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We study the structure and interfacial ordering of stiff rings polymers close to repulsive walls. For this purpose, we employ an

anisotropic effective model in which the rings are pictured as soft, penetrable discs [P. Poier, C. N. Likos, A. J. Moreno and R.

Blaak, Macromolecules 48, 4983 (2015)]. We have studied this model in the bulk and in the presence of a wall, employing Density

Functional Theory and computer simulations. While the Ornstein Zernike Equation in combination with the Hypernetted Chain

Approximation gives results that are in quantitative agreement with computer simulations, a simple Mean Field approximation

strongly overestimates the interaction between the effective particles in the bulk. We discover that by increasing density one can

induce a reorientation of the effective rings in the vicinity of a wall, which prefer to orient themselves parallel to the surface

(face-on or planar) for low densities ρ and reorient orthogonal to the wall (edge-on or homeotropic) for higher values of ρ . This

transition in the surface-structure can be observed in both computer simulations, as well as in an appropriate Density Functional

Theory. We trace its physical origin in the the penetrable character of the rings, which allow for a reduction of the surface tension

contribution due to ring-ring interactions upon the emergence of homeotropic ordering on the wall upon increasing the density

of the system.

1 Introduction

A detailed microscopic understanding of the structural, ther-

modynamic, and dynamic behavior of soft matter systems

confined in nanopores and slits of various geometry is of both

fundamental and practical importance1,2. One particular ex-

ample of such confined soft matter systems involves disc-

shaped particles in various pores3, which are essential for un-

derstanding confined discotic liquid crystals4 and, as such,

have been extensively studied via experiments2 computer sim-

ulations5–8, and theory3,8–10.

The primary focus of the above studies has been on the or-

dering and surface tension of the disc-shaped particles at the

confining surface and the concomitant effect of the geometri-

cal confinement on the isotropic-nematic-columnar phase be-

havior of the corresponding liquid crystal. In particular, it has

been shown that both the shape of the particles5 and the wall-

particle interaction potential6,7 strongly affect the observed

surface ordering. More specifically, for disc-shaped particles

confined in a planar slit, two types of wall ordering are typ-

ically distinguished11: planar anchoring (or “edge-on”, with

the director parallel to the wall) and homeotropic anchoring
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(or “face-on”, with the director normal to the wall). Clearly,

the ability to control and switch the type of anchoring is cru-

cial for developing practical applications of confined discotic

liquid crystals, such as optical compensation films4. From the

experimental point of view2 the two most common control

parameters that can be used to control the anchoring type are

temperature and density. The former parameter can be used

to tune the strength of the wall-particle interaction. Along

these lines, it has been shown7 that switching from a hard wall

(which excludes the particles completely) to an “adsorbent”

wall (which excludes only the centers of mass of the parti-

cles) promotes switching of surface ordering of disc-shaped

particles from homeotropic to planar. Concomitantly, the hard

walls facilitate isotropic-nematic transition relative to the bulk

(capillary nematization), while adsorbent walls delay this tran-

sition (capillary isotropization). By contrast, using the density

as the control parameter was shown to have little to no effect

on the surface ordering5. In this connection, it is important to

emphasize that all the aforementioned studies have modeled

the disc-shaped particles either as strictly hard (completely

impenetrable) objects5,7,8 or as (only slightly) softer repul-

sive entities6 of the type corresponding to Gay-Berne12 oblate

ellipsoids. In the case of ultrasoft interaction-potentials em-

ployed in modeling macroparticles one would expect a much

stronger effect of density on surface-ordering. The purpose of

the present work is to study precisely such a system.

Our microscopic model is based on recently obtained
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anisotropic effective pair potentials, which were introduced

in order to coarse-grain semiflexible ring polymers of vari-

ous chain lengths13, whereby each ring was represented by a

soft penetrable disc. The model has been validated by com-

paring its structural predictions in the bulk with the corre-

sponding results of full monomer-resolved computer simula-

tions. It was shown that for the short- and intermediate-length

ring polymers, with a contour- to persistence-length ratio of

l/lp
∼= 6.7, the model is capable of reproducing the essen-

tial structural properties of a bulk system nearly quantitatively,

while the longer rings (at high concentrations) were shown to

undergo conformational changes which cannot be reproduced

by an effective anisotropic soft-disc model. Accordingly, in

the present study we consider precisely those soft discs which

mimic intermediate-length ring polymers with l/lp
∼= 6.7 and

focus on their structural properties and self-organization under

confinement between planar walls.

