nm excitation (Fig. 5d). The emission bands centered at 503 nm of Eu²⁺ and 603 nm of Mn²⁺ in $Ba_9Y_2Si_6O_{24}$ made them the tunable green-orange phosphors via the variation of doped ion concentration.⁶¹ Huang et al. and Guo et al.^{62,56d} investigated the photoluminescence properties of $(Ca/Sr/Mg)_{9}(Y/La/Gd/Lu)(PO_{4})_{7}:Eu^{2+},Mn^{2+}$ phosphors, they found blue and red shifts occurred with increasing Mg^{2+} and Sr^{2+} concentrations, respectively, which is ascribed to the crystal field variation around Eu^{2+} when Ca^{2+} were substituted by smaller Mg^{2+} and larger Sr^{2+} in $Ca_9Y(PO_4)_7$: Eu^{2+} (Fig. 6a). When the Mn^{2+} ions was introduced into $Ca_{0.5}Sr_{0.5})_{9}Y(PO_{4})_{7}:Eu^{2+}$, it showed tunable color from green to red by adjusting the Eu^{2+} and Mn^{2+} concentration ratio (Fig. 6b). They also combined the as-prepared (Ca_{0.5}Mg_{0.5})₉Y(PO₄)₇:0.007Eu²⁺ and(Ca_{0.5}Sr_{0.5})₉Y(PO₄)₇:0.007Eu²⁺,

 $0.02Mn^{2+}$ with a 380 chip to generate w-LED with CCT of 6303 K, a CRI of 87.4, and CIE color coordinates x = 0.314 and y = 0.348 (Fig. 6c and d). The other two systems Ca₉La/Gd(PO₄)₇:Eu²⁺,Mn²⁺ with similar properties were also considered to be the good candidate phosphors for n-UV pumped w-LED. Differently, the Ca₉Lu(PO₄)₇:Eu²⁺,Mn²⁺ presented tunable cyan-pink including white emission color under 355 nm excitation because of a little different emission bands of Eu²⁺ and Mn²⁺ compared to similar samples above.

Generally, Tb³⁺ is acted as an efficiently green-emitting activator based on its characteristic ${}^{5}D_{4} \rightarrow {}^{7}F_{J(J=6,5,4,3)}$ transition.⁶³ Since the transition belongs to 4f-4f spin-forbidden transition, the absorption spectrum and emission band are rather weak and their widths are narrow. Therefore, it is desired to enhance its emission intensity via the ET effect. Herein, the sensitizer Eu²⁺ is considered to be a good candidate to transfer its energy to $\mathsf{Tb}^{3+}.^{64}$ In $\mathsf{Eu}^{2+},\!\mathsf{Tb}^{3+}$ co-doped phosphors, the emission color can be tuned from blue or cyan to green. Recently, Li et al. found that the tunable blue-green color can be produced via co-doping Eu^{2+} and Tb^{3+} into familiar $\beta\text{-Ca}_3(\text{PO}_4)_2$ compound with high quantum yields under UV excitation.65 $Ba_3LaNa(PO_4)_3F:Eu^{2+},Tb^{3+}$ with apatite structure produced excellent ET properties from Eu²⁺ to Tb³⁺ ions, resulting in clear color variation from blue to green under a 365 UV lamp excitation (Fig. 7a) by adjusting the doped ions concentration ratio.⁶⁶ The ET mechanism from Eu²⁺ to Tb³⁺ ions was demonstrated to be electric dipolequadrupole interaction using Inokuti-Hirayama (I-H) model showed in Introduction(Fig. 7b). Zhang et al.⁶⁷ developed a novel $Sr_{3}Y_{2}(Si_{3}O_{9})_{2}:Eu^{2+},Tb^{3+}$ with corresponding structure reported. Tunable color from cyan to green can be observed from the emission spectra in Fig. 7c with increasing Tb³⁺ concentration in Sr₃Y₂(Si₃O₉)₂:0.01Eu²⁺,yTb³⁺ phosphors. Detailed schematic diagram of energy transfer (Fig. 7d) from Eu²⁺ to Tb³⁺ ion was used to understand the ET process. It showed some excited electrons in Eu²⁴ 4f⁶5d¹ energy level transfer their energy to Tb^{3+ 5}D₄ energy level, resulting in the Tb³⁺⁵D₄ \rightarrow ⁷F_{J(J = 6.5.4.3)} transition.

Fig. 4 (a) Temperature-dependent emission spectra of $Ca_2PO_4Cl:0.07Eu^{2+}, 0.2Mn^{2+}$ ($\lambda_{ex} = 370$ nm). Inset: normalized intensity of $Ca_2PO_4Cl:0.07Eu^{2+}, 0.2Mn^{2+}$ and YAG:Ce as a function of temperature. (b) Emission spectrum of a phosphor-converted LED (pc-LED) lamp fabricated with a 400 nm LED chip and warm, white-emitting phosphor $Ca_2PO_4Cl:0.07Eu^{2+}, 0.2Mn^{2+}$. (c) PL spectra of a series of KCaY(PO_4)₂:1%Eu²⁺, x%Mn²⁺ phosphors with different Mn²⁺ concentrations (x = 0, 1, 2, 4, 5, 7, and 10 mol %) excited at 365 nm. (d) CIE coordinates of KCaY(PO_4)₂:1%Eu²⁺, x%Mn²⁺ phosphors (x = 0, 1, 2, 4, 5, 7, and 10). Insets show the phosphor images with different Mn²⁺ doping concentrations excited at 365 nm in the ultraviolet (UV) box. (Reproduced with permission from ref. 56a and 57, copyright 2012, 2014, Royal Society of Chemistry, American Chemical Society.)

Fig. 5 (a) CIE chromaticity diagram and a series of digital photographs of the selected $NaScSi_2O_6:0.05Eu^{2+}, xMn^{2+}$ phosphors under 365 nm UV-lamp excitation. (b) Electroluminescence (EL) spectrum of the w-LED lamp based on the $NaScSi_2O_6:0.05Eu^{2+}, 0.10Mn^{2+}$ and commercial blue BAM phosphors and driven by a current of 25 mA. The inset photographs are the w-LED lamp package. (c) PL spectra for $Sr_{1}Lu(PO_{d})_{3}$:0.005Eu²⁺, nMn²⁺ phosphors on Mn²⁺ doping content (n) and (d) corresponding CIE chromaticity diagram for (point 1 to 8) excited at 355 nm. (Reproduced with permission from ref. 58 and 60b, copyright 2012, 2013, American Chemical Society.)

Fig. 6 (a) Dependence of emission spectra of $(Ca_{0.993-x-y}Mg_xSr_y)_9Y(PO_4)_7$:0.007Eu²⁺ phosphors on concentrations of Mg^{2+} and Sr^{2+} . (b) Spectral overlap between Eu^{2+} PL spectrum of $(Ca_{0.5}Sr_{0.5})_{9}Y(PO_{4})_{7}:Eu^{2+}$ (black line) and PL excitation (PLE) spectrum of $(Ca_{0.5}Sr_{0.5})_{9}Y(PO_{4})_{7}:Mn^{2+}$ (red line), and emission spectra of Mn^{2+} at different values of z in $(Ca_0 \, _5 r_0 \, _5)_{\alpha} Y(PO_4)_7 : 0.007 Eu^{2+}, zMn^{2+}$ phosphors excited at 380 nm. (c) CIE chromaticity diagram of $Ca_{9,x}Y(PO_4)_7:0.007Eu^{2+},xMg^{2+}$ (x = 0.05-0.5), $Ca_{9,y}Y(PO_4)_7:0.007Eu^{2+},ySr^{2+}$ (y = 0.05-0.5), and $(Ca_{0,5}Sr_{0,5-})_7:0.007Eu^{2+},ySr^{2+})_7$ $_{\gamma}$, $Y(PO_{a})_{\gamma}$: 0.007Eu²⁺, zMn^{2+} (z = 0-0.1) phosphors under 380 nm excitation. (d) EL spectrum of a white-emitting LED using a 380 nm n-UV chip comprising (Ca_{0.5}Sr_{0.5})₉Y(PO₄)₇:0.007Eu²⁺,0.02Mn²⁺ (yellow) and (Ca_{0.5}Mg_{0.5})₉Y(PO₄)₇:0.007Eu²⁺ (blue) phosphors driven by a 350 mA current. (Reproduced with permission from ref. 62a, copyright 2011, Royal Society of Chemistry.)

ARTICLE

Fig. 7 (a) CIE chromaticity diagram for $Ba_3LaNa(PO_4)_3F:0.01Eu^{2+},nTb^{3+}$ phosphors, together with their corresponding photographs under a 365 nm UV lamp. (b) Experimental data plots of log{In[ID0(t)/ID(t)]} versus log(t) of Eu^{2+} in $Ba_3LaNa(PO_4)_3F:0.01Eu^{2+},nTb^{3+}$ (n = 0.06, 0.15, 0.30) samples. The red lines indicate the fitting behaviors. (c) The PL spectra of $Sr_3Y_2(Si_3O_9)_2:0.01Eu^{2+},yTb^{3+}$ phosphors (y = 0, 0.01, 0.05, 0.13, 0.14, 0.17 and 0.21). (d) The schematic diagram of energy transfer in $Sr_3Y_2(Si_3O_9)_2:Eu^{2+},Tb^{3+}$. (Reproduced with permission from ref. 66 and 67, copyright 2013, 2016, American Chemical Society, Royal Society of Chemistry.)

2.2 Eu²⁺-Tb³⁺-Mn²⁺/Eu³⁺/Sm³⁺ systems

Since Eu²⁺-Tb³⁺ systems often produce tunable emission color from blue or cyan to green under UV/n-UV excitation, the supplement of red component in them is necessary if the white light is expected. As we know, the Mn²⁺ can emit red color when it locates in the octahedron field, while Eu³⁺ and Sm³⁺ can emit their characteristic red emission based on their ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ and ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ transitions, respectively. Therefore, co-doping Mn²⁺, Eu³⁺ or Sm³⁺ in Eu²⁺, Tb³⁺ co-doped systems is possible to obtain white light emission.

In these three kinds of systems, the $Eu^{2+}-Tb^{3+}-Mn^{2+}$ system is the most frequent and efficient one. Lv et al.⁶⁸ designed and prepared the $BaMg_2Al_6Si_9O_{30}{:}Eu^{2+}{,}Tb^{3+}{,}Mn^{2+}$ phosphors, they found two emission peaks at 376 and 450 nm occurred in Eu²⁺ singly- doped $BaMg_2Al_6Si_9O_{30}$ under 330 nm excitation since Eu^{2+} occupied two kinds of Ba²⁺ sites. Mn²⁺ can emit the band around at 610 nm under 407 nm excitation because of its occupancy of Mg^{2+} site with sixfold cordinated oxygens. Therefore, tunable color from blue to green and red inculding white were generated when Tb³⁺ and Mn²⁺ were codoped into it under UV excitation, respectively, based on the effective ET from Eu^{2+} to Tb^{3+} and Mn^{2+} ions (Fig. 8a). In Eu^{2+} , Mn²⁺ co-doped KCaGd(PO₄)₂ phosphors, the emission bands of Eu^{2+} and Mn^{2+} centered at 463 and 650 nm under 365 nm excitation. Liu et al.⁶⁹ added Tb^{3+} into Eu^{2+} , Mn^{2+} co-doped KCaGd(PO₄)₂ phosphors to compensate the green component, the green emission intensity increased with increasing Tb³⁺ concentration (Fig. 8b), which made the emission color of $KCaGd(PO_4)_2 Eu^{2+}, Mn^{2+}$ shift from light red to white region under 365 nm excitation. A schematic

level diagram for ET process in Eu²⁺,Tb³⁺,Mn²⁺ co-doped Ca₉Sc(PO₄)₇ system⁷⁰ as a reference for Eu²⁺,Tb³⁺,Mn²⁺ systems (Fig. 8c), we can see Eu²⁺ emitted a band around 416 nm under 292 nm excitation, part of energy was transferred from Eu^{2+} excited level to ${}^{5}D_{3}$ level of Tb^{3+} and ${}^{4}A_{1}$ level of Mn^{2+} to enhance their corresponding emission intensities. It is interesting some Eu³⁺ were not been reduced in the reductive calcined atmosphere in Eu,Tb³⁺ co-doped LiBaBO₃.⁷¹ This phenomenon is not frequent. Xu et al. analyzed the ET properties from Eu^{2+} to Tb^{3+} and then to Eu^{3+} via the variations of excitation spectra and fluorescent decay times in detail. The ET process of $Eu^{2^+} \rightarrow (Tb^{3^+})_n \rightarrow Eu^{3^+}$ was relatively considerable, so they brought forward the branch model to explain the process of energy transfer for the terbium bridge in Fig. 8d. Firstly, when Eu²⁺ ions were excited by UV light, it will give out a blue emission and sensitize Tb³⁺ ions in the ground state. Then, the excited Tb³⁺ ions may give out a green emission and transfer energy to Eu³⁺, at the same time, the excited Tb³⁺ ion may release energy in the way of cross-relaxation with another Tb^{3+} ion in the ground state, and the Tb^{3+} which absorbed the energy from excited Tb³⁺ will also flow to Eu³⁺ through the process of energy transfer. They utilized this property to obtain the color-tunable from blue-green to red emission under UV excitation. Jia et al.⁷² had demonstrated Tb³⁺ can act as an ET bridge to connect $Eu^{2+}-Sm^{3+}$ luminescent centers in $Sr_3Y(PO_4)_3$, realizing the red emission of Sm³⁺ under near-UV excitation. However, it is a pity rare reports were connected to this condition.

