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Electric field makes Leidenfrost droplets take a leap

Sander Wildeman,∗a Chao Sun,∗b,a

Leidenfrost droplets, i.e. droplets whose mobility is ensured by a thin vapor film between the
droplet and a hot plate, are exposed to an external electric field. We find that in a strong vertical
electric field the droplet can start to bounce progressively higher, defying gravitational attraction.
From the droplet’s trajectory we infer the temporal evolution of the amount of charge on the droplet.
This reveals that the charge starts high and then decreases in steps as the droplet slowly evapo-
rates. After each discharge event the charge is in a fixed proportion to the droplet’s surface area.
We show that this behavior can be accurately modeled by treating the droplet as a conducting
sphere that occasionally makes electrical contact with the hot plate, at intervals dictated by an
electro-capillary instability in the vapor film. An analysis of the kinetic and potential energies of
the bouncing droplet reveals that, while the overall motion is damped, the droplet occasionally
experiences a sudden boost, keeping its energy close to the value for which the free fall trajectory
and droplet oscillation are in sync. This helps the droplet to escape from the hot surface when
finally the electrical surface forces overtake gravity.

Four hundred years ago William Gilbert noticed how a water
droplet sitting on a dry surface is “drawn up into a cone” when
a piece of statically charged amber is held above it.1 Important
progress on this topic was made a few centuries later: by Lord
Rayleigh2 in his work on the stability limits of charged droplets
and by Millikan,3 who showed in his famous oil-drop experiments
that charge is quantized. Closely after, Zeleny4 published beau-
tiful photographs of how droplets suspended from thin glass cap-
illaries, destabilize when a high voltage is applied between the
liquid and a nearby grounded plate. The change of shape of the
droplet from a spherical cap to a cone and the subsequent jet-
ting of small charged droplets from the cone tip, were later put
on firm theoretical grounds by Taylor5. The curious behavior of
charged liquid is further exemplified by phenomena like floating
water bridges,6,7 whipping jets,8,9 and the non-coalescence of
oppositely charged drops.10,11

An equally curious effect, with uncharged droplets, was
demonstrated by Leidenfrost in 1756.12 He showed that water
droplets can survive for seconds on a glowing hot iron spoon,
without the instant evaporation one might expect. The effect, oc-
curring above a critical temperature TL of the spoon, is explained
by a thin vapor film sustained below the droplet, which thermally
insulates the droplet from the hot metal. The vapor film also en-
ables Leidenfrost droplets to move with very little friction.13 It
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Fig. 1 (a) Schematic of the setup. A droplet hovering on a hot plate
(T > TL) is trapped under a spherical electrode set to a high voltage Vs
between 2 and 5 kV. (b) Image captured by the high speed camera just
after deposition. It shows a millimetric droplet of ethanol and its reflection
in the polished aluminum plate. In the magnification of the contact region
(c) the thin vapor gap, which insulates the drop from the hot surface is
clearly visible.

has been demonstrated that these hyper-mobile droplets can be
conveniently trapped and steered by equipping the hot surface
with ratchet-like structures14–16 or, in the case of a paramagnetic
liquid, by using a magnet.17 For an overview of the work on Lei-
denfrost droplets we refer to the review by Quéré.18

We bring together the classic experiments of Gilbert and Lei-
denfrost, and investigate how Leidenfrost droplets behave in a
strong electric field. Previously it has been shown that the Lei-
denfrost state can be suppressed by applying a voltage directly
between the hovering droplet and the hot plate.19,20 In our exper-
iments we apply the electric field externally, so that the forces are
determined by a capacitive coupling between the electrodes and
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Fig. 2 Typical dynamics of a small Leidenfrost droplet in a strong electric field. Figures (b) and (c) were obtained by taking from each subsequent
frame in the high speed recording a thin vertical strip through the center of mass of the droplet (shown in (a) for the first frame) and then merging all
these strips. The total time covered by (b–c) is about 9 seconds with a gap of 1 second between the initial stage (b) and the final stage (c). The up-
and downward arrows in (b) and (c) indicate the times for which there is a sudden increase or decrease in the jumping amplitude. In (d) the droplet has
just impacted on the unheated top electrode, ejecting a small secondary droplet.

the droplet. Similar ideas have been employed to guide droplets
through microfluidic devices.21,22

1 Setup and method

The setup, shown in figure 1, consists of a stainless steel ball
(� 24 mm) mounted a distance d = 7 mm above a polished alu-
minum plate. The sphere is connected to a high voltage DC power
supply and the bottom plate is grounded. The temperature of the
plate can be set via an external temperature controller. In each
experiment the plate had a constant temperature T well above
the Leidenfrost point TL, and the top electrode was set to a po-
tential Vs between 2 and 5 kV. With a grounded stainless steel
needle (not shown) we then gently deposited a millimeter sized
droplet of water, ethanol or perfluorohexane (FC72) on the hot
plate (see table 1 for an overview of the relevant liquid prop-
erties). The spherical shape of the top electrode ensures that a
charged Leidenfrost droplet experiences a small horizontal force
that traps the droplet below the center of the sphere (see ap-
pendix A). The droplet’s motion was recorded with a high speed
camera and the captured frames were further processed with an
image analysis script to obtain the center-of-mass (CM) trajectory
(Xcm(t), Ycm(t)) and the volume Ω≡ 4πR3/3 of the droplet, defin-
ing an effective droplet radius R.