Clearly, any systematic study of a confined system requires

the knowledge of its corresponding behavior in the bulk as

a reference. In this connection, it is important to note that

the aforementioned simulation study13 of the bulk system has

shown no indication of neither an isotropic-nematic nor an

isotropic-columnar ordering phase transition, at least in the

density range that was considered. This is in contrast to an-

other anisotropic effective potential between soft disclike par-

ticles which has been proposed to model interactions between

core-corona disc-shaped micelles14. The bulk phase behavior

of this system was studied via dissipative particle dynamics

simulations, and a transition from the isotropic to the hexago-

nal columnar phase was found at sufficiently high densities14.

This difference in the phase behavior is likely due to the fact

that the model pair potential used in Ref.14 is significantly

different from the one employed here, in that its form was not

derived based on the atomistic simulations of the correspond-

ing monomer-resolved system, but rather simply postulated.

As a result, this model potential does not distinguish between

the two soft discs approaching each other “edge-to-edge” and

“edge-to-face” while in the present model the corresponding

effective interactions are very different.

Given the absence of the ordering phase transitions in the

bulk for our model, we instead focus on the anchoring type and

surface tension of the disc-shaped particles at the confining

wall. We address these two problems by employing a combi-

nation of computer simulations and density functional theory

(DFT). Both methods have their advantages and disadvantages

and therefore can be used in a complementary fashion. Thus,

simulations, at least in principle, produce exact results for a

given microscopic model, except for the inevitable statistical

noise. However, this advantage comes at a high computational

cost, because very long runs are required in order to reduce

the noise level. By contrast, DFT calculations are relatively

cheap, but involve unavoidable approximations. Hence, the

accuracy of the DFT predictions must be tested and validated

by comparison with computer simulations. Another signifi-

cant advantage of the DFT approach comes from the fact that

this method is based on minimizing the free energy, and, as

such, allows a straightforward determination of various ther-

modynamic observables, which are notoriously difficult to ob-

tain from computer simulations. For example, it is very com-

putationally demanding to obtain surface tension of semiflex-

ible polymers at a hard wall from simulations, while in DFT

this quantity can be calculated relatively easily15. In view of

the above, in the present work we employ a judicious combi-

nation of these two methods. Specifically, given the availabil-

ity of extensive simulation results for the bulk coarse-grained

system13, we begin by developing and testing the DFT ap-

proach in the bulk. The anisotropic total and direct pair cor-

relation functions in the bulk are obtained by combining the

hypernetted chain (HNC) closure with the Percus method of

treating one given disc as a “test particle” exerting the external

potential (simply the effective coarse-grained pair potential in

this case) on all the other discs16. Once the simulation and

DFT predictions for the pair distribution functions are com-

pared and the accuracy of the DFT in the bulk is confirmed,

we proceed to study the structural properties of the confined

system.

In order to carry out the DFT calculations in confinement,

we use the bulk direct pair correlation functions as input, treat

the hard planar confining wall(s) as the source of the exter-

nal potential, and compute the wall-induced one-particle den-

sity of rings. For spherical particles such an approach has

been previously successfully used to study the distribution of

spherical solvents around two colloids17,18. Once again, the

accuracy of the DFT method is confirmed by direct compari-

son with the simulation results. Our key finding for the con-

fined system is that the surface ordering of the soft discs at

a hard planar wall switches from homeotropic to planar with

increasing density. This interesting and important effect was

observed both in computer simulations and in DFT and is in

stark contrast to confined hard discs, where, as mentioned ear-

lier, density has little effect on the type of surface anchoring,

and the latter is largely controlled by the wall-disc interaction

potential (in the present case, only hard walls are considered).

The remainder of the paper is organized as follows. In Sec-

tion 2 we briefly review our coarse-grained model of effec-

tive potentials between soft discs originally devised to mimic

the interactions between semiflexible ring polymers as well as

the effective interactions of the rings with the planar walls. In

Section 3 we provide technical details on the computer simula-

tions and describe the DFT approach employed in the present

work. Section 4 deals with simulation and DFT results for the

bulk system of soft discs, while in Section 5 the confining ef-

fect of planar hard walls is studied. Finally, our conclusions

are summarized in Section 6, whereas a brief discussion of
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the underlying monomer-resolved simulation model and some

technical details on the DFT implementation are relegated to

the Appendices.