Fig. 8 (a) The photographs of the emission $BaMg_2Al_6Si_9O_{30}$:0.04Eu²⁺,yTb³⁺,zMn²⁺ phosphors with different percent of dopant contents (y and z) under excitation at 365 nm. (b) PL spectra of KCaGd(PO₄)₂:1%Eu²⁺,10%Mn²⁺ and y%Tb³⁺ phosphors (y = 1, 5, 10, 20) excited at 365 nm. (c) The schematic level diagram for ET process from Eu²⁺ to Tb³⁺ and Mn²⁺ in the Ca₉Sc(PO₄)₇ host. (d) ET models of the terbium chain (cascade model) and the terbium bridge (branch model). (Reproduced with permission from ref. 68-71, copyright 2011, 2013, 2015, American Chemical Society, Royal Society of Chemistry.)

2.3 Ce³⁺-Mn²⁺/Tb³⁺/Dy³⁺/Eu²⁺ systems

It is well known Ce³⁺ often produced n-UV to green emission under UV/n-UV excitation in many hosts.⁷³ Its high emission intensity and broad emission band are originated from its 4f-5d spin-allowed transition and phonon side band. Its emission spectra can overlap the excitation spectra of Mn^{2+} , Tb^{3+} , Dy^{3+} or Eu^{2+} , which make it possible that ET from Ce³⁺ to these ions take place when they are co-doped into proper hosts.⁷⁴ Therefore, tunable emission color can be generated in these systems.

As is presented in Section 2.1, emission color of Mn²⁺ can vary from green to red depending on different coordinated fields. Therefore, tunable emission color from blue to green, yellow/ orange, pink and red, and cyan or green to yellow/orange can be realized in Ce³⁺-Mn²⁺ system. Zhu et al. noticed that Tyutyunnik et al. reported a novel phase of $Sr_3Gd_2(Si_3O_9)_2$ ⁷⁵ they tried to dope Ce^{3+} and Tb^{3+}/Mn^{2+} into it to investigate the PL properties of asprepared samples and found that tunable color from blue to green and yellowish green including white were generated under UV excitation (Fig. 9a). Zhou et al.⁷⁶ prepared a kind of blue to yellow/orange color emission NaAlSiO4:Ce³⁺,Mn²⁺ phosphor based on two main emission bands centered at 430 and 590 nm and ET properties from Ce³⁺ to Mn²⁺ ions. The 430 nm emission band from Ce³⁺ can be decomposed into four bands peaking at 404, 438, 470 and 519 nm, because Ce³⁺ can occupy two kinds of Na⁺ sites and its lowest 5d excited state to the ${}^{2}F_{5/2}$ and ${}^{2}F_{7/2}$ spin orbit 4f ground states. Fig. 9b presents the ET model for $Ce^{3+} \rightarrow Mn^{2+}$ in the NaAlSiO₄ host as the reference in Ce^{3+} -Mn²⁺ system. Ce^{3+} absored the UV light from the ground state to the 5d excited state, and then

efficiently transferred the energy to the $\,^4\text{T}_2$ level of Mn^{2+} . The excited free electron of Mn^{2+} then relaxed to the excited state of ${}^{4}T_{1}$ $({}^{4}G)$ through ${}^{4}E$ $({}^{4}D)$, ${}^{4}T_{2}$ $({}^{4}D)$, $({}^{4}E$, ${}^{4}A_{1})$ $({}^{4}G)$ and ${}^{4}T_{2}$ $({}^{4}G)$ intermediate energy levels by the process of nonradiation. Then the characteristic optical transition ${}^{4}T_{1} \rightarrow {}^{6}A_{1}$ of Mn²⁺ can be realized, which exhibited the characteristic emission of Mn²⁺. Since red component is often deficient in phosphors, the red emission in Ce³⁺,Mn²⁺ systems also can be easily realized. Ci et al.⁷⁷ obtained a Ce³⁺, Mn²⁺ of co-doped phosphosilicate kind $Sr_{7}La_{3}[(PO_{4})_{2.5}(SiO_{4})_{3}(BO_{4})_{0.5}](BO_{2})$ phosphor with the apatite crystal structure (P_{63/m}), its emission color can be tuned from blue to pink with increasing Mn²⁺ concentration(Fig. 9c). Moreover, they investigated the PL thermal quenching properties of Ce³⁺ and Mn²⁺ singly doped and Ce³⁺,Mn²⁺ co-doped samples. It was found the declines of emission intensities in singly Ce³⁺ and Mn²⁺ doped $Sr_7La_3[(PO_4)_{2.5}(SiO_4)_3(BO_4)_{0.5}](BO_2)$ were more less than that of Ce^{3+} and Mn^{2+} co-doped $Sr_7La_3[(PO_4)_{2.5}(SiO_4)_3(BO_4)_{0.5}](BO_2)$ at identical temperature. By comparing the different thermal quenching properties among them, they proposed a configurational coordinate diagram (Fig. 9d) which was very useful to understand the effect of temperature to PL in Ce³⁺,Mn²⁺ co-doped phosphors systems. It was suggested most of electrons return to the ground states along the red dotted line 1 to bring out the orange emission of Mn^{2+} and the blue dotted line (2) to obtain the blue emission of Ce^{3+} in respective Mn^{2+} and Ce^{3+} singly doped $Sr_7La_3[(PO_4)_{2.5}(SiO_4)_3(BO_4)_{0.5}](BO_2),$ (3) was added beside (1) and (2) processes, resulting in an enhancement of the Mn²⁺ emission

ARTICLE

Fig. 9 (a) The CIE chromaticity coordinates diagram for $Sr_3Gd_2(Si_3O_9)_2:0.26Ce^{3+}$, yTb³⁺ (y = 0, 0.02, 0.06, 0.10, 0.20, 0.40, 0.60, 0.80, 1.00, 1.20, 1.40, 1.60, 1.74) and $Sr_3Gd_2(Si_3O_9)_2:Ce^{3+}$, zMn²⁺ (z = 0, 0.09, 0.21,0.33, 0.45, 0.57, 0.69, 0.81). (b) Illustration of the energy transfer model for $Ce^{3+} \rightarrow Mn^{2+}$ in the NaAISiO₄ host. (c) The Commission International CIE chromaticity coordinates of the samples $Sr_7La_3[(PO_4)_{2.5}(SiO_4)_3(BO_4)_{0.5}](BO_2):0.01Ce^{3+}$, $Sr_7La_3[(PO_4)_{2.5}(SiO_4)_3(BO_4)_{0.5}](BO_2):0.01Ce^{3+}$, xMn^{2+} (0.02 $\leq x \leq 0.16$). (d) Configurational coordinate diagram of the ground states of Ce^{3+} and Mn^{2+} and the excited states of Ce^{3+} and Mn^{2+} . (Reproduced with permission from ref. 75-77, copyright 2014, 2015, 2016, Royal Society of Chemistry, Elsevier.)

intensity in Ce³⁺,Mn²⁺ co-doped sample. With increasing temperature, (4) and (5) were proceeded due to the stronger electron-phonon coupling in corresponding singly-doped samples. More electrons from e2 were transferred to e1 under the stronger phonon vibrations, which resulted in poorer thermal properties of Ce^{3+} in $Sr_7La_3[(PO_4)_{2.5}(SiO_4)_3(BO_4)_{0.5}](BO_2):0.01Ce^{3+},0.08Mn^{2+}$ than those in Sr₇La₃[(PO₄)_{2.5}(SiO₄)₃(BO₄)_{0.5}](BO₂):0.01Ce³⁺. More electrons from e1 can return to the ground state along the pink dotted line 6, and this process also decreased the possibility of back tunneling of electrons from e1 to the e2, therefore leading to rapid degradation of the thermal properties of Ce^{3+} and Mn^{2+} in the Sr₇La₃[(PO₄)_{2.5}(SiO₄)₃(BO₄)_{0.5}](BO₂):0.01Ce³⁺,0.08Mn²⁺ sample. Novel $Na_4Ca_4Si_6O_{18}:Ce^{3+},Mn^{2+}$ and $NaCa_2LuSi_2O_7F_2:Ce^{3+},Mn^{2+}$ phosphors⁷⁸ were also observed from blue to pink color under UV excitation. The ET mechanisms were analyzed to be both dipole-quadrupole interactions according to Dexter's ET expressions of multipolar interaction and Reisfeld's approximation⁷⁹, which were demonstrated via the consistence of calculations of R_c by concentration quenching and spectral overlap methods. Zhang et al. and Sun et al.⁸⁰ reported Ce³⁺, Mn²⁺ co-doped NaSrBO₃ and NaCaBO₃ phosphors, the emission peaks located at 430 and 400 nm under 360 nm excitation in NaSrBO₃:Ce³⁺ and NaCaBO₃:Ce³⁺, respectively. Moreover, different Mn²⁺ emission bands are centered at 630 and 600 nm, respectively. ET were deduced by the spectral overlap between Ce^{3+} emission and Mn^{2+} excitation bands and demonstrated via the declines of Ce³⁺ fluorescent lifetimes with increasing Mn²⁺ concentrations. Therefore, tunable emission color from blue to red were realized in these two systems.

CIE chromaticity diagram of $Ca_4Si_2O_7F_2:0.04Ce^{3+}$, yMn²⁺ Fig. 10 phosphors under 365 nm excitation (a), $Ca_2SrAl_2O_6:0.01Ce^{3+}, 0.01Li^+, nMn^{2+}$ with the excitation wavelength of 355 nm (b), $CaSr_2Al_2O_6:0.03Ce^{3+},0.03Li^+,yMn^{2+}$ under 358 nm excitation (c) and $Mg_{1.5}Lu_{1.5}Al_{3.5}Si_{1.5}O_{12}:0.05Ce^{3+},xMn^{2+}$ excited at 430 nm (d) (a-g, x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.35) phosphors with different doping concentrations of Mn^{2+} ions. The inset in (b) shows the corresponding photographs of the samples under a 365 nm UV lamp. (Reproduced with permission from ref. 81-83 copyright 2011, 2012, 2014, Elsevier, Royal Society of Chemistry, American Chemical Society.)

ARTICLE

Fig. 11 (a) PL spectra (λ_{ex} = 358 nm) of Na₂Gd₂B₂O₇:0.05Ce³⁺,nTb³⁺ (n = 0, 0.06, 0.12, 0.18, 0.25) with corresponding CIE diagram (b). Inset in (a) is the variation of integrated emission intensity of Ce³⁺ and Tb³⁺ with different concentration of Tb³⁺. (Reproduced with permission from ref. 86e, copyright 2012, Royal Society of Chemistry.)

An asymmetric cyan-emitting band with many peaks including most intense one at about 455 nm was observed in Ca₄Si₂O₇F₂:Ce³⁺ upon 330 nm excitation because there are four different Ca^{2+} sites Ce^{3+} located. Combined with Mn²⁺ emission band centered at 580 nm, the Ce^{3+} , Mn^{2+} co-doped $Ca_4Si_2O_7F_2$ samples can produce cyan to yellow color under 365 nm excitation (Fig. 11a) according to the CIE chromaticity diagram of $Ca_4Si_2O_7F_2$:0.04Ce³⁺,yMn²⁺ with different y value.⁸¹ Jiao et al. and Li et al.⁸² prepared two novel Ce³⁺,Li⁺,Mn²⁺ co-doped Ca2SrAl2O6 and CaSr2Al2O6 phosphors with identical crystal structure, in which Li⁺ often acted as the charge compensator for Ce³⁺. Therefore, similar PL properties were observed in them. Cyan color was observed because of broad emission bands of Ce^{3+} with the range from 375 to 700 nm centered at 470 nm and from 375 to 625 nm centered at 460 nm, respectively with the excitations of 355 and 358 nm, respectively. After co-doping Mn²⁺ into them, the emission color were tuned from cyan to light orange pink including white in phosphors with increasing Mn²⁺ concentration (Fig. 11b and c). Differently, the ET mechanism from Ce³⁺ to Mn²⁺ ions is dipole-quadrupole interaction in $Ca_2SrAl_2O_6:Ce^{3+}$, Mn²⁺ while quadrupole-quadrupole interaction in CaSr₂Al₂O₆:Ce³⁺,Mn²⁺ according to Dexter's and Reisfeld's theory. $\rm Ce^{3+}$ and $\rm Mn^{2+}$ co-doped $\rm Mg_{1.5}Lu_{1.5}AI_{3.5}Si_{1.5}O_{12}$ with garnet crystal structure can emit green to yellow color under 430 nm excitation by varying concentrations of Ce³⁺ and Mn²⁺ (Fig. 11d).⁸³ It was attractive that tunable full-color-emitting Ca₃Sc₂Si₃O₁₂:Ce³⁺,Mn²⁺ phosphor was reported by Liu et al,⁸⁴ they analyzed that Mn²⁺ would like to occupy not only Ca²⁺ but also Sc³⁺ sites because there was only one site for both Ca^{2+} and Sc^{3+} , respectively, while two obvious emission peaks occurred in Mn²⁺ singly-doped Ca₃Sc₂Si₃O₁₂. And the emission intensities of two Mn²⁺ were enhanced and varied depending on Mn²⁺ concentration, which is originated from different ET efficiencies from Ce³⁺ to them in Ca₃Sc₂Si₃O₁₂:Ce³⁺,Mn²⁺, as well as compensation for the negative charge of Mn²⁺ substitution for Sc^{3+} in the form of Ce^{3+} substitution for Ca^{2+} by presence of Ce^{3+} in $Ca_3Sc_2Si_3O_{12}:Ce^{3+}$, Mn^{2+} . Then, they added rare earth elements Y, La, Gd and Lu into $Ca_3Sc_2Si_3O_{12}$:Ce³⁺,Mn²⁺ phosphor⁸⁵ and investigated the effects of them to the PL

properties in detail. It was found that the smaller the ionic radius, the larger the relative intensity of $Mn^{2+}(II)$. The reason is that the smaller the ionic radius is, the easier the Ln^{3+} at the Ca^{2+} site to act as a charge compensator, resulting in the increasing Mn^{2+} substitution at the Sc^{3+} site. it is interesting the excitation band of as-prepared samples ranged from 200 to 500 nm centered at 450 nm, which is strongly matched with commercial blue InGaN chips. Therefore, By combinging this single $Ca_3Sc_2Si_3O_{12}:Ce^{3+},Mn^{2+}$ phosphor with blue (450 nm) InGaN LED chips, pc-WLEDs with a high CRI of 91-92 and a CCT of 5379-6954 K were obtained.