2 Vertical droplet trajectory and radius

Figure 2 shows a recording of an ethanol Leidenfrost droplet (T =

220◦C) in a electric field of strength E = 2.9kV/cm (Vs = 2kV). The
first frame shown was taken about 10 seconds after deposition.
Initially the droplet bounces with a small amplitude ∆YCM � R.
For most parts the amplitude decreases slowly with time. How-
ever, as indicated by the upward arrows, it occasionally shows a
sudden increase. Interestingly, near the end of the sequence in
figure 2(b) this behavior reverses. In this final stage the jump

height steadily increases in time, now with an occasional drop in
amplitude (downward arrows). Finally, it bridges the gap com-
pletely and impacts onto the top electrode (figure 2(d)). In §5 we
will analyze this peculiar motion in detail. For this we first need
to understand the (dis)charging behavior of the droplet, which
will be the focus of §3 and §4.

The full time series of the extracted CM trajectory and the effec-
tive radius are shown in figure 3(a) (top panel). While the droplet
is close to the surface its radius R decreases approximately linear
in time. A fit to the first part of the R(t) curve of ethanol in fig-
ure 3(a) gives −dR/dt ≈ 0.03mm/s. Similar values are found for
water (−dR/dt ≈ 0.01mm/s) and FC72 (−dR/dt ≈ 0.08mm/s),
increasing in order of liquid volatility (see figures 3(c) and 3(d),
respectively). For the ethanol droplet the evaporation rate some-
what decreases in the final stage (stage II in figure 3(a)). This
is likely due to a combined effect of the lower temperature ex-
perienced by the drop (on average it spends less time near the
hot plate) and its lower velocity (so that convective contributions
to the mass flux are reduced). A proper treatment of the mass
and heat transfer problem of an oscillating Leidenfrost droplet
would require detailed knowledge about the varying conditions
outside the droplet (such as temperature, vapor saturation) and
the boundary layers that develop. This is outside the scope of this
work.

3 Droplet charge

When the droplet is free from the surface the only external forces
acting on it are gravity Fg =−mg, air drag Fd and electrical forces
Fe from the electrodes and image charges, where m is the mass of
the droplet and g is the gravitational acceleration. For the small
velocities considered here, we can safely neglect the air drag. The
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Property Sym. Unit Ethanol Water FC72
Boiling point Tb

◦C 78 100 56
Surface tension γ mN/m 17 59 10
Dielectric permittivity (l) εr - 19 55 1.7
Density (l) ρ kg/m3 730 950 1594
Density (v) ρv kg/m3 1.6 0.6 12.5
Viscosity (v) µv µPa s 10 12 12
Thermal conductivity (v) kv W/(mK) 0.02 0.02 0.01
Latent heat L kJ/kg 900 2260 88

Table 1 Relevant vapor (v) and liquid (l) properties used throughout the text. All material parameters are taken at the boiling temperature of the liquid.

Fig. 3 Extracted dribbling and charging behavior for (a) ethanol, (c) water and (d) FC72 Leidenfrost droplets in an external electric field (with Vs = 2.0 kV,
3.0 kV and 2.5 kV, respectively). For each liquid the time evolution of droplet radius R and vertical trajectory YCM (top panel), the inferred and predicted
droplet charge Qd (middle panel), and the jumping energy ∆U (bottom panel) are shown. The data for R were smoothed (solid line) to remove non-
physical fluctuations in the tracking (gray shading). In (a) the inset shows a magnified region of 70 ms of the trajectory, where a parabola was fitted to
one of the peaks to obtain the free-fall acceleration ŸCM. In (c) the inset on YCM shows that also the water droplet finally makes it to the top electrode.
The solid vertical line in (a) separates the qualitatively different initial (I) and final stage (II) seen for ethanol. The vertical dotted lines in both (a) and
(c) serve to correlate key features in the stacked panels such as the charge plateaus and sudden changes in amplitude. For FC72 we took into into
account its low permittivity by multiplying the prediction for the charge by f = (εr−1)/(εr +2) = 0.2 (note the different scale on the axis for the charge
on the FC72 droplet). Panel (b) shows snapshots of the three tested liquids at their maximal deformation during a rebound.
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Fig. 4 Canonical electrostatic problems to calculate the capacitance co-
efficients in our experiment. The height YCM and radius R of the droplet
are varied. From (a) we get cdd(Y,R) = Qd and csd(Y,R) = Qs, and in (b)
we have cds(Y,R) = Qd and css(Y,R) = Qs.

vertical component of the equation of motion then takes the form

mŸCM =−mg+Fe(YCM,R,Vs,Qd), (1)

in which Qd is the charge on the droplet. Since we can mea-
sure m, ŸCM (see inset figure 3(a)), YCM and R, and we control
Vs, we can in principle solve equation (1) to infer Qd , given the
function Fe(YCM,R,Vs,Qd). The simplest form of this function is
obtained by assuming that the droplet is a point charge in an ex-
ternal electric field of strength E = Vs/d, so that Fe ≈ −QdVs/d.
This point charge model could be extended by including forces
∼ Q2/(4πε0Y 2