In Section 2.1, we know that the green emission of Tb^{3+} generally was utilized in phosphors based on its ${}^{5}D_{4} \rightarrow {}^{7}F_{J(J=6,5,4,3)}$ transition. Similar with Eu^{2+} , Ce^{3+} is also can be an effective sensitizer for Tb^{3+} when Ce^{3+} emission locates at ultraviolet to cyan area to overlap Tb^{3+} excitation. Since the emission of Tb^{3+} locates at green region, the emission color of Ce^{3+} , Tb^{3+} co-doped samples would like to be tuned from ultraviolet/blue/cyan to green with different doping concentrations based on the ET from Ce^{3+} to Tb^{3+} ions under UV/n-UV excitation.

As is presented above, weak crystal field results in the short wavelength of Ce³⁺ emission. Ultraviolet emissions occurred in many Ce^{3+} hosts, which were overlapped with Tb^{3+} characteristic excitation spectra. This deduced the ET from Ce^{3+} to Tb^{3+} ions. In YBa₃B₉O₁₈:Ce³⁺,Tb³⁺, Sr₃Gd/La(PO₄)₃:Ce³⁺,Tb³⁺, phosphors KCaY(PO₄)₂:Ce³⁺,Tb³⁺, Na₂Gd₂B₂O₇:Ce³⁺,Tb³⁺ and NaCaPO₄:Ce³⁺,Tb^{3+,86} n-UV to green color can be observed with increasing Tb³⁺ concentration with fixed Ce³⁺ concentration. Taking Na₂Gd₂B₂O₇:Ce³⁺,Tb³⁺ as an example, we can see the variations of PL spectra (λ_{ex} = 358 nm) of Na₂Gd₂B₂O₇:0.05Ce³⁺,nTb³⁺ (n = 0, 0.06, 0.12, 0.18, 0.25) with different Tb³⁺ concentration and the corresponding intensities in Fig. 11a. CIE diagram of these samples excited at 358 nm and digital PL photos under a 365 nm UV lamp excitation in Fig. 11b illustrated the color variation with Tb³⁺ concentration change. It is well known that compounds with apatite structure had been demonstrated to be the good hosts for rare earth ions introductions. Recently, apatite $La_{6}(Sr/Ba)_{4}(SiO_{4})_{6}F_{2}:Ce^{3+},Tb^{3+},$ $Ca_4Y_6(SiO_4)_6O:Ce^{3+},Tb^{3+},$ MgGd₄Si₃O₁₃:Ce³⁺,Tb³⁺, Sr₂La₈(SiO₄)₆O₂:Ce³⁺,Tb³⁺ besides β - ARTICLE

Fig. 12 The CL spectra of $MgGd_4Si_3O_{13}:0.08Ce^{3+}, 0.7Tb^{3+}$ with various (a) probe currents and (b) accelerating voltages. (c) The CL intensity and (d) the chromaticity coordinates depending on the electron beam bombardment time (min). (Reproduced with permission from ref. 87d copyright 2015, Royal Society of Chemistry.)

 $Na_2Ca_4(PO_4)_2(SiO_4):Ce^{3+},Tb^{3+},$ $La_2Si_6O_3N_8:Ce^{3+},Tb^{3+}$ and $Ba_{3}Y_{2}(BO_{3})_{4}:Ce^{3+},Tb^{3+}$ phosphors⁸⁷ were reported to show good ET properties from Ce³⁺ to Tb³⁺ ions to generate the tunable emission color from blue to green under UV excitation. Moreover, Zhou et al. $^{\rm 88d}$ investigated the cathodoluminescence (CL) properties of the MgGd₄Si₃O₁₃:Ce³⁺,Tb³⁺ samples. It appeared the CL intensity increased with the increase of filament current (Fig. 12a) and applied voltage (Fig. 12b) because larger filament current and applied voltage endowed the electrons with high energy, which penetrated more deeply into the phosphor body and stimulated a larger electron-beam current density and a higher CL intensity. The CL intensity was decreased by 15% when the bombing time reached 100 min (Fig. 12c). At the same time, the CIE values were nearly invariable under a continuous electron radiation for 1.5 h (Fig. 12d). The results supported the potential application of MgGd₄Si₃O₁₃:Ce³⁺,Tb³⁺ in FEDs. Xia et al.⁸⁸ reported the emission of Ce^{3+} singly doped $Y_2Si_2O_7N_2$ was a broad asymmetric band, its peak shifted from 438 to 500 nm under 365 nm excitation with increasing Ce^{3+} doped concentration from 0.005 to 0.20 (Fig. 13a). The phenomenon was explained by the ET between the optically active Ce³⁺ ions in four Y³⁺ crystallographic sites in Fig. 13b, leading to the concentration quenching. In addition, the red shift of the Ce³⁺ emission correlated very well with the lattice expansion.⁸⁹ Therefore, the tunable emission from cyan to green can be Tb³⁺ observed with increasing concentration y in $Y_4Si_2O_7N_2$:0.005Ce³⁺,yTb³⁺ based on ET from Ce³⁺ to Tb³⁺, as depicted in Fig. 13c. The PL intensities decreased to 72.4% of the initial intensity for $Y_4Si_2O_7N_2$:Ce³⁺,Tb³⁺ phosphor under 365 nm excitation, corresponding to a temperature of 150 °C (Fig. 13d), which indicated its good thermal stability.

Systems with ET from Ce^{3+} to Dy^{3+} is much less than of $Ce^{3+}-Mn^{2+}$ or $Ce^{3+}-Tb^{3+}$ systems. Moreover, the ET effect is not obvious. Li et

al.⁹⁰ prepared the Ce³⁺, Dy³⁺ co-doped borate $Sr_3Y_2(BO_3)_4$ phosphors. The emission spectrum of Ce³⁺ had a wide band centered at 420 nm under 340 nm excitation in Fig. 14a(1), the excitation spectrum of Dy³⁺ monitored at 576 nm consisted of many excitation lines between 250-500 nm exhibited in Fig. 14a(2). The spectral overlap of Ce³⁺ emission and Dy³⁺ excitation deduced possible ET from Ce³⁺ to Dy³⁺ ions. The similar excitation spectra monitored at 420 nm of $\rm Ce^{3+}$ and 576 nm of $\rm Dy^{3+}$ in Fig. 14a(3) was used to prove the ET from Ce³⁺ to Dy³⁺ ions. The ET modes from Ce³⁺ to Dy³⁺ in singlephase white-emitting Ca₂₀A₁₂₆Mg₃Si₃O₆₈:Ce³⁺,Dy³⁺ was used to understand the ET process from Ce^{3+} to Dy^{3+} ions.⁹¹ First, the electrons in Ce³⁺ ground state absorbed the excited energy and jumped to 5d excited state, some of them produced the 5d-4f transition, some of them at lowest excited state transferred their energy to $Dy^{3+4}I_{13/2}+{}^{4}F_{7/2}$ energy levels, resulting in the $Dy^{3+4}F_{9/2} \rightarrow$ ${}^{6}H_{15/2}$ and ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ after the non-radiate transition from ${}^{4}\text{I}_{13/2}\text{+}{}^{4}\text{F}_{7/2}$ to ${}^{4}\text{F}_{9/2}$ energy level. Geng et al. 92 synthesized the $Y_4Si_2N_2O_7{:}Ce^{3+}{,}Dy^{3+}{\mbox{ phosphors via the soft-chemical ammonolysis}}$ method which is a good way to obtain nitride or oxynitride. Other Ce³⁺-Dy³⁺ such as $Zn_2P_2O_7$:Ce³⁺,Dy³⁺, ET systems KNaCa(PO₄)₂:Ce³⁺,Dy³⁺ GdOBr:Ce³⁺,Dy³⁺ and $Ca_6La_2Na_2(PO_4)_6F_2:Ce^{3+},Dy^{3+}$ also can be referenced with the ET properties from Ce³⁺ to Dy³⁺ ions.⁹³

It is common Eu²⁺ can emit blue to red emission color originated from different crystal field strengths, as shown in Table 1. Sometimes, Eu²⁺ also can be acted as an activator in Ce³⁺,Eu²⁺ codoped systems while Ce³⁺ acted as the sensitizer. Both of them are sensitive to the crystal field around. Therefore, the emission color can be realized from ultraviolet to blue and green, blue to green, yellow, and orange based on the ET from Ce³⁺ to Eu²⁺ ions in subsequently discussed systems.

Fig. 13 (a) PL (λ_{ex} = 365 nm) spectra of Y₄Si₂O₇N₂:xCe³⁺ with varying Ce³⁺ concentrations. (b) The crystal structure description of Y₄Si₂O₇N₂ showing the Si(O,N)₄ polyhedronand the coordination environment of the Y atoms with four different crystallographic sites. The related bond lengths are in the units of Å. (c) A representation of the CIE chromaticity coordinates for the Y₄Si₂O₇N₂:Ce³⁺,Tb³⁺ phosphors. (d) The temperature-dependent PL spectra of the Y₄Si₂O₇N₂:Ce³⁺,Tb³⁺ phosphor. (Reproduced with permission from ref. 88 copyright 2013, Royal Society of Chemistry.)

Fig. 14 (a) PL and PLE spectra of (1) $Sr_3Y_2(BO_3)_4$:0.02Ce³⁺, (2) $Sr_3Y_2(BO_3)_4$:0.10Dy³⁺ and (3) $Sr_3Y_2(BO_3)_4$:0.02Ce³⁺, 0.10Dy³⁺ samples; insets are luminescent photos of the corresponding samples under 365 nm xenon lamp excitation. (b) Decay curves of Ce³⁺ in $Sr_3Y_2(BO_3)_4$:0.02Ce³⁺, yDy³⁺ samples, inset shows lifetime and energy transfer efficiency versus Dy³⁺ content. (c) Illustration of the energy transfer modes of Ce³⁺ \rightarrow Dy³⁺. (d) CIE chromaticity diagram for Ca₂₀A₁₂₆Mg₃Si₃O₆₈:0.08Ce³⁺, zDy³⁺(z = 0.01-0.09) phosphors excited at 345nm. (Reproduced with permission from ref. 90 and 91 copyright 2013, 2015, Elsevier.)

Zhou et al.⁹⁴ prepared the Ce³⁺,Eu²⁺ co-doped chloride phosphate Sr₅(PO₄)₃Cl with apatite structure and investigated the PL and CL properties of as-prepared samples. They found the emission spectrum of Ce³⁺ located at ultraviolet area, which was overlapped with the excitation spectrum of Eu²⁺ in this host (Fig. 15a). Therefore, Ce³⁺ may absorb the energy and transfer part of it to Eu²⁺ to enhance the Eu²⁺ emission. The emission intensity and fluorescent decay lifetimes of Ce³⁺ monotonously decreased with increasing Eu²⁺ concentration in Sr₅(PO₄)₃Cl:Ce³⁺,Eu²⁺ phosphors, which can be used to demonstrate the ET from Ce³⁺ to Eu²⁺ ions

(Fig. 15b and c). This resulted in the tunable emission spectra from ultraviolet to blue upon 317 nm UV excitation. Moreover, they compared the CL emission spectra of $Sr_{4.98}Eu_{0.02}(PO_4)_3Cl$, $Sr_{4.96}Ce_{0.01}Eu_{0.02}Na_{0.01}(PO_4)_3Cl$, $Sr_{4.978}Ce_{0.001}Eu_{0.02}Na_{0.001}(PO_4)_3Cl$ and BAM (Fig. 15d). It can be seen that co-doped Ce³⁺ and Eu²⁺ $Sr_5(PO_4)_3Cl$ had the highest emission intensity, which illustrated the introduction of Ce³⁺ in Eu²⁺ doped $Sr_5(PO_4)_3Cl$:Ce³⁺ is beneficial for the emission intensity. Tunable emission from ultraviolet to green in $Ba_3Si_6O_9N_4$:Ce³⁺, Eu²⁺, K⁺ phosphors⁹⁵ can be inferred from the emission spectra of $Ba_{2.9-x}Eu_xCe_{0.01}Si_6O_9N_4$ phosphors excited at 340 nm (from x = 0 to 0.01) (Fig. 15e). The energy level diagram

Fig. 15 (a) Relative spectral locations of emission and excitation bands of Ce^{3+} and Eu^{2+} in $Sr_5(PO_4)_3CI$ at 295 K. The maximum peak heights are normalized to 1.0. (abs absorption; em emission). (b) The emission spectra of $Sr_{4.98-x}Ce_{0.01}EuxNa_{0.01}(PO_4)_3CI$ (x = 0.0-0.50) excited at 317 nm. The inset shows the relative emission intensity of Ce^{3+} and Eu^{2+} as a function of x. (c) Decay curves of Ce^{3+} emission of $Sr_{4.98-x}Ce_{0.01}Eu_xNa_{0.01}(PO_4)_3CI$ (x = 0.0-0.51) excited at 317 nm and monitored at 370 nm at 295 K. (d) CL spectra of $Sr_{4.98}Eu_{0.02}(PO_4)_3CI$, $Sr_{4.96}Ce_{0.01}Eu_{0.02}Na_{0.01}(PO_4)_3CI$, $Sr_{4.97}Ce_{0.01}Eu_{0.02}Na_{0.01}(PO_4)_3CI$, $Sr_{4.97}Eu_{0.02}Eu_{0.02}Na_{0.01}(PO_4)_3CI$, $Sr_{4.97}Eu_{0.02}Eu_{0.02}Na_{0.01}(PO_4)_3CI$, $Sr_{4.97}Eu_{0.02}Eu_{0.02$

involving energy transfer in the Ba₃Si₆O₉N₄:Ce³⁺,Eu²⁺,K⁺ phosphor is shown in Fig. 15f. Electrons in two ground states of ${}^{2}F_{7/2}$ and ${}^{2}F_{5/2}$ with the energy gap of 2000 cm⁻¹ of Ce³⁺ jumped to 5d energy level, then transferred part of energy to Eu²⁺ 5d energy level and subsequently produced the Eu²⁺ emission from 5d to ground ${}^{8}S_{7/2}$ level. When the emission band of Ce³⁺ located at blue area, tunable emission color from blue to green occurred in Ca₇Mg(SiO₄)₄:Ce³⁺,Eu²⁺, Sr₂Al₂SiO₇:Ce³⁺,Eu²⁺, CaSrAl₂SiO₇:Ce³⁺,Eu²⁺, and Ba₄Si₆O₁₆:Ce³⁺,Eu²⁺ phosphors occurred based on the ET from Ce³⁺ to Eu²⁺ ion.⁹⁶ Fig. 16 shows the PL and corresponding CIE chromatic coordinates diagram of Sr₂Al₂SiO₇:Ce³⁺,Eu²⁺. Ce³⁺

emission band around 415 nm decreased and Eu^{2+} emission band around 510 nm increased with increasing Eu^{2+} concentration (Fig. 16a), which resulted in the CIE chromatic coordinates shift from blue to green area(Fig. 16b). Besides green, yellow and orange color also can be obtained in some $Ce^{3+}-Eu^{2+}$ co-doped phosphors.⁹⁷ A typical kind of phosphor $Sr_3Al_2O_5Cl_2:Ce^{3+},Eu^{2+}$ was investigated by Song et al.^{97a} Fig. 17a shows the excitation and emission spectra of $Sr_3Al_2O_5Cl_2:0.01Ce^{3+},nEu^{2+}$ phosphors. The similar excitation spectra monitored at 444 nm (Ce^{3+}) and 609 nm (Eu^{2+}) along with the decline of intensity of Ce^{3+} emission band and increase of Eu^{2+} emission intensity with increasing Eu^{2+} content illustrated the ET

Fig. 16 (a) PL emission spectra and corresponding CIE chromaticity diagram (b) for $Sr_{2-m-n}Al_2SiO_7:mCe^{3+}, nEu^{2+}$ phosphors excited at 345 nm. [(1-4 and 6) m = 0.02, n = 0, 0.001, 0.005, 0.02 and 0.03, (5) m = 0, n = 0.03]. (Reproduced with permission from ref. 96b copyright 2011, Elsevier.)

from Ce³⁺ to Eu²⁺, resulting in the tunable emission color from blue to yellow including white corresponding to the CIE chromatic coordinate diagram in Fig. 17b. The ET mechanism from Ce³⁺ to Eu²⁺ ions was analyzed to be dipole-dipole interaction on the basis of the theory of ET of Dexter. Moreover, a kind of blue-orange phosphors can be seen in Ca₄(PO₄)₂O:Ce³⁺,Eu²⁺ (Fig. 17c). Ce³⁺ emitted a broad band centered at 460 nm under 380 nm excitation and Eu²⁺ emitted

a broad one around 650 nm under 460 nm excitation. Therefore, tunable emission from blue to orange via adjusting the doped ions concentrations corresponded to the CIE chromatic coordinate diagram in Fig. 17c. The w-LED lamp package emitted intense warm white light with a CCT of 4124 K, a color coordinate of (0.359, 0.310), and R_a of 84 (Fig. 17d), which illustrated the potential as a single-composition white-emitting phosphor for w-LED applications.^{97b}

Fig. 17 (a) Excitation and emission spectra of $Sr_3Al_2O_5Cl_2:0.01Ce^{3+}$, nEu^{2+} phosphors. The inset is the excitation spectra monitored at 609 nm. (b) CIE chromaticity diagram for $Sr_3Al_2O_5Cl_2:mCe^{3+}$, nEu^{2+} excited at 330 nm. (1-7, m = 0.01, n = 0, 0.0025, 0.003, 0.0035, 0.005, 0.0075, 0.01 and 8, m = 0, n = 0.04. and $Ca_4(PO_4)_2O:0.02Ce^{3+}$, yEu^{2+} phosphors (y = 0, 0.002, 0.006, 0.010, 0.012, 0.022, and 0.026) (c). Insets in (c) show the phosphor images with different Eu^{2+} doping concentrations excited at 380 nm. (d) Electroluminescence spectrum of $Ca_4(PO_4)_2O:0.02Ce^{3+}$, $0.012Eu^{2+}$ phosphor-based w-LED under a current of 700 mA. The inset shows a photograph of the LED package. (Reproduced with permission from ref. 97 copyright 2009, 2015, AIP Publishing, Royal Society of Chemistry.)

Fig. 18 PL spectra of $Ca_4Y_6(SiO_4)_6O:10mol\% Ce^{3^+}$, ymol% Mn^{2^+} , z mol% Tb^{3^+} samples (y = 2, 3, 4; z = 1, 2, 4) under different wavelengths UV excitation: (a) 284 nm and (b) 358 nm. (c) Illustration of the energy transfer modes of $Ce^{3^+} \rightarrow Tb^{3^+}/Mn^{2^+}$ and luminescent photographs of $Ca_4Y_6(SiO_4)_6O:10mol\% Ce^{3^+}$, ymol% Mn^{2^+} , zmol% Tb^{3^+} samples: y = 0, 1, 3, 5, 8, z = 0, y = 0, z = 2, 8, y = 3, z = 1, 2, y = 4, 5, z = 2. The CL emission spectrum belongs to the representative sample of $Ca_4Y_6(SiO_4)_6O:10mol\% Ce^{3^+}$, 3 mol% Mn^{2^+} , 2mol% Tb^{3^+} . (Reproduced with permission from ref. 98b copyright 2012, American Chemical Society.)

2.4 Ce³⁺-Tb³⁺-Mn²⁺/Eu³⁺/Sm³⁺ systems

Similar with $Eu^{2+}-Tb^{3+}-Mn^{2+}/Eu^{3+}/Sm^{3+}$ systems, the $Ce^{3+}-Tb^{3+} Mn^{2+}/Sm^{3+}/Eu^{3+}$ systems were also can be the candidates to obtain white emission because $Mn^{2+}/Sm^{3+}/Eu^{3+}$ can supply the red component in Ce³⁺,Tb³⁺ systems. Therefore, many researchers have devoted their interest to them. Li et al. and Liu et al.⁹⁸ investigated the PL and CL properties of Ce³⁺,Tb³⁺,Mn²⁺ co-doped three kinds of oxyapatite $Mg_2Y_8(SiO_4)_6O_2$, Ca₄Y₆(SiO₄)₆O andSr_{3.5}Y_{6.5}O₂(PO₄)_{1.5}(SiO₄)_{4.5}. Taking Ca₄Y₆(SiO₄)₆O:Ce³⁺,Tb³⁺,Mn²⁺ as the example, we can see the emission spectra consisted of Ce³⁺, Tb³⁺ and Mn²⁺ bands centered at blue, green and red regions under 284 and 358 nm (Fig. 18a and b), therefore, it can generate white emission with appropriately doping contents of Ce^{3+} , Tb^{3+} and Mn^{2+} . In this condition, the ET process from Ce^{3+} to both Tb^{3+} and Mn^{2+} ions were displayed with the corresponding energy level diagram in Fig. 18c. Electrons in Ce^{3+} 4f ground state absorbed excited energy to jump to 5d excited state, then they nonradiatively relaxed to lowest 5d excited state of it, some of them produced the 5d-4f transition, and some transferred their energy to $Tb^{3+5}D_3$ and Mn^{2+} 3d energy levels, resulting in the ${}^5\text{D}_3 {\rightarrow} {}^7\text{F}_{J~(J=6,5,4,3,2)} \text{ and } {}^5\text{D}_4 {\rightarrow} {}^7\text{F}_{J~(J=6,5,4,3,2)}$ $_{6,5,4,3)}$ transitions of Tb³⁺ and ${}^{4}T_{1} \rightarrow {}^{6}A_{1}$ transition of Mn²⁺. CL emission color in Fig. 18d displayed blue to green and red in $Ca_4Y_6(SiO_4)_6O:Ce^{3+},Tb^{3+}$ and $Ca_4Y_6(SiO_4)_6O:Ce^{3+},Mn^{2+}$ phosphors, respectively. And white light was produced after co-doping Ce^{3+} , Tb^{3+} , Mn^{2+} into $Ca_4Y_6(SiO_4)_6O$, best CIE chromatic coordinate can reach (0.328, 0.331) for Ca₄Y₆(SiO₄)₆O:10mol% Ce³⁺,3mol%

Mn²⁺,2mol% Tb³⁺ sample. The CL intensity of this sample increased with increasing filament current and accelerating voltage, which is attributed to the deeper penetration of the electrons into the phosphor body and the larger electronic beam current density. The electron penetration depth can be expressed using empirical equation:⁹⁹

$$L\left(\overset{\circ}{A}\right) = 250\left(\frac{A}{\rho}\right)\left(\frac{E}{\sqrt{Z}}\right)^n \tag{13}$$

where A represents the atomic or molecular weight of the material, ρ represents the bulk density, Z is the atomic number or the number of electrons per molecule in the compounds, and E corresponds to the accelerating voltage (kV).¹⁰⁰ Therefore, the deeper the electron penetration depth, the more plasma would be produced, resulting in more activator ions being excited, and thus the CL intensity increased. Moreover, our group also synthesized the Ca₉Bi(PO₄₎₇:Ce³⁺,Tb³⁺,Mn²⁺ and $Ca_{5}(PO_{4})_{2}SiO_{4}:Ce^{3+}/Tb^{3+}/Mn^{2+}$ phosphors.¹⁰¹ Results showed white light can be generated under UV excitation or low-voltage electron beam excitation. Good thermal quenching properties of these two kinds of samples indicated them to be as the candidate phosphors for LEDs and FEDs. Other systems¹⁰² such as NaCaBO₃: Ce^{3+} , Tb^{3+} , Mn^{2+} , Ca₃Al₂O₆:Ce³⁺,Tb³⁺,Mn²⁺, Ca₉MgNa(PO₄)₇:Ce³⁺/Tb³⁺/Mn²⁺ and $BaMg_2(PO_4)_2:Ce^{3+},Mn^{2+},Tb^{3+}$ combined the Ce^{3+} blue emission, Tb^{3+} green emission and Mn²⁺ red emission to acquire white light based on the ET from Ce^{3+} to Tb^{3+} and Mn^{2+} in a single host.

Fig. 19 (a) Energy level model for the energy processes of $Ce^{3+} \rightarrow Tb^{3+} \rightarrow Eu^{3+}$ in $Na_2Y_2B_2O_7$ host. (b) Pictures of the samples of $Na_2Y_2B_2O_7$:1% Ce^{3+} and $Na_2Y_2B_2O_7$:1% Ce^{3+} , 2Tb³⁺, 1% Eu^{3+} (A–L) under a 365 nm UV box with the corresponding chromaticity coordinates. (Reproduced with permission from ref. 104 copyright 2013, Royal Society of Chemistry.)