CM) from image charges in the top and bottom elec-
trode. Although this approach can capture most of the charging
trends, it fails when the droplet is close to the electrodes, where
it can no longer be considered to be a point. In this case we
can view our system as consisting of three finite conductors: a
grounded plate, a spherical top electrode and the droplet. For
any configuration of conductors at potentials Vi one can write the
charge on conductor i as Qi = ∑ j ci jV j, where the capacitance co-
efficients ci j only depend on the geometry of the problem, and
ci j = c ji.23 The total potential energy for the system can then be
written as Ue = 1

2 ∑i QiVi−∑n QnVn. The first sum runs over all
conductors and the second sum over all conductors connected to
a constant voltage supply. In our experiment the geometry is fully
specified by YCM, R, and the (fixed) position and radius of the top
electrode (see figure 4). We can therefore write Qd = cddVd +cdsVs

and Qs = cssVs + csdVd , where the subscripts s and d refer to the
top electrode and the droplet, respectively. The charge Qp on the
bottom plate is not relevant here, as Vp = 0 and it therefore does
not contribute to the potential energy. Using these relations to
express Ue = (QdVd −QsVs)/2 in terms of Qd and Vs (which are
constant during each flight) one obtains:

Ue =
1

2cdd
Q2

d −
cds

cdd
QdVs +

1
2

(
c2

ds
cdd
− css

)
V 2

s . (2)

Finally, the force needed to vary the droplet height YCM is found
from the principle of virtual work as

Fe =−∂YCMUe. (3)

The required capacitance coefficients ci j(YCM,R) have an analyti-
cal representation only in some special cases (which will be dis-
cussed later). For the remaining configurations the coefficients
were determined numerically using COMSOL (see appendix B).

Combining equations (1) through (3) we find a quadratic equa-
tion for Qd , which we solve for each maximum in the droplet’s
flight trajectory. The numerical capacitance coefficients take into
account the precise geometry of the electrode configuration and
any forces due to induced images charges and dipoles.

As can be seen in figure 3(a) (middle panel), the inferred
amount of charge on the droplet starts high and then decreases in
time as the droplet evaporates. Initially, there is a large scatter in
the inferred charge (left of first dotted line). This is mostly related
to a similar initial scatter in the measured droplet volume and
center of mass position. A likely reason for this apparent scatter is
the non-axisymmetric wobbling of the droplet observed in the ini-
tial regime (due to capillary waves created during deposition, and
possibly by the discharges in the vapor gap). This invalidates the
assumption of an axisymmetric droplet shape underlying the im-
age analysis. Another source of error will be the assumption of a
spherical droplet shape in the numerical calculation of the capac-
itance coefficients. We expect the value of the extracted charge to
be most reliable in the later stages, when the drop shape closely
approximates a sphere. In the final stage, about 6 seconds before
impact, the charge decreases in a step-like manner, perfectly cor-
related with the sudden changes in the jumping amplitude (see
vertical lines in region (II) of figure 3(a)).

The fact that the charge on the droplet decreases with time,
indicates that there is occasionally electrical contact between the
droplet and the plate, most likely during a rebound. Irrespective
of how this contact occurs we can model the droplet during this
stage as a small conducting sphere adhered to a grounded plate
(figure 4(b) with YCM = R). The problem of finding the charge
on the sphere (droplet) is mathematically equivalent to that of
finding the polarization of two adhering spheres aligned with an
external electric field. This problem has been solved by Smith
& Rungis24 using the method of images, who give the following
analytical expression for the amount of charge Qd on each sphere:

Qd(R) =−
2π3

3
ε0R2Vs

d
, (4)

where ε0 ≈ 8.85 · 10−12 F/m is the vacuum permittivity and we
approximated the external field as −Vs/d. This is about twice
(2π2/9 to be precise) the displaced charge one would find for a
single sphere of radius R in the same electric field. Taking R from
the measurements, we compare equation (4) to the experimental
data in figure 3(a) (middle panel). Both magnitude and trend are
in good agreement, without any fitting parameters.

4 Discharge mechanism
To understand how the droplet loses its charge, it is insightful
to estimate the electric field strength ∼ Vd/H in the vapor film
during a rebound (where H is the film thickness). The droplet’s
potential can be expressed as Vd = (Qd−cdsVs)/cdd , with the coef-
ficients evaluated at YCM = R+H. Since we will have H � R, we
can approximate cds(R+H,R) as cds(R,R), which can be directly
read off from equation (4): cds(R,R) = −2π3ε0R2/(3d). To find
the second coefficient, cdd(R+H,R), we use the geometry in fig-
ure 4(b), but neglect the top electrode, as it is relatively far away
in this case. This classical electrostatics problem23,25 has the so-
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Fig. 5 Cartoon of the electro-capillary instability in the vapor gap that we
speculate to be at the root of the observed discharge events.

lution cdd(R+H,R) ≈ 4πε0R(γ + ln(
√

2R/H)) in the limit H � R,
where γ ≈ 0.577 is the Euler-Mascheroni constant. With this, the
potential of the droplet can be written as:

Vd ≈−
π2

6
R2

0−R2

R
[
γ + ln(

√
2R/H)

] Vs

d
. (H� R) (5)

Here we assumed that the droplet made its last electrical con-
tact at some radius R0, obtaining a charge Qd(R0) as given by
equation (4). We see that the drop potential is zero after each
contact, and becomes negative as R shrinks due to evaporation.
The minimum height of the vapor film, appearing in the loga-
rithm in equation (5), can be estimated by balancing the Laplace
pressure Pγ = 2γ/R exposed in the flattened bottom, with the lu-
brication pressure Pµ in the vapor flowing out through the small
gap.26 The details of this estimate can be found in appendix C.
For the ethanol droplet under study we find H ≈ 6R5/4∆T 1/4 µm,
with R given in mm and ∆T = T −Tb. To give an estimate of the
maximum value of Vd reached before a discharge event, consider
a droplet of initial radius R0 = 0.6 mm that evaporates by a small
amount ∆R to a final radius R= R0−∆R. With ∆T ≈ 140K, we find
H ≈ 10 µm, so that equation (5) becomes Vd ≈ −1.1Vs ∆R/d. The
duration of a charge step in figure 3(a) is approximately 1 second.
The droplets shrinks by about ∆R = 0.02 mm in this time, so we
find Vd ≈ −6V at the moment of discharge. Although this gives
rise to a strong electric field in the gap, of about 600kV/m, it is
still far below the breakdown voltage of ethanol vapor Vb ≈ 500 V
for gap sizes of 10 µm at atmospheric pressure.27

Another pathway for discharge would be an electro-capillary
kind of instability in the vapor gap, akin to the classical cases
that can occur for a charged droplet as a whole.2,5 To investigate
this possibility, consider a perturbation h(x) on the flattened bot-
tom of the droplet during a rebound (see figure 5 for a sketch
of the situation). The pressure distribution at the liquid-vapor
interface will have two main contributions: the Laplace pres-
sure Pl = γκ ≈ γ∂ 2

x h and an electrostatic pressure Pe =− 1
2 ε0E2 ≈

− 1
2 ε0 [Vd/(H +h(x))]2 ≈ − 1

2 ε0V 2
d [1−2h(x)/H]/H2, where in the

approximations we used that h(x)�H (as is the case when the in-
stability sets in). This situation is similar to the unstable configu-
ration of a dense fluid atop a lighter fluid, for which the Rayleigh-
Taylor (RT) instability can set in.26,28,29 As for the RT-instability,
the Laplace pressure stabilizes the interface, while the destabi-
lizing role of the hydrostatic pressure ρgh(x) is here played by
the electrostatic pressure ε0V 2

d h(x)/H3. From this analogy we can
immediately obtain an expression for the smallest unstable wave-

Fig. 6 Escape radius of the droplet (just before impact) in repeated
experiments at various voltages (±(2–5) kV) and temperatures (120–
300 ◦C), normalized by the predicted critical radius R∗ given by equation
(8). For the dashed line the low dielectric constant of FC72 was taken
into account. The large symbols correspond to the representative cases
shown in figure 3.

length. For the RT-instability we have λRT = 2π
√

γ/(ρg). Replac-
ing ρg by ε0V 2

d /H3 as suggested by the analogy, we obtain:

λm = 2π

√
γH3

ε0V 2
d
. (6)

The largest wavelength that can be supported on the bottom of
the droplet surface is approximately λm≈ 4a, where a is the radius
of the flattened area (that is, half a wavelength over the diameter
2a). Using this condition in equation (6) we find a minimum
droplet voltage for the onset of the instability as

Vc =−
π

2

√
γH3

ε0a2 (7)

In the side-view recordings of ethanol droplets we observed that
a ∼ R during each impact. Using this in equation (7), we find
Vc ≈−4V for R = 0.6mm and H = 10 µm, which is indeed close to
the value of −6V inferred from the measurements using equation
(5). Note that λm strongly depends on H. This may facilitate a
non-linear steepening of the growing mode as the drop’s surface is
attracted closer to the bottom plate. On the other hand, the strong
evaporation in the gap may limit the amplitude of the instability.
With the limited spatial and temporal resolution in our setup we
were unfortunately not able to directly capture the details of a
discharge event, which will be a topic for further investigation.

5 Dribbling motion and escape
From equations (1) and (4) it is clear that the droplet will even-
tually jump to the top electrode. The force acting on the surface
charge is proportional to R2, which, as the droplet shrinks, even-
tually overcomes the downward gravitational force proportional
to R3. The critical radius R∗ for which this occurs can be estimated
by balancing Fg =−mg with Fe ≈ QdVs/d, leading to

R∗ =
π2

2
ε0V 2

s
ρgd2 . (8)

As shown in figure 6 this expression predicts the escape radius
reasonably well (within about 50%) in a series of experiments
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done at various voltages and temperatures, and with different
liquids. In the case of FC72 an additional prefactor f = (εr −
1)/(εr + 2) ≈ 0.2 is required (dashed line) to take into account
the liquid’s low dielectric constant εr ≈ 1.7 (as will be discussed
in §6).