In some systems, Eu^{3+} may not be reduced to Eu^{2+} in reductive atmosphere in some host. However, the energy transfer from Ce³⁺ to Eu^{3+} is not considered to be effectively proceeded because of metal-metal charge transfer physical process of $Ce^{3+}+Eu^{3+}$ $Ce^{4+}+Eu^{2+}$.¹⁰³ However, Tb^{3+} can transfer its energy to Eu^{3+} in many hosts (which will be discussed below), therefore it can be acted as the bridge to form the terbium chain between Ce^{3+} and Eu^{3+} ions and result in the effective ET from ${\rm Ce}^{3^+}$ to ${\rm Eu}^{3^+}$ ions, which is expressed as $Ce^{3+} \rightarrow Tb^{3+} \cdots Tb^{3+} \rightarrow Eu^{3+}$ process. The emission color tuned from blue to yellow or orange based on the combination of Ce³⁺ blue emission, Tb³⁺ green emission and Eu³⁺ red emission. Wen et al.¹⁰⁴ successfully designed the terbium chain in the form of Ce^{3+} \rightarrow (Tb³⁺)_n \rightarrow Eu³⁺ in the Na₂Y₂B₂O₇ host by the ET processes from Ce³⁺ to Tb^{3+} and Tb^{3+} to Eu^{3+} ions. The ET properties of Ce^{3+} to Tb^{3+} and Tb³⁺ to Eu³⁺ were demonstrated by the declines of decay lifetimes of Ce³⁺ and Tb³⁺ together with the variations of emission spectra in Ce^{3+},Tb^{3+} and Tb^{3+},Eu^{3+} co-doped Na₂Y₂B₂O₇, respectively. The ET details were depicted in Fig. 19a. Firstly, Ce³⁺ ions can be effectively excited by n-UV light and jumped from the ground state $({}^{2}F_{5/2})$ to the excited states (5d energy levels). Then, Ce³⁺ ions decayed to the lowest vibrational level of the excited state and gave out the excess energy to their surroundings, subsequently returned to the state of ${}^{2}F_{7/2}$ or ${}^{2}F_{5/2}$ simultaneously by a radiative process or ET to ${}^{5}D_{3}$ level of Tb^{3+} ions. The probability for ET of $Ce^{3+} \rightarrow Tb^{3+}$ increased with increasing concentration of Tb³⁺ attributed to more neighbouring Tb^{3+} ions around Ce^{3+} ions. Cross relaxation ${}^{5}D_{3} + {}^{7}F_{6} = {}^{5}D_{4} + {}^{7}F_{0}$ resulted in the characteristic emission of ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ (J = 6,5,4,3) transition. 105 As the content of ${\rm Tb}^{3+}$ increased, the distances of ${\rm Tb}^{3+}$ ${\rm Tb}^{\rm 3+}$ and ${\rm Tb}^{\rm 3+}{\rm -Eu}^{\rm 3+}$ shortened, leading to the quenching of ${\rm Tb}^{\rm 3+}$ emission and the enhancement of the ET from Tb³⁺ to Eu³⁺, which may be ascribed to the following mechanism:¹⁰⁶

$$Tb^{3+}({}^{5}D_{4}) + Eu^{3+}({}^{7}F_{0}) + \Delta E_{ph} \to Tb^{3+}({}^{7}F_{4}) + Eu^{3+}({}^{5}D_{0})$$
(14)

$$Tb^{3+}({}^{5}D_{3}) + Eu^{3+}({}^{7}F_{0}) \to Tb^{3+}({}^{7}F_{3}) + Eu^{3+}({}^{5}D_{2}) + \Delta E_{ph}$$
(15)

where ΔE_{ph} is the phonon energy and relatively low ($\leq 500 \text{ cm}^{-1}$). Ultimately, the energy level of ${}^{5}D_{2}$ relaxes to ${}^{5}D_{0}$ and emission of Eu³⁺ ions will be given out because of the characteristic transition of

 $\label{eq:solution} {}^{5}D_{0} \longrightarrow {}^{7}F_{J_{(J=1,2,3,4)}} \text{ and the possibility of metal-metal charge transfer effect dropped. After optimization, the emission colors of asprepared samples tuned from blue to orange by only adjusting the Tb^{3+} concentration in Na_2Y_2B_2O_7:1\% Ce^{3+}, zTb^{3+}, 1\% Eu^{3+} (A-L) in Fig. 19b. Using the ET properties from Ce^{3+} to Tb^{3+} and then to Eu^{3+}, many researcher obtained the abundant emission colors including white light under UV/n-UV excitation in many recent systems such as BaY_2Si_3O_{10}:Ce^{3+}, Tb^{3+}, Eu^{3+}, (Y/Gd)_2SiO_5:Ce^{3+}, Tb^{3+}, Eu^{3+}, GdBO_3:Ce^{3+}, Tb^{3+}, Eu^{3+}.$

Although the system of Eu²⁺-Tb³⁺-Sm³⁺ is rarely utilized to obtain abundant emission colors, the $Ce^{3+}-Tb^{3+}-Sm^{3+}$ system has been successfully designed to obtain tunable emission color based on the ET from Ce^{3+} to Tb^{3+} and then to Sm^{3+} . Fig. 20a shows the PL spectra emission of as-prepared $La_5Si_2BO_{13}:0.01Ce^{3+},yTb^{3+},0.01Eu^{3+}/Sm^{3+}$ (y = 0.10, 0.30, 0.50) phosphors under 300 nm excitation,¹⁰⁸ which were used to verify the bridge of Tb^{3+} to sensitize Eu^{3+}/Sm^{3+} , herein the Eu^{3+}/Sm^{3+} content was fixed as 0.01 to alleviate the metal-metal charge transfer effect. It is found that low Tb³⁺ concentration is hard to form a terbium bridge to transfer Ce^{3+} energy to Eu^{3+}/Sm^{3+} because the metal-metal charge transfer process was not suppressed. However, strong narrow band of Eu³⁺/Sm³⁺ red emission is exhibited when y = 0.30 and 0.50, which illustrated that a terbium bridge was successfully formed and efficient Ce³⁺-Tb³⁺-Eu³⁺/Sm³⁺ ET was realized. The red emission intensity increased with increasing Tb³⁺ content to 0.50 since the empirical saturation distance (R_c) is 6–7 Å for Tb³⁺ bridge when Tb³⁺ concentration was 0.50.Therefore, tunable color from blue to red was realized in this system under UV excitation. Yu et al. 109 exploited this effect to add the Tb $^{3+}$ into CaYAl₃O₇:Ce³⁺,Sm³⁺ to enhance the sensitization effect, they proposed the schematic energy-level diagram to explain the luminescence process and the possible energy-transfer pathways in CaYAl₃O₇:Ce³⁺,Tb³⁺,Sm³⁺ in Fig. 20b. The Ce³⁺ to Tb³⁺ energy transfer process was depicted in Ce³⁺-Tb³⁺-Eu³⁺ system above, which is not described here. In the $Tb^{3+} \rightarrow Sm^{3+}$ scheme, electrons in excited state ${}^{5}D_{4}$ level of Tb³⁺ can transferred their energy to ${}^{4}G_{9/2}$ level of Sm³⁺ first. Then the Sm^{3+} ions at ${}^4G_{9/2}$ level relaxed non-radiatively to ${}^4G_{7/2}$

Journal of Materials Chemistry C

Journal Name

Fig. 20 (a) The PL spectra (λ_{ex} = 280 nm) of La₅Si₂BO₁₃:Ce³⁺,Tb³⁺,Eu³⁺/Sm³⁺ samples under 300 nm UV excitation. (b) Schematic energy-level diagram explaining the luminescence process and the possible energy-transfer pathways for the CaYAl₃O₇:0.05Ce³⁺,yTb³⁺, 0.04Sm³⁺. (Reproduced with permission from ref. 108 and 109 copyright 2014, 2015, The Electrochemistry Society, Elsevier.)

and ${}^{4}G_{5/2}$ and subsequently decayed radiatively to the ground state ${}^{4}H_{5/2}$, ${}^{4}H_{7/2}$ and ${}^{4}H_{9/2}$ corresponding to the emissions peaking at 563, 600 and 646 nm, respectively. Therefore, the emission color was tuned from blue to white based on the ET process of $Ce^{3+} \rightarrow Tb^{3+} \rightarrow Sm^{3+}$.

2.5 Bi³⁺/Tb³⁺-Eu³⁺/Sm³⁺ systems

As displayed in Table 1, Bi^{3+} can emit different colors from blue to orange under UV excitation originated from its ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$ transition. Utilizing Bi^{3+} as the sensitizer with blue emission to transfer its energy to Eu^{3+}/Sm^{3+} is an alternative method to enhance Eu^{3+}/Sm^{3+} red emission intensity and obtain tunable emission color from blue to red.

Frequently, Bi³⁺ was used to enhance the red emission of Eu³⁺. The addition of Bi^{3+} in CaMoO₄:Eu³⁺, Sr_{0.5}Ca_{0.5}MoO₄:Eu³⁺, $CaWO_4:Eu^{3+}$ and $Ca_3Ti_2O_7:Eu^{3+}$ phosphors¹¹⁰ can enhance the red emission of Eu³⁺ under characteristic line excitation of Eu³⁺ with different extents. However, the reasons for the enhancements were not identical. In CaMoO₄:Eu³⁺, authors speculated the Bi³⁺-induced red emission enhancement may result from the increase of the ${}^{7}F_{0}$ \rightarrow ⁵L₆ and ⁷F₀ \rightarrow ⁵D₂ absorption strengths since the lifetime of ⁵D₀ reduced slightly with increasing ${{\text{Bi}}^{3+}}$ concentration x in $CaMoO_4$:xBi³⁺,0.05Eu³⁺, indicating that the quantum efficiency of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ emission was hardly affected by Bi³⁺. More odd-rank crystal field components were induced by crystal structural distortion and the decrease of symmetry with the addition of Bi³⁺, leading to more opposite parity components, for example, 4f⁵5d states, mixed into the 4f⁶ transitional levels of Eu^{3+} . While in Sr_{0.5}Ca_{0.5}MoO₄:Eu³⁺, the enhancement of Eu³⁺ emission was attributed to the ET between Bi³⁺ and Eu³⁺ together with the change in the symmetry of Eu³⁺ after the addition of Bi³⁺. In CaWO₄:Eu³⁺, several reasons were proposed including the distortion of Eu³⁺ ion symmetry and the red shift of charge transfer, moreover, they reckoned that the electro-dipole transition can borrow intensity from the lowest strong absorption band to improve the emission intensity of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition. In Ca₃Ti₂O₇:Eu³⁺, the enhancement of Eu³⁺ red emission was mainly ascribed to the ET from Bi³⁺ to Eu³⁺ ions. It can be found that the emission band centered at 411 nm became dominant and the 490

nm emission band gone weak in BaY₂Si₃O₁₀:Bi³⁺ phosphors with increasing excitation wavelength,^{48,111} as depicted in Fig. 21a, which illustrated Bi³⁺ ions were experiencing different local environments, namely Bi³⁺(I) and Bi³⁺(II). In other words, Bi³⁺ ions substituted two different crystallographic sites in the host lattice, resulting in the different emission bands. Spectral overlap between Bi³⁺ emission and Eu³⁺ excitation (Fig. 21b) together with variation of emission spectra (Fig. 21c) were used to prove the ET from Bi^{3+} to Eu^{3+} ions. Schematic energy level diagram in Fig. 21d clearly describes the ET process from ${\rm Bi}^{3*}$ to ${\rm Eu}^{3+}$ ions. Electrons in ${\rm Bi}^{3+}$ ground state 1S_0 jumped to its ³P₁ excited state after absorption of excitation energy, and some of them transfer their energy to $Eu^{3+5}L_6$ energy level, resulting in the ${}^5D_2 {\rightarrow} {}^7F_0$ and ${}^5D_0 {\rightarrow} {}^7F_{J~(J=1,2,3,4,5)}$ transition emission of Eu^{3+} after the non-radiate transition of ${}^{5}L_{6}$ to ${}^{5}D_{2}$ and ${}^{5}D_{0}$. Utilizing the $Bi^{3+}(I)$ and $Bi^{3+}(II)$ and Eu^{3+} emissions, the white light can be obtained under appropriate excitation (Fig. 21e). In Y₂O₃:Bi³⁺,Eu³⁺, $Sr_{2}Y_{8}(SiO_{4})_{6}O_{2}:Bi^{3+}/Eu^{3+},$ Gd₂O₃:Bi³⁺,Eu³⁺, MgY₂Si₃O₁₀:Bi³⁺,Eu³⁺, Sr₃Lu₂(BO₃)₄:Bi³⁺,Eu³⁺ systems,^{112,10f,} similar properties were observed, which inspires us that ${\rm Bi}^{3+}{\rm -Eu}^{3+}$ system may also be an alternative way to acquire white light emission under UV excitation. Recently, our group found a novel kind of Bi^{3+}, Eu^{3+} co-doped $Ba_3Y_4O_9$ phosphor.¹¹³ The emission color can be tuned from yellowish green to orange red under a 365 nm UV lamp excitation, as depicted in Fig. 21f, which rarely took place in Bi³⁺,Eu³⁺ co-doped phosphors. The ET properties from Bi³⁺ to Sm³⁺ had ever been observed in Bi³⁺,Sm³⁺ co-doped Ca₃Al₂O₆ system, but the ET effect was relatively worse than that of Bi³⁺-Eu³⁺ system.¹¹⁴

As depicted above, the Tb³⁺ can act as the bridge to transfer Eu²⁺ or Ce³⁺ energy to Eu³⁺ or Sm³⁺ ions to enhance the red emission. Therefore, herein we reviewed some Tb³⁺-Eu³⁺/Sm³⁺ systems to illustrate the efficient ET from Tb³⁺ to Eu³⁺ or Sm³⁺ without Eu²⁺ or Ce³⁺. The emission color will be tuned from cyan/green to orange/red under characteristic excitation of Tb³⁺. Zeng et al.¹¹⁵ investigated the Tb³⁺ and Eu³⁺ co-doped fluorapatite Ba₃GdK(PO₄)₃F. They chose the Tb³⁺ concentration 0.05 as the sensitizer content with several stronger emission lines of ⁵D₃ \rightarrow ⁷F_J ($_{J}$ = 6,5,4,3) transition. Therefore, both emission intensities of ⁵D₃ and ⁵D₄ transitions decreased with the

ARTICLE

Fig. 21 (a) The PL spectra of $BaY_2Si_3O_{10}$:0.01Bi³⁺ pumped by different excitation wavelengths $\lambda_{ex} = 330-380$ nm. (b) The spectral overlap between the PL spectrum ($\lambda_{ex} = 344$ nm) of $BaY_2Si_3O_{10}$:0.01Bi³⁺ and the PLE spectrum ($\lambda_{em} = 613$ nm) of $BaY_2Si_3O_{10}$:0.13Eu³⁺. (c) PL ($\lambda_{ex} = 344$ nm) spectra of $BaY_2Si_3O_{10}$:0.01Bi³⁺,mEu³⁺ (m = 0.00, 0.05, 0.08, 0.13 and 0.19) with different Eu³⁺ dopant concentrations. (d) Schematic energy level diagram of energy transfer SS:Bi³⁺(I) \rightarrow Bi³⁺(II) and SA:Bi³⁺(I)/Bi³⁺(II) \rightarrow Eu³⁺. (e) The scheme of generating emission-tunable white light emission and energy transfer routes upon UV light excitation. (f) Variation of the CIE chromatic coordinates as a function of Eu³⁺ concentration y in Ba₃Y₄O₉:0.04Bi³⁺, yEu³⁺ (A-H, y = 0, 0.04, 0.08, 0.12, 0.16, 0.20, 0.24, 0.32) samples under 346 nm excitation (Inset are digital photographs of the luminescent samples under a 365 nm UV lamp excitation). (Reproduced with permission from ref. 111 and 113 copyright 2015, Royal Society of Chemistry.)

increase of Eu^{3+} concentration n in $Ba_3GdK(PO_4)_3F:0.05Tb^{3+}$, nEu^{3+} under 276 nm excitation (Fig. 22a), contrary to that of Eu^{3+} , which was originated from the ET from Tb³⁺ to Eu³⁺ ions. The ET mechanism was demonstrated to be dipole-dipole interactions according to Dexter's ET formula. Schematic energy level diagram depicted the ET from Tb^{3+} to Eu^{3+} in Ba₃GdK(PO₄)₃F:0.05Tb³⁺, nEu³⁺ in Fig. 22b. First, electrons were excited to the ${}^{5}D_{4}$ or ${}^{5}D_{3}$ state of Tb ${}^{3+}$ after multistep relaxations. Then, some of them shifted from the ${}^{5}D_{4}$ or ${}^{5}D_{3}$ excited state to the ${}^{7}F_{1}$ ground state, resulting in generation of green or cyan light. Meanwhile, some may transfer their energy to the ${}^{5}D_{1}$ excited state of Eu $^{3+}$ ions. Finally, red light would be given out due to the electrons relax to ${}^{5}D_{0}$ state and ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 1, 2, 3, 4) transitions of Eu³⁺ ions. Based on the ET from Tb³⁺ to Eu³⁺, Zhou et al. and Zhang et al. designed the Tb^{3+} , Eu^{3+} co-doped $La_3GaGe_5O_{16}$ and $KCaY(PO_4)_2$ to obtain the tunable emission color from green to orange and orange red under 377 and 365 nm UV lamp excitation, respectively.¹¹⁶

Besides Tb³⁺-Eu³⁺ system, Tb³⁺ also can effectively transfer its

energy to Sm³⁺ under characteristic excitation of Tb³⁺ to gain tunable emission color from green to orange or red. However, the different emission colors were taken place under different excitation wavelengths. Xie et al.¹¹⁷ depicted the ET process via the energy level diagram in $CaLa_2(MoO_4)_4$:Tb³⁺,Sm³⁺ phosphor in Fig. 23. Under 277 nm excitation, electrons in ground state ${}^{7}F_{6}$ were excited to ${}^{5}D_{2,3,4}$ state of ${Tb}^{3+}$, then they nonradiatively relaxed to the ${}^{5}D_{4}$ energy level, some of them produced transition of ${}^{5}D_{4} \rightarrow {}^{7}_{J(J=6,5,4,3)}$, and some transferred energy to ${}^{4}G_{7/2}$ of Sm³⁺, then relaxed to ${}^{4}G_{5/2}$ and generated ${}^{4}G_{5/2} \rightarrow {}^{6}H_{J}$ (J = 5/2,7/2,9/2) transitions, resulting in the red emission of Sm³⁺. This can be as a reference of ET process from Tb³⁺ to Sm³⁺ ions in co-doped samples. The ET mechanism was certified to be dipole-dipole interactions according to Dexter's ET formula. The ET phenomenon from ${\rm Tb}^{3+}$ to ${\rm Sm}^{3+}$ ions in some other systems $Ba_3LaNa(PO_4)_3F:Tb^{3+},Sm^{3+},$ as $K_3Gd(PO_4)_2:Tb^{3+},Sm^{3+},$ such $Ca_2La_8(GeO_4)_6O_2:Tb^{3+},Sm^{3+}$ also can be observed with tunable emission color.¹¹⁸

ARTICLE

Fig. 22 (a) PL spectra of $Ba_3GdK(PO_4)_3F:0.05Tb^{3+}$, nEu³⁺ phosphors excited at 276 nm. (b) Schematic energy level diagram displaying the energy transfer among Tb^{3+} and Eu^{3+} in $Ba_3GdK(PO_4)_3F:Tb^{3+}$, Eu³⁺ phosphor. (Reproduced with permission from ref. 115, copyright 2015, Royal Society of Chemistry.)

Fig. 23 Schematic energy-level diagram showing the excitation and emission mechanisms of $CaLa_2(MOO_4)_4$:Tb³⁺,Sm³⁺ phosphors (ET: energy transfer; NR: nonradiative relax). (Reproduced with permission from ref. 117, copyright 2015, Royal Society of Chemistry.)

3. Conclusions

In this review article, we summarized the recently development of phosphors potentially applied in LEDs and FEDs with different emission colors under UV/n-UV excitation based on the ET effect between sensitizers and acceptors. The sensitizers can be Eu^{2+} , Ce^{3+} , Bi^{3+} and Tb^{3+} , and the activators were Mn^{2+} , Eu^{2+} , Tb^{3+} , Dy^{3+} , Sm^{3+} and Eu^{3+} . Many systems involving Eu^{2+} - Mn^{2+}/Tb^{3+} , $Eu^{2+}-Tb^{3+}$ - $Mn^{2+}/Eu^{3+}/Sm^{3+}$, $Ce^{3+}-Mn^{2+}/Tb^{3+}/Eu^{2+}$, $Ce^{3+}-Tb^{3+}-Mn^{2+}/Eu^{3+}/Sm^{3+}$, $Bi^{3+}-Eu^{3+}/Sm^{3+}$ and $Tb^{3+}-Eu^{3+}/Sm^{3+}$ were presented in the paper. Moreover, the emission color can be tuned from blue to green, yellow, orange and even pink/red, cyan to green, yellow, orange and pink/red, green to yellow and orange and so on including white. Since there are two main kinds of current alternative ways containing the combinations of UV/n-UVLED chips

with blue, green, and red phosphors, or single-phase full-color phosphors to obtain w-LEDs, the phosphors is one of important components in them, moreover, it is also an indispensable part for FEDs. Therefore, the investigations of phosphors with different emission colors based on ET still need to be continued. However, it is still a great challenge that the phosphors with appropriate excitation and emission spectra, high energy conversion efficiency, excellent thermal quenching property are expected to be discovered. Simultaneously, the fabricated w-LEDs with appropriate phosphors need produce high CRI (>80) and low CCT (<4500 K). The phosphors with blue, green, red emissions are better to be narrow bands to alleviate the reabsorption of blue by green and red components when they are mixed to fabricate w-LEDs, besides, they should have the close attenuating speeds to reduce the variations of CIE chromatic coordinates. As for single-phase full-color phosphors,

the efficiency is the primary issue to be solved urgently. In FEDs, the phosphors should have good conductivity so that they have intense emission under low-voltage electron-beam excitation. Although many phosphors systems have been investigated by researchers, the theory calculation and simulation of PL properties for doping ions in different crystal structures is rarely investigated. Therefore, combing it with experimental data is an alternative to guide the further design of phosphors in the future.

Acknowledgements

This project is financially supported by the National Natural Science Foundation of China (NSFC Grants 51472234, 51172227, 21521092, 91433110), National Basic Research Program of China (Grants 2014CB643803), and Joint Funds of the National Natural Science Foundation of China (Grant U1301242).

References

- (a) S.-S. Wang, W.-T. Chen, Y. Li, J. Wang, H.-S. Sheu and R.-S. Liu, *J. Am. Chem. Soc.*, 2013, **135**, 12504; (b) R.-J. Xie, N. Hirosaki, M. Mitomo, Y. Yamamoto, T. Suehiro and K. Sakuma, *J. Phys. Chem. B*, 2004, **108**, 12027; (c) Y. Liu, D. Tu, H. Zhu and X. Chen, *Chem. Soc. Rev.*, 2013, **42**, 6924; (d) H. A. Hoppe, *Angew. Chem. Int. Ed.*, 2009, **48**, 3572; (e) Q. Dai, M. E. Foley, C. J. Breshike, A. Lita and G. F. Strouse, *J. Am. Chem. Soc.* 2011, **133**, 1547.
- (a) J. H. Oh, S. J. Yang and Y. R. Do, *Light: Sci. Appl.*, 2014, 3, e141; (b) H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu and X. Chen, *Nat. Commun.*, 2014, 5, 4312; (c) T. Pulli, T. Donsberg, T. Poikonen, F. Manoocheri, P. Karha and E. Ikonen, *Light: Sci. & Appl.*, 2015, 4, e332.
- 3 (a) P. Psuja, D. Hreniak and W. Strek, J. Nanomater. 2007, 81350; (b) F. Wang and X. Liu, Acc. Chem. Res., 2014, 47, 1378; (c) H. Wu, L. Ying, W. Yang and Y. Cao, Chem. Soc. Rev., 2009, 38, 3391.
- 4 (a) S. Nakamura and G. Fasol, The Blue Laser Diode, Springer, Berlin, 1996; (b) Amit K. Vishwakarma, Kaushal Jha, M. Jayasimhadri, B. Sivaiah, Bhasker Gahtoria, and D. Haranath, *Dalton Trans.*, 2015, 44, 17166.
- (a) Z. Hao, J. Zhang, X. Zhang, X. Sun, Y. Luo, S. Lu and X.-J. Wang, *Appl. Phys. Lett.*, 2007, **90**, 261113; (b) C. Liang, H. You, Y. Fu, X. Teng, K. Liu and J. He, *Dalton Trans.*, 2015, **44**, 8100.
- 6 (a) S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang and H. J. Seo, *Inorg. Chem.*, 2011, **50**, 2897; (b) W. J. Yang and T. M. Chen, *Appl. Phys. Lett.*, 2006, **88**, 101903.
- 7 (a) B. Yuan, Y. Huang, Y. M. Yu, H. J. Seo, *Ceram. Inter.*, 2012, **38**, 2219; (b) R. Yu, S. Zhong, N. Xue, H. Lia and H. Ma, *Dalton Trans.*, 2014, **43**, 10969; (c) J. Li, J. Liu, X. Yu, *J. Alloys Compd.*, 2011, **509**, 9897.
- 8 G. Li, Y. Tian, Y. Zhao and J. Lin, *Chem. Soc. Rev.*, 2015, **44**, 8688.
- 9 F. Kang, M. Peng, X. Yang, G. Dong, G. Nie, W. Liang, S. Xu and J. Qiu, *J. Mater. Chem. C*, 2014, **2**, 6068.
- 10 (a) C. Guo, X. Ding, L. Luan, Y. Xu, Sensors and Actuators B, 2010, **143**, 712; (b) M. Xie, D. Li, R. Pan, X. Zhou and G. Zhu, *RSC Adv.*, 2015, **5**, 22856; (c) S. Park, Mater. Lett., 2014, 135, 59; (d) S. Lee, S. Park, J. Lumin., 2013,**143**, 215; (e) S.