What remains to be explained are the details of the dribbling
motion, such as the (sudden) increases and decreases in ampli-
tude. To this end we look at the total change in potential en-
ergy ∆U during each jump. This energy can be calculated in two
ways: One way is to assume that air drag is negligible and invoke
conservation of energy, so that ∆U is equal to the kinetic energy
K0 with which the droplet leaves the surface. Another way is to
use the inferred charge to directly calculate Um = mgYm +Ue(Ym)

at the jumping maximums Ym and to subtract the corresponding
values U0 of the droplet close to the surface. As shown in fig-
ure 3(a) (bottom panel) these independent energy measures give
practically the same result, confirming that air drag can safely be
neglected and at the same time validating our charge extraction
method. For most parts of the trajectory the energy decreases af-
ter each rebound. For these low impact velocities this is likely due
to dissipation associated with the oscillatory motion of the droplet
after impact.30,31 Interestingly, there is occasionally a sudden in-
crease in energy. Comparing top and bottom panels in figure 3(a)
one can see that these boosts in energy correlate with the sudden
increases in jumping amplitude in the initial stage (stage I). We do
not know the precise origin of these energy injections, but it could
be related to the electro-capillary instability described in the pre-
vious section. Although the injections always seem to occur, their
timing varies in repeated experiments under the same conditions.
In the final stage (stage II), when the discharge occurs in well de-
fined steps, the droplet’s energy decreases almost monotonically.
At first sight this may seem at variance with the overall increasing
jumping amplitude, but this is not the case. Both the gravitational
and electric field contributions to the potential energy make that
smaller droplets can jump higher with the same energy. In the
final stage the dissipation rate is not high enough to counteract
this effect. Here the amplitude drops at every discharge, as these
events cause the potential energy to shift up for the same height.

In a previous study it was found that even without an exter-
nal electric field, Leidenfrost droplets display a surprising (quasi)
elastic bouncing behavior.31 It was argued that the droplet finds
a jumping mode in which energy dissipation is least, occurring
when its oscillation time tR ≈ π

√
ρR3/(2γ) becomes similar to the

free fall time tf ≈
√

2h/g. Solving tR = tf for the fall height h, gives
h= π2g2ρR3/(4γ). This can also be rewritten as a condition on the
kinetic energy by using that mv2/2 ≈ mgh, with v the velocity of
the center of mass. Introducing the dimensionless Weber-number,
We = ρRv2/γ, and Bond-number, Bo = ρgR2/γ, one finds the con-
dition

We≈ π2

2
Bo2. (9)

If we evaluate this expression for our ethanol droplet, for which
1 mm > R > 0.5 mm, we find 0.8 > We > 0.05 and kinetic ener-
gies of 30 nJ > K0 > 0.5 nJ, which are indeed of the same order of
magnitude as those found experimentally (figure 3(a)). Note that

in the presence of charge on the droplet the oscillation frequency
would change to ω2 =

[
8γ−Q2

d/(8π2ε0R3)
]
/(ρR3).2 However, in

the experiment considered here the amount of charge is still far
(at about 10%) from the stability limit. We can therefore safely
neglect the second term between the brackets. Another effect
we need to consider is that the electric force will alter the free fall
time. This could be incorporated by introducing an effective grav-
itational acceleration g′ ≈ g−QdVs/(md), which decreases from
g′ ≈ g just after deposition to g′ ≈ 0 when the droplet flies to the
top electrode. However, in this final stage the free flight time is a
lot longer than the time for the oscillations to damp out, so that
the whole consideration above looses its validity anyhow. We can
interpret equation (9) as a kind of initial condition for the exper-
iment, giving the typical kinetic energy before the electric forces
take over.

6 Effect of liquid properties
In the model for predicting the droplet charge (equation (4)) it
was assumed that the droplet behaves as a perfect conductor. We
expect this to work for liquids with a high relative permittivity
εr� 1. In this section we will discuss results for water, which has
a high permittivity of εr ≈ 55, and perfluorohexane (FC72), which
has an extremely low permittivity of εr ≈ 1.7. Ethanol lies in be-
tween with a permittivity of about εr ≈ 19. In figure 3 a typical
result for water (Vs = 3kV, T = 270◦C) is shown next to that for
FC72 (Vs = 2.5kV, T = 120◦C). It can be immediately seen that the
behavior for the two liquids is quite different. The water droplet
mostly stays close to the surface and takes one big leap near the
end, while the FC72 droplet at some point starts to jump pro-
gressively higher, as was also observed for the ethanol droplets.
The water droplet displays three clear charge steps, with each
step starting on the line predicted by equation (4). The dura-
tion of these charge plateaus is about 6 seconds in this case. In
this time the droplet shrinks by about ∆R= 0.06mm. Again taking
H ∼ 10 µm (which also turns out to be a good estimate for the wa-
ter droplets) we find that the droplet voltage decreases by about
Vd = 1.1Vs∆R/d ≈ 28V before each discharge. About 5 times more
than in the case of the ethanol droplet. This can be understood
from the fact that for the water droplet the radius a of the flat-
tened area during rebound is significantly smaller than R (see fig-
ure 3(b)). Because the droplet here bounces with a small ampli-
tude and velocity, this flattening is dominated by gravity and can
be estimated as a/R ≈

√
Bo = R

√
ρg/γ ≈ 0.2 (see also appendix

C).32,33 According to equation (7) we have Vc ∝ 1/a, so that this
indeed gives rise to a factor of 5 in the critical voltage compared
to ethanol, for which we set a = R. The FC72 droplet shows just
a single charge plateau, starting about 2 seconds before impact.
During this same period it also starts to escape. Although this
behavior is similar to what was found for ethanol droplets, the
amount of charge is about two orders of magnitude lower. One
order of magnitude can be explained by the smaller radius of the
droplet. Equation (4) would predict a charge of about 8×10−12 C
for the droplet radius at the start of the plateau. To understand
why the amount of charge is even smaller, we have to take into
account the extremely low dielectric permittivity of FC72. Equa-
tion (4) was derived by calculating the polarization of a perfectly
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Fig. 7 Evolution of the charge on (a) ethanol droplets and (b) FC72
droplets trapped under either a negatively (top panels) or a positively
charged electrode (bottom panels). While for ethanol the behavior is
symmetric, FC72 does not obtain any positive charge, even for electrode
voltages as low as −5 kV.

conducting bi-sphere. This polarization was found to be about
twice as large as that of a single sphere in the same electric field.
It is well known that the polarization of a single dielectric sphere
can be obtained directly from that of a single conducting sphere
by multiplying the latter with a factor f = (εr−1)/(εr +2).34 Ap-
proximately the same factor will apply to the bi-sphere case. For
ethanol and water this factor leads to a negligible correction, but
for FC72, with εr ≈ 1.7, one finds f ≈ 0.2, explaining the low
amount of charge observed. In figure 3(d) we took this factor into
account in the comparison between the inferred charge (dots)
and the model (dashed line). Had we not done this, then the
line would lie outside the field of view. Similarly, this factor is
necessary to understand the escape radii plotted in figure 6.

The above considerations imply that for FC72 also the formulas
used for inferring the charge and potential energy (equations (2)
and (3)) are inaccurate, because the coefficients ci j were calcu-
lated for perfect conductors. This error will occur mainly through
the estimation of second order forces due to image charges, and
may explain for example why the charge plateau for FC72 does
not seem to be perfectly horizontal in figure 3(d) (this would also
happen for water and ethanol in the simple point charge approx-
imation).

7 Effect of electrode polarity
In the experiments described so far the top electrode was set to
a positive voltage with respect to the grounded plate, so that the
droplet attained a net negative charge. Figure 7 (top) shows the
results of two experiments, one with ethanol (a) and one with
FC72 (b), in which the voltage on the top electrode was set to a
negative value (so that the droplets would get a positive charge).
For comparison similar experiments for which the voltage was
positive are also plotted (bottom).

While ethanol droplets behave practically the same for positive

Fig. 8 Instabilities observed for (a-b) ethanol and (c-d) water droplets
at voltage differences above 4 kV. In (a) the ethanol droplet developed a
sharp cone from which small droplets are ejected. A few bounces later
(b) it temporary formed a vertical bridge between the top electrode and
the hot bottom plate, still hovering on a vapor film. Also the water droplet
(c) first developed a cone, but in this case (d) the electrical tension is
released by a violent discharge that ruptures the drop.

and negative voltage (as does water), FC72 droplets show an in-
teresting asymmetric behavior under polarity reversal. The FC72
droplet seems to be unable to obtain any net positive charge. To
trap the droplet under these neutral conditions we had to increase
the magnitude of the voltage to at least |Vs|= 5kV, and even then
the droplet often rolled off the plate. This asymmetric charging
behavior of FC72 is likely related to the chemically inert nature
of this fluor-rich fluid. Similar to a Teflon-rod that is charged by
rubbing, FC72 prefers to hold a negative charge.

8 Approaching the charging limit
To observe the progressive increase in jumping amplitude, the
voltage on the top electrode has to be high enough to overcome
the loss in height due to energy dissipation (see §5). However, if
the voltage is too high, the spherical shape of the droplet becomes
unstable with respect to a conical shape.5 For ethanol and water
this happens around Vs & 4kV in our setup.

Figure 8 shows some snapshots of these instabilities. Initially,
both the water and ethanol droplet developed a Taylor cone at
their upper surfaces. For the ethanol droplet this cone quickly
destabilized and started to eject small droplets. In the same
recording the ethanol droplet occasionally stretched into a thin
filament bridging the whole gap. This filament remained stable
for a while, and then broke up into several smaller droplets, lead-
ing to a very irregular behavior. For the water droplet no ejection
was observed, instead the tension was released by a violent elec-
trical discharge striking the drop’s sharp tip.

9 Conclusion and outlook
Small Leidenfrost droplets in a vertical electric field of strengths
between 2 and 5 kV/cm display a surprising regular and repeat-
able dribbling motion, in which they escape from the hot surface
by jumping progressively higher. We have related this behavior
to the electrical and gravitational forces acting respectively on
the charge and mass of the droplet. As the droplet shrinks due
to evaporation, the charge on the droplet decreases in a step like
manner to remain proportional to R2. Eventually the upward elec-
trical force will therefore always dominate over the gravitational
force, which is proportional to R3. The discrete discharge events
were attributed to an electro-capillary instability in the vapor gap,
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Fig. 9 (a) Electrical potential between a conducting sphere of Vs = 2kV
(black) and a grounded plate (white). (b) Horizontal slice through the field
in (a) showing the weak trapping potential close to the plate.

occurring each time the electrical potential of the droplet reaches
a critical value.

In an analysis of the potential and kinetic energies of the drib-
bling droplets we have found that for most parts of the drop’s mo-
tion the jumping energy slowly decreases in time. However, the
droplet occasionally receives a boost, helping it to escape. These
sudden energy injections will be an interesting subject for future
research (What is their (electro-capillary) origin? How does their
frequency and strength depends on the control parameters? etc.)
In the final stage, the decrease in potential energy due to evap-
oration is by itself enough to allow the jumping amplitude to in-
crease.