C. Gedam, S. J. Dhoble, K. Park, J. Lumin., 2013, **139**, 47; (f) I. V. B Maggay, P.-C. Lin and W.-R. Liu, J. Solid State Lighting, 2014, **1**, 13; (g) G. Ju, Y. Hu, L. Chen, X. Wang, Z. Mu, H. Wu, F. Kang, J. Lumin., 2012, **132**, 1853.

- (a) A. Li, D. Xu, H. Lin, S. Yang, Y. Shao, Y. Zhang and Z. Chen, *RSC Adv.*, 2015, **5**, 45693; (b) M. Xie, G. Zhu, L. Zeng, F. Xie, and C. Liang, *Int. J. Appl. Ceram. Technol.*, 2015, **12**, 750.
- G. Ju, Y. Hu, L. Chen, X. Wang and Z. Mu, *Opt. Mater.*, 2014, 36, 1183.
- 13 K. Li, D. Chen, J. Xu, R. Zhang, Y. Yu and Y. Wang, Mater. Res. Bull., 2014, 49, 677.
- V. RaoBandi, B. K. Grandhe, K. Jang, S.-S. Kim, D.-S. Shin, Y. I. Lee, J.-M. Lim and T. Song, *J. Lumin.*, 2011, **131**, 2414.
- 15 X. Zhang, Z. Lu, F. Meng, F. Lu, L. Hu, X. Xu and C. Tang, Mater. Lett., 2012, 66, 16.
- 16 M. Krings, G. Montana, R. Dronskowski and C. Wickleder, *Chem. Mater.*, 2011, **23**, 1694.
- 17 P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Hen, D. Wiechert, C. Scheu, P. J. Schmidt and W. Schnick, *Nat. Mater.*, 2014, **13**(9), 891.
- 18 Z. Tao, Y. Huang and H. J. Seo, Dalton Trans., 2013, 42, 2121.
- N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithell and A. K. Cheethamd, J. Mater. Chem. C, 2015, 3, 204.
- 20 X. Gong, J. Huang, Y. Chen, Y. Lin, Z. Luo and Y. Huang, *Inorg. Chem.*, 2014, 53, 6607.
- 21 J. H. Kim and K. Y. Jung, J. Lumin., 2012, **132**, 1376.
- 22 X. Wang, G. Zhou, H. Zhang, H. Li, Z. Zhang and Z. Sun, J. *Alloys Compd.*, 2012, **519**, 149.
- 23 K. Dagmara, C. Joanna, S. Luis, B. Zoila and Z. Eugeniusz, J. *Phys. Chem. C*, 2015, **119**, 27649.
- 24 Y. Xia, F. Huang, W. Wang, A. Wang and J. Shi, J. Alloys Compd., 2009, 476, 534.
- 25 Z. Yang, Z. Zhao, Y. Wen and Y. Wang, J. Alloys Compd., 2013, 559, 142.
- 26 H. Ju, W. Deng, B. Wang, J. Liu, X. Tao and S. Xu, J. Alloys Compd., 2012, 516, 153.
- 27 F. Kang, M. Peng, Q. Zhang and J. Qiu, Chem. Eur. J., 2014, 20, 11522.
- 28 F. Kang, Y. Zhang, L. Wondraczek, J. Zhu, X. Yang and M. Peng, J. Mater. Chem. C, 2014, **2**, 9850.
- 29 D. Haranath, S. Mishra, S. Yadav, R. K. Sharma, L. M. Kandpal, N. Vijayan, M. K. Dalai, G. Sehgal and V. Shanker, *Appl. Phys. Lett.*, 2012, **101**, 221905.
- 30 B. Lei, Y. Liu, Z. Ye and C. Shi, J. Lumin., 2004, **109**, 215.
- 31 J. Lv, F. Du, R. Zhu, Y. Huang and H. J. Seo, J. Mater. Chem., 2011, 21, 16398.
- 32 X. Zhou, X. Yang, T. Xiao, K. Zhou, T. Chen, H. Yan and Z. Wang, J. Rare. Earth, 2013, 31, 665.
- 33 Z. Rui and W. Xiang, J. Alloys Compd., 2011, 509, 1197.
- 34 Z. Zhang, Z. Mao, S. Song, J. Zhang, L. Liu, W. Zhang and D. Wang, *Mater. Lett.*, 2013, **90**, 1.
- Y. Tian, B. Chen, B. Tian, R. Hu, J. Sun, L. Cheng, H. Zhong,
 X. Li, J. Zhang, Y. Zhen, T. Yu, L. Huang and Q. Meng, J.
 Alloys Compd., 2011, 509, 6096.
- 36 X. Lin, X. Qiao and X. Fan, *Solid State Sci.*, 2011, **13**, 579.
- 37 X. Sun, Z. Hao, C. Li, X. He, H. Qi, L. Yu, Y. Luo, J. Zhang, J. Gao and R. Zhong, J. Lumin., 2013, **134**, 191.
- 38 S. Xin, Y. Wang, G. Zhu, X. Ding, W. Geng and Q. Wang, Dalton Trans., 2015, 44, 16099.
- 39 M. M. Shang, C. X. Li and J. Lin, Chem. Soc. Rev., 2014, 43,

Journal of Materials Chemistry C Accepted Manuscrip

1372.

- 40 T. Forster, Ann. Physik, 1948, **2**, 55.
- 41 D. L. Dexter, J. Chem. Phys., 1953, 21, 836.
- 42 (a) R. Pang, C. Li, L. Shi and Q. Su, J. Phys. Chem. Solids., 2009, **70**, 303; (b) M. P. Saradhi and U. V. Varadaraju, Chem. Mater., 2006, **18**, 5267; (c) M. C. Chang, J. W. Petrich, D. B. McDonald and G. R. Fleming, J. Am. Chem. Soc., 1983, **105**, 3819.
- 43 (a) S. Nakamura, M. Senoh and T. Mukai, *Appl. Phys. Lett.*, 1993, **62**, 2390; (b) L. Wang, X. Zhang, Z. H. Hao, Y. S. Luo, J. H. Zhang and X. J. Wang, *J. Appl. Phys.*, 2010, **108**, 093515.
- 44 (a) D. L. Dexter and J. A. Schulman, J. Chem. Phys., 1954,
 22, 1063; (b) R. Reisfeld and N. L. Soffer, J. Solid State Chem., 1979, 28, 391.
- 45 (a) W. J. Yang, L. Y. Luo, T. M. Chen and N. S. Wang, *Chem. Mater.*, 2005, **17**, 3883; (b) G. Zhu, Y. Wang, Z. Ci, B. Liu, Y. Shi and S. Xin, *J. Electrochem. Soc.*, 2011, **158** (8), J236.
- 46 M. Inokuti and F. Hirayama, J. Chem. Phys., 1965, 43, 1978.
- 47 G. Blasse, *Phys. Lett. A*, 1968, **28**, 444.
- 48 H. Zhou, Y. Jin, M. Jiang, Q. Wang and X. Jiang, *Dalton Trans.*, 2015, 44, 1102.
- (a) X. Liu and J. Qiu, Chem. Soc. Rev., 2015, 44, 8714; (b) K.
 N. Shinde and S. J. Dhoble, Critical Reviews in Solid State and Materials Sciences, 2014, 39, 459; (c) M. Shang, C. Li and J. Lin, Chem. Soc. Rev., 2014,43, 1372.
- 50 L. Liu, L. Wang, C. Zhang, Y. Cho, B. Dierre, N. Hirosaki, T. Sekiguchi and R.-J. Xie, *Inorg. Chem.*, 2015, **54**, 5556.
- 51 K. Li, D. Geng, M. Shang, Y. Zhang, H. Lian and J. Lin, *J. Phys. Chem. C*, 2014, **118**, 11026.
- 52 N. Guo, H. You, C. Jia, R. Ouyang and D. Wu, *Dalton Trans.*, 2014, **43**, 12373.
- 53 Y. Feng, J. Huang, L. Liu, J. Liu and X. Yu, *Dalton Trans.*, 2015, **44**, 15006.
- 54 D. Geng, M. Shang, Y. Zhang, Z. Cheng and J. Lin, Eur. J. Inorg. Chem., 2013, **16**, 2947.
- 55 C.-H. Huang, T.-S. Chan, W.-R. Liu, D.-Y. Wang, Y.-C. Chiu, Y.-T. Yeh and T.-M. Chen, *J. Mater. Chem.*, 2012, 22, 20210.
- (a) P. Li, Z. Wang, Z. Yang and Q. Guo, J. Mater. Chem. C, 2014, 2, 7823; (b) S. Choi, Y. J. Yun and H.-K. Jung, Mater. Lett., 2012, 75, 186; (c) M. Guo, L. Huang, S. Zhao, D. Deng, H. Wang, Y. Hua, G. Jia and S. Xu, J. Lumin., 2013, 134, 96; (d) N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu and Y. Zheng, Inorg. Chem., 2010, 49, 10907; (e) K. H. Kwon, W. B. Im, H. S. Jang, H. S. Yoo, and D. Y. Jeon, Inorg. Chem., 2009, 48, 11525; (f) N. Xie, J. Liu, Y. Huang, S. I. Kim and H. J. Seo, Ceram. Inter., 2012, 38, 1489.
- 57 W.-R. Liu, C.-H. Huang, C.-W. Yeh, J.-C. Tsai, Y.-C. Chiu,Y.-T. Yeh and R.-S. Liu, *Inorg. Chem.*, 2012, **51**, 9636;
- 58 Z. Xia, Y. Zhang, M. S. Molokeev and V. V. Atuchin, J. Phys. Chem. C, 2013, 117, 20847.
- 59 K. Li, M. Xu, J. Fan, M. Shang, H. Lian and J. Lin, *J. Mater. Chem. C*, 2015, **3**, 11618.
- (a) N. Guo, Y. Huang, M. Yang, Y. Song, Y. Zheng and H. You, *Phys. Chem. Chem. Phys.*, 2011, **13**, 15077; (b) N. Guo, Y. Zheng, Y. Jia, H. Qiao and H. You, *J. Phys. Chem. C*, 2012, **116**, 1329.
- (a) N. Guo, Y. Jia, W. Lü, W. Lv, Qi Zhao, M. Jiao, B. Shao and H. You, *Dalton Trans.*, 2013, **42**, 5649; (b) N. Guo, Y. Zheng, Y. Jia, H. Qiao and H. You, *New J. Chem.*, 2012, **36**, 168.
- 62 Y. Kim and S. Park, Mater. Res. Bull., 2014, 49, 469.
- 63 (a) C.-H. Huang, P.-J. Wu, J.-F. Lee and T.-M. Chen, J. Mater. Chem., 2011, 21, 10489; (b) C.-H. Huang and T.-M. Chen,

Opt. Exp., 2010, **18**, 5089; (c) N. Guo, H. You, Y. Song, M. Yang, K. Liu, Y. Zheng, Y. Huang and H. Zhang, *J. Mater. Chem.*, 2010, **20**, 9061.