The theoretical approach employed in this work, using capaci-
tance coefficients to calculate potentials, forces and energies, can
be extended to any geometry. This opens up the possibility to
design electrical circuitry to trap and steer the hyper-mobile Lei-
denfrost droplets (e.g. in microfluidic devices). Furthermore, the
method of inferring the charge from the droplet’s trajectory offers
an easy way to study the basic charging properties of a liquid or
the insulation properties of its vapor.
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Appendices

A Horizontal trapping potential

The most basic electrode configuration for creating a vertical elec-
trical field would be two parallel plates. However, practically it is
more convenient to let one of the electrodes have a slight curva-
ture. In this case there is no need to align the electrodes and it
ensures that a charged droplet experiences a slight trapping force,
keeping it in the field of view. The electrical potential between a
sphere of radius Rs with its center a distance dc above a plate
can be calculated numerically through a summation over image

Fig. 10 (a) Horizontal motion of the center of mass of a charged ethanol
droplet in the trapping potential and (b) the charge inferred from this os-
cillatory motion.

charges. The positions yn and magnitudes qn of these virtual point
charges in the top electrode are given by the recursive relation:

y1 = dc

yn = dc−
R2

s
dc + yn−1

q1 = RsVs

qn =
R

dc + yn−1
qn−1 (n = 2,3, . . .) (10)

Another set of charges with the same magnitude but of opposite
sign, are to be placed below the plate, mirrored with respect to
the plate surface. The potential field φ(x,y) is then simply given
by summing over the potentials φn(x,y) =±qn/rn(x,y), with rn the
distance to the point charge. Figure 9(a) shows a contour plot of
the potential calculated in this way, with Vs = 2kV. To extract the
trapping potential (at a certain height YCM) we take a horizontal
slice φ(x,YCM), as shown in figure 9(b). The potential energy is
given by U(x) = Qdφ(x). For small motions about the center this
potential is approximately harmonic and we can define a spring
constant as

k(y)≡ Qd
∂ 2φ

∂x2 . (11)

A droplet with mass m and charge Qd will then oscillate with an-
gular frequency

ω
2 =

k
m

=
Qd

m
∂ 2φ

∂x2 . (12)
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Fig. 11 Geometry and mesh used to calculated the force and capac-
itance coefficients with COMSOL. (a) Overview of the (axisymmetric)
computational domain with spherical top electrode clearly visible. (b)
Magnification of the gap between the top electrode and the plate, with
the droplet in between. The surfaces of the droplet and the top electrode
have a fine mesh.

In each experiment all quantities except Qd are known, thus pro-
viding an other method to extract the charge on the droplet. The
result of such an analysis is shown in figure 10. Although the
inferred charge is consistent with that found from the vertical
motion, the horizontal motion is less regular, resulting in a large
scatter.

B Capacitance and force coefficients

To infer the charge on the droplet through equation (1) one needs
to know the electrical force Fe on the droplet as a function of its
position and size. Substituting equation (2) into equation (3) one
obtains:

Fe =−∂YCMU = fddQ2
d + fdsQdVs + fssV 2

s , (13)

with the ‘force coefficients’ fi j = fi j(YCM,R) related to the capac-
itance coefficients as fdd = −∂Y (1/cdd)/2, fds = ∂Y (cds/cdd) and
fss = ∂Y (css− c2

ds/cdd)/2. In first approximation the force acting
on a charged droplet is given by Fe = QdVs/d, which assumes that
the droplet can be treated as a point in an external electrical field
of strength Vs/d. The corresponding force coefficients would be
fdd = fss = 0, and fds = 1/d. Although this approximation gives
already quite a good estimate of the amount of charge on the
droplet, it fails when the droplet is very close to the plate. Fur-
thermore, the charge plateaus are not horizontal in this approxi-
mation, giving the wrong impression that the charge here slowly
increases or decreases. To circumvent these errors and to check
the analytical expressions used in the main text, we used the elec-
trostatics module of COMSOL (version 5.0) to directly calculate
both the capacitance and force coefficients in our setup. Figure
11 shows the typical geometry and mesh used in these calcula-
tions. To calculate for example the capacitance coefficient cds,
the voltage of the top electrode was set to 1V, while the droplet
was grounded (cf. figure 4). cds is then given by the total amount
of surface charge accumulated on the conductor that represents
the droplet. To obtain sufficient accuracy for performing these

integrals, the mesh was extra refined on the surfaces of the con-
ductors.

These calculations were repeated for a range of droplet heights
H and radii R, to obtain a fine grid of coefficients ci j(H,R) cover-
ing all the radii and heights found in the experiments. Values in
between the grid points were obtained through interpolation. To
give an idea of their behavior, figure 12 shows the coefficients as
a function of H, and a fixed radius of R = 0.6mm. In equation (5)
we used approximations for cdd and cds to calculated the electrical
potential of the drop when it is close to the surface (H � R). In
figure 12 these approximations are shown as dashed lines. They
indeed approach the correct values in the limit H→ 0.