- 64 N. Niu, P. Yang, W. Wang, F. He, S. Gai, D. Wang and J. Lin, Mater. Res. Bull., 2011, 46, 333.
- 65 Q. Xu,L. Han, Q. Di and J. Sun, Ceram. Inter., 2015, 41, 2699.
- 66 K. Li, Y. Zhang, X. Li, M. Shang, H. Lian and J. Lin, *Dalton Trans.*, 2015, 44, 4683.
- 67 M. Jiao, N. Guo, W. Lu, Y. Jia, W. Lv, Q. Zhao, B. Shao and H. You, *Inorg. Chem.*, 2013, **52**, 10340.
- 68 M. Zhang, Y. Liang, S. Xu, Y. Zhu, X. Wu and S. Liu, CrystEngComm, 2016, 18, 68.
- 69 W. Lv, Z. Hao, X. Zhang, Y. Luo, X. Wang and J. Zhang, *Inorg. Chem.*, 2011, **50**, 7846.
- 70 L. Jiang, R. Pang, D. Li, W. Sun, Y. Jia, H. Li, J. Fu, C. Li and S. Zhang, *Dalton Trans.*, 2015, 44, 17241.
- 71 S. Xu, P. Li, Z. Wang, T. Li, Q. Bai, J. Sun and Z. Yang, J. Mater. Chem. C, 2015, 3, 9112.
- 72 Y. Jia, W. Lv, N. Guo, W. Lv, Q. Zhao and H. You, *Chem. Commun.*, 2013, **49**, 2664.
- (a) K. Li, M. Shang, H. Lian and J. Lin, *Inorg. Chem.*, 2015,
 54, 7992; (b) X. Ding, G. Zhu, W. Geng, Q. Wang and Y. Wang, *CrystEngComm*, 2015, 17, 3235; (c) X. Wang and Y. Wang, *J. Phys. Chem. C*, 2015, 119, 16208.
- 74 (a) Y. N. Xue, F. Xiao and Q. Y. Zhang, Spectrochimica Acta Part A, 2011, 78, 1445; (b) B. Zhang, H. Zhong, C. Cai, L.-Y. Hao, X. Xu, S. Agathopoulos and L.-J. Yin, Mater. Res. Bull., 2015, 72, 83; (c) K. Li, D. Chen, R. Zhang, Y. Yu, J. Xu and Y. Wang, Mater. Res. Bull., 2013, 48, 1957; (d) M. Shang, G. Li, D. Geng, D. Yang, X. Kang, Y. Zhang, H. Li and J. Lin, J. Phys. Chem. C, 2012, 116, 10222.
- 75 Y. Zhu, Y. Liang, M. Zhang, M. Tong, G. Li and S. Wang, RSC Adv., 2015, 5, 98350.
- 76 J. Zhou, T. Wang, X. Yu, D. Zhou and J. Qiu, *Mater. Res. Bull.*, 2016, **73**, 1.
- 77 Z. Ci, Q. Sun, M. Sun, X. Jiang, S. Qin and Y. Wang, J. Mater. Chem. C, 2014, 2, 5850.
- 78 (a) D. Wei, Y. Sun, L. Jiang, S. Hua and D. Lia, *New J. Chem.*, 2015, **39**, 4753; (b) W. Lv, W. Lü, N. Guo, Y. Jia, Q. Zhao, M. Jiao, B. Shao and H. You, *Dalton Trans.*, 2013, **42**, 13071.
- 79 D. L. Dexter and J. H. Schulman, J. Chem. Phys., 1954, 22, 1063.
- 80 (a) X. Zhang, L. Zhou and M. Gong, *ECS J. Solid State Sci.* and Tech., 2013, **2**, R83; (b) J. Sun, Z. Lian, G. Shen and D. Shen, *RSC Adv.*, 2013, **3**, 18395.
- 81 W. Lü, Y. Luo, Z. Hao, X. Zhang, X. Wang and J. Zhang, Mater. Lett., 2012, 77, 45.
- (a) M. Jiao, Y. Jia, W. Lü, W. Lv, Q. Zhao, B. Shao and H. You, Dalton Trans., 2014, 43, 3202; (b) Y. Li, Y. Shi, G. Zhu, Q.
 Wu, H. Li, X. Wang, Q. Wang and Y. Wang, Inorg. Chem., 2014, 53, 7668.
- 83 Y. Jia, Y. Huang, N. Guo, H. Qiao, Y. Zheng, W. Lv, Q. Zhao and H. You, *RSC Adv.*, 2012, 2, 2678.
- 84 Y. Liu, X. Zhang, Z. Hao, Y. Luo, X. Wang and J. Zhang, J. Mater. Chem., 2011, 21, 16379.
- 85 Y. Liu, X. Zhang, Z. Hao, Y. Luo, X. Wang and J. Zhang, Chem. Commun., 2011, 47, 10677.
- 86 (a) B. Han, J. Zhang, P. Li, J. Li, Y. Bian and H. Shi, *Optik*, 2015, **126**, 1851; (b) T.-W. Kuo and T.-M. Chen, J. *Electrochem. Soc.*, 2010, **157**, J216; (c) J. Sun, Y. Sun, J. Zeng and H. Du, *J. Phys. Chem. Solids*, 2013, **74**, 100; (d) T.

Jiang, X. Yu, X. Xu, H. Yu, D. Zhou and J. Qiu, *Mater. Res. Bull.*, 2014, 51, 80; (e) C. Guo, H. Jing and T. Li, *RSC Adv.*, 2012, **2**, 2119; (f) N. Guo, Y. Song, H. You, G. Jia, M. Yang, K. Liu, Y. Zheng, Y. Huang and H. Zhang, *Eur. J. Inorg. Chem.*, 2010, **29**, 4636.

- (a) Q. Guo, L. Liao, M. S. Molokeev, L. Mei and H. Liu, *Mater. Res. Bull.*, 2015, **72**, 245; (b) Q. Guo, L. Liao and Z. Xia, *J. Lumin.*, 2014, **145**, 65; (c) Y. Wen, Y. Wang, F. Zhang and B. Liu, *Mater. Chem. Phys.*, 2011, **129**, 1171; (d) X. Zhou, Z. Zhang and Y. Wang, *J. Mater. Chem. C*, 2015, **3**, 3676; (e) Q. Guo, L. Liao, L. Mei, H. Liu and Y. Hai, *J. Solid State Chem.*, 2015, **225**, 149; (f) K. Li, M. Shang, D. Geng, H. Lian, Y. Zhang, J. Fan and J. Lin, *Inorg. Chem.*, 2014, **53**, 6743; (g) B. Zhang, H. Zhong, C. Cai, L.-Y. Hao, X. Xua, S. Agathopoulos and L.-J. Yin, *Mater. Res. Bull.*, 2015, **72**, 83; (h) B. Han, J. Zhang and Y. Lv, *J. Am. Ceram. Soc.*, 2013, **96** [1], 179.
- 88 Z. Xia and W. Wu, Dalton Trans., 2013, 42, 12989.
- 89 Y. X. Pan, W. Wang and G. K. Liu, J. Alloys Compd., 2009, 488, 638.
- 90 K. Li, D. Chen, R. Zhang, Y. Yu, J. Xu and Y. Wang, *Mater. Res. Bull.*, 2013, 48, 1957.
- 91 B. Yuan, Y. Song, Y. Sheng, K. Zheng, X. Zhou, P. Ma, X. Xu and H. Zou, J. Solid State Chem., 2015, **232**, 169.
- 92 D. Geng, K. Li, H. Lian, M. Shang, Y. Zhang, Z. Wu and J. Lin, *Eur. J. Inorg. Chem.*, 2014, **11**, 1955.
- 93 (a) M. Xu, L. Wang, D. Jia and L. Liu, *Mater. Res. Bull.*, 2015,
 70, 691; (b) Z. Yang, P. Liu, L. Lv, Y. Zhao, Q. Yu and X. Liang,
 J. Alloys Compd., 2013, 562, 176; (c) M. Li, Z. Xia and Z.
 Wang, Opt. Mater., 2014, 37, 446; (d) M. Xie, S. Ou, H.
 Liang, D. Hou, Y. Huang, Z. Gao and Y. Tao, Mater. Chem.
 Phys., 2013, 142, 339.
- 94 L. Zhou, H. Liang, P. A. Tanner, S. Zhang, D. Hou, C. Liu, Y. Tao, Y. Huang and L. Li, *J. Mater. Chem. C*, 2013, **1**, 7155.
- 95 H. Chen, C. Li, Y. Hua, L. Yu, Q. Jiang, D. Deng, S. Zhao, H. Ma and S. Xu, *Ceram. Inter.*, 2014, **40**, 1979.
- 96 (a) Y. Jia, H. Qiao, Y. Zheng, N. Guo and H. You, *Phys. Chem. Chem. Phys.*, 2012, 14, 3537; (b) G. Li, M. Li, L. Li, H. Yu, H. Zou, L. Zou, S. Gan and X. Xu, *Mater. Lett.*, 2011, 65, 3418; (c) S. Miao, Z. Xia, M. S. Molokeev, J. Zhang and Q. Liu, *J. Mater. Chem. C*, 2015, 3, 8322; (d) M. Chen, Z. Xia, M. S. Molokeev and Q. Liu, *J. Mater. Chem. C*, 2015, 3, 12477.
- 97 (a) Y. Song, G. Jia, M. Yang, Y. Huang, H. You and H. Zhang, *Appl. Phys. Lett.*, 2009, 94, 091902; (b) Y. Jia, R. Pang, H. Li, W. Sun, J. Fu, L. Jiang, S. Zhang, Q. Su, C. Li and R.-S. Liu, *Dalton Trans.*, 2015, 44, 11399.
- (a) G. Li, D. Geng, M. Shang, Y. Zhang, C. Peng, Z. Cheng and J. Lin, *J. Phys. Chem. C*, 2011, **115**, 21882; (b) G. Li, Y. Zhang, D. Geng, M. Shang, C. Peng, Z. Cheng and J. Lin, *ACS Appl. Mater. Interfaces*, 2012, **4**, 296; (c) H. Liu, Y. Luo, Z. Mao, L. Liao and Z. Xia, *J. Mater. Chem. C*, 2014, **2**, 1619.
- 99 Y. Zhang, G. Li, D. Geng, M. Shang, C. Peng, Z. Cheng and J. Lin, *Inorg. Chem.*, 2012, **51**, 11655.
- 100 C. Feldman, Phys. Rev., 1960, 117, 455.
- 101 (a) K. Li, M. Shang, Y. Zhang, J. Fan, H. Lian and J. Lin, J. Mater. Chem. C, 2015, **3**, 7096; (b) D. Geng, M. Shang, Y. Zhang, H. Lian, Z. Cheng and J. Lin, J. Mater. Chem. C, 2013, **1**, 2345.
- 102 (a) X. Zhang and M. Gong, *Dalton Trans.*, 2014, **43**, 2465;
 (b) J. Zhang, Y. He, Z. Qiu, W. Zhang, W. Zhou, L. Yu and S, Lian, *Dalton Trans.*, 2014, **43**, 18134; (c) Y. Zhang, D. Geng, M. Shang, Y. Wu, X. Li, H. Lian, Z.Cheng and J. Lin, *Eur. J.*

Inorg. Chem., 2013, **25**, 4389; (d) Z. Wang, P. Li, Z. Yang, Q. Guo and G. Dong, *Ceram. Inter.*, 2014, **40**, 15283.

- (a) G. Blasse and A. Bril, *J. Chem. Phys.*, 1967, 47, 1920; (b)
 K. C. Bleijenberg and G. Blasse, *J. Solid State Chem.*, 1979, 28, 303.
- 104 D. Wen and J. Shi, Dalton Trans., 2013, 42, 16621.
- 105 X. Liu and J. Lin, J. Mater. Chem., 2008, **18**, 221.
- 106 (a) I. Laulicht and S. Meirman, *J. Lumin.*, 1986, 34, 287; (b)
 M. Bettinelli, A. Speghini, F. Piccinelli, J. Ueda and S. Tanabe, *Opt. Mater.*, 2010, 33, 119.
- 107 (a) J. Zhou and Z. Xia, J. Mater. Chem. C, 2015, 3, 7552; (b)
 X. Zhang, L. Zhou, Q. Pang, J. Shi and M. Gong, J. Phys. Chem. C, 2014, 118, 7591; (c) X. Zhang, Y. Chen, L. Zhou, Q.
 Pang and M. Gong, Ind. Eng. Chem. Res., 2014, 53, 6694; (d) X. Zhang, L. Zhou, Q. Pang and M. Gong, Opt. Mater., 2014, 36, 1112.
- 108 X. Zhang, J. Zhang and M. Gong, *Mater. Lett.*, 2015, **143**, 71.
- 109 H. Yu, X. Yu, X. Xu, D. Zhou and J. Qiu, ECS J. Solid State Sci. Tech., 2014, 3 (12), R245.
- (a) S. Yan, J. Zhang, X. Zhang, S. Lu, X. Ren, Z. Nie and X. Wang, *J. Phys. Chem. C*, 2007, **111**, 13256; (b) L. Wan, S. Lv, L. Sun and X. Qu, *Opt. Mater.*, 2014, **36**, 628; (c) P. Du, L. K. Bharat and J. S. Yu, *J. Alloys Coumd.*, 2015, **633**, 37; (d) R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu and S. Jiang, *J. Solid State Chem.*, 2014, **220**, 97.
- 111 H. Zhou, Q. Wang and Y. Jin, J. Mater. Chem. C, 2015, 3, 11151.
- (a) K. Li, J. Fan, M. Shang, H. Lian and J. Lin, J. Mater. Chem. C, 2015, 3, 9989; (b) T. Matsunaga, S. Takeshita and T. Isobe, J. Lumin., 2015, 165, 62; (c) N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, S. C. Sharma, B. Rudraswamy, N. Suriyamurthy, C. Shivakumara and R. P. S. Chakradhar, Appl. Phys. B, 2012, 107, 503; (d) H. Zhou, Y. Jin, M. Jiang, Q. Wang and X. Jiang, Dalton Trans., 2015, 44, 1102.
- 113 K. Li, H. Lian, M. Shang and J. Lin, *Dalton Trans.*, 2015, 44, 20542.
- 114 L. Wang, H. Guo, Y. Wei, H. M. Noh and J. H. Jeong, Opt. Mater., 2015, 42, 233.
- 115 C. Zeng, Y. Hu, Z. Xia and H. Huang, *RSC Adv.*, 2015, **5**, 68099.
- (a) J. Zhou and Z. Xia, J. Mater. Chem. C, 2014, 2, 6978; (b)
 X. Zhang, L. Zhou, J. Shi and M. Gong, Mater. Lett., 2014, 137, 32.
- 117 W. Xie, G. Liu, X. Dong, J. Wang and W. Yu, *RSC Adv.*, 2015, 5, 77866.
- 118 (a) H. Liu, L. Liao, J. Chen, Q. Guo, Y. Zhang and L. Mei, J. Lumin., 2016, 169, 739; (b) T. Wang, X. Xu, D. Zhou, J. Qiu and X. Yu, J. Rare Earth, 2015, 33, 361; (c) Y. I. Jeon, L. K. Bharat and J. S. Yu, J. Lumin., 2015, 166, 93.

Graphic Abstract

A series of recent energy transfer phosphors systems with different and controllable emission colors have been summarized in this article.