The force coefficients can in principle be obtained from the
variation of capacitance coefficients with H by taking the appro-
priate combinations and then taking the derivative. However, it
turns out that doing this numerically leads to some errors, espe-
cially for fss which is calculated as fss = ∂H(css− c2

ds/cdd)/2. To
circumvent this numerical differentiation, we also directly calcu-
lated the force coefficients by treating the droplet as a floating
potential with a fixed charge Q = 1C or 0C (and, as before, with
the top electrode set to 1V or 0V) and directly calculating the net
force exerted by the field on the surface charges. The plots in
figure 12 show both the coefficients obtained through differentia-
tion (black dots) and through direct calculation (gray lines). For
fdd and fds the two methods practically overlap, but for fss the
direct method performs significantly better.

C Vapor film thickness

Our prediction for the critical discharge voltage of the droplet,
equation (7), relies on an estimation of the minimum height of
the vapor gap below the droplet during a rebound. For this esti-
mation we will follow a similar procedure as outlined in Biance et
al.26 for droplets in a gravitational field. We then extend this ap-
proach to droplets impacting with a finite velocity to see whether
it is the impact force or the gravitational force which dominates
in our case. The situation is sketched in figure 13.

When a millimetric droplet sits on a solid surface (with or with-
out vapor in between) the bottom of the droplets gets indented
by the small amount:32

δg ∼
ρgR3

γ
= RBo, (14)

so that the decrease in potential energy due to the lowering of the
center of mass is balanced by an increase in the surface energy.
From the spherical geometry of the droplet it follows that the
radius of the flattened area is:

a∼
√

Rδg = RBo1/2 (15)

The flattening of the bottom locally exposes the Laplace pressure
of the droplet. In the solid this pressure is supplied by a small
elastic deformation. When there is a vapor film between the solid
and the droplet, the same pressure has to be built up in the vapor.
This is possible when the gap becomes so small that viscous forces
in the vapor become important. The flow in the gap can then be
shown to be equivalent to the classical lubrication problem of a
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Fig. 12 Capacitance coefficients ci j and force coefficients fi j as a function of the gap between the droplet and the plate H, for a fixed radius of
R = 0.6mm. The black dots are the calculated coefficients (it is hard to see separate dots because of the fine grid of points). For cdd and cds also
analytical asymptotic solutions for H/R→ 0 are shown. The force coefficients were calculated both from the capacitance coefficients (black dots) and
directly by integrating the force in the simulation (gray lines).
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Fig. 13 (a) Sketch of a small droplet that deforms upon impact with a
solid surface. (b) Minimum height of the vapor gap when gravity domi-
nates inertia. Dots show experiments from Biance et al. and the lines rep-
resent different scaling expressions, equation (18) (solid line) and equa-
tion (8) from Biance et al. (dashed line). For both lines the pre-factor was
adjusted to make the lines go through the first data point.

squeezing flow below a flat disk of radius a moving down with
the velocity of the generated vapor:

vv ∼
kv∆T
LρvH

, (16)

where kv is the thermal conductivity of the vapor and L the latent
heat of evaporation. The maximum lubrication pressure for the
squeezing flow scales as:

pµ ∼
µvvra

H2 ∼ µvvva2

H3 , (17)

where vr ∼ vva/H is the radial flow velocity and µv is the dynamic
viscosity of the vapor. This pressure has to balance the Laplace
pressure pγ ∼ γ/R. Setting pµ ∼ pγ , and using equations (14)–
(17) we find:

H
R
∼
(

kv∆T Rµvρg
Lρvγ2

)1/4
. (18)

This expression is similar to equation (8) in Biance et al., ex-
cept that we here find an exponent of 1/4 instead of 1/3 on the
dimensionless term between brackets. The difference is that in
the former work, it was assumed that heat transfer to the whole
droplet surface contributes to the vapor flow in the gap. In fig-
ure 13b we reproduced the experimental data and equation (8)
(dashed line) from Biance et al., and also plot equation (18) de-
rived above (solid line). The pre-factors were adjusted so that
both lines go through the first experimental point, we find a pre-
factors of 2.5 for the former and 0.75 for the latter, which seems
to favour equation (18). However, given these pre-factors the
correct slope cannot be inferred from the measurements, and for

the radii we are interested in here, R ∼ 1mm, both lines predict
a similar film thickness of about H ≈ 20 µm. For droplets larger
than about R = 3mm the deformations are no longer small and
the droplets cannot be assumed spherical, so that the models do
not work in this regime.

When the droplet has a finite impact velocity v, its momentum
will provide an additional force that pushes the droplet down.
If we suppose that the droplet decelerates over a distance δ , we
can interpreted this in the frame of reference of the droplet as an
effective gravitational acceleration:

g′ ∼ v2

δ
. (19)

Using this in equation (14), and solving for δ , gives:

δv ∼

√
ρv2R3

γ
= RWe1/2 (20)

Note that the same result is found by comparing the kinetic en-
ergy ∼ ρR3v2 to the energy associated with the small deformation
of the surface ∼ γδ 2. Comparing equations (14) and (20) one
obtains that the transition from a gravity to an inertia dominated
regime occurs for:

We∼ Bo2. (21)

Coincidentally this condition corresponds precisely to that for the
natural jumping mode of small Leidenfrost droplets (cf. equation
(9)). This means that in our experiment the droplets are always
found in this transitional regime, and it does not matter much
which scale is used to estimate H.
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