2 Coarse-Grained Ring Polymer Model

In ref.13 we have developed an effective model for the simu-

lation of semiflexible ring-polymers, where these macroparti-

cles are described as penetrable disc-like objects given by their

position r and director d pointing into the direction orthogonal

to the conceived disc; the latter is by construction a unit vec-

tor, |d| = 1, and it corresponds to the direction of the eigen-

vector corresponding to the smallest eigenvalue of the gyra-

tion tensor13. The interaction potential in this coarse grained

description was derived from the anisotropic pair-correlation

function g(r,cosθ1,cosθ2,ϕ) between two monomer-resolved

ring polymers at infinite dilution via the equation

βVeff (r,cosθ1,cosθ2,ϕ) =− ln [g(r,cosθ1,cosθ2,ϕ)] , (1)

where r describes the distance between the centers of mass of

the ring polymers and the angles cosθ1,cosθ2,ϕ their relative

orientation:

cosθ1 ≡ d(1) · r̂;

cosθ2 ≡ d(2) · r̂;

ϕ ≡ arccos

(
d
(1)
⊥ ·d(2)

⊥
|d(1)

⊥ ||d(2)
⊥ |

)
. (2)

In Eq. (2) above, r̂ ≡ r/r is the unit vector along the line con-

necting the centers of mass of the two rings, d(i), i = 1,2, is

the director of the i-th ring and

d
(i)
⊥ = d(i)−

(
d(i) · r̂

)
r̂ (3)

is the component of d(i) perpendicular to the vector r connect-

ing the two centers.

Details concerning the underlying monomer resolved model

lying monomer resolved model and the numerical computa-

tion of the anisotropic pair-correlation function are briefly re-

capped in Appendix A and for the numerical computation of

the anisotropic pair-correlation function we refer the reader

to ref.13. While it is impossible to visualize the entire four-

dimensional effective interaction potential one can obtain an

intuitive understanding of the interaction by concentrating on

particular fixed orientations between the rings. In Fig. 1 we

show three characteristic orientations of two interacting rings

and we introduce the notation for the same. In Fig. 2 we plot

the effective interaction for these main fixed orientations, to-

gether with the rotationally averaged, isotropic effective po-

tential. In the abscissa of the plot, distances between the par-

ticles are denoted in multiples of the rings’ diameter of gyra-

|| ≡
dH1L dH 2L

−− ≡
dH1L dH 2L

|− ≡
dH1L

dH 2L

Fig. 1 The three distinct orientations of effective rings, along with

the corresponding notation. At the top, the symbol || denotes an

orientation in which the directors of the two rings are parallel to

each other and perpendicular to the vector connecting the ring

centers. In the middle panel, the notation −− denotes rings with

directors parallel to each other and to the connecting vector. Finally,

the notation |− at the bottom panel denotes rings with mutually

perpendicular directors, one of which is parallel to the connecting

vector and other parallel to it. The accompanying sketches visualize

the corresponding arrangements.
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βV
(r

)

V
eff

iso

V ||
V− −
V |−

(b)

Fig. 2 The effective potential for three different, fixed

configurations of the directors and the connecting vector. As a

comparison we also plot the pair potential in the isotropic effective

potential βV iso
eff (r) =− ln g(r), where g(r) is the

orientation-averaged radial distribution function of the system. The

effective potentials are shown only for r values for which we have

relatively good statistics.

tion at infinite dilution, Dg0 ≈ 13.3σ for the rings of N = 50

monomers13 of monomer size σ .

When r approaches Dg0 from above, the potential V||(r) in-

creases significantly, while V−−(r) stays close to 0. Imagining

the rings as discs with diameter Dg0 this result is quite intu-

itive. In the || configuration, the rings lie in the same plane

and will therefore start to overlap as soon as r ≤ Dg0. As the

rings are not perfect circles and their shape fluctuates, they can

feel each other also for distances r which are slightly larger

than Dg0. In the −− configuration two discs overlap only if

the distance between their centers of mass is smaller than their

thickness. However, as soon as the rings can overlap in −−
type configurations the effective potential increases very fast

for smaller r. This is the regime where the |− orientation is

more favorable since the corresponding microscopic config-

urations are interpenetrating rings which are only suppressed

by a relatively small bending energy term.

We have carried out Molecular Dynamics simulation of a

monomer-resolved ring in the presence of a wall to determine

the effective ring-wall potential. To this end, we have em-

ployed the same methods and the same underlying model for

the monomer resolved rings as in ref.13. For the monomer-

wall interaction potential we have used

Vwall(z) =





ε
[

2
15

(
σ
z

)9 −
(

σ
z

)3
+

√
10
3

]
if z <

(
2
5

)1/6
σ ;

0 if z ≥
(

2
5

)1/6
σ ,

(4)

where z denotes the distance of the monomer to the

wall. The energy scale ε and the length σ also appear

in the Lennard-Jones interaction between monomers in the

monomer-resolved ring-polymer model. If the space for z < 0

was filled with a homogeneous distribution of Lennard Jones

interaction sites with density πρσ3/6= 1, Vwall(z) without the

cutoff would describe the force that a particle feels for z > 0.

We have introduced the cutoff such that the wall potential is

purely repulsive.

For a system containing only one wall and a single ring

polymer we have obtained a distribution function Pwall(z,d · ẑ)
that is proportional to the probability that the center of mass of

the ring is found a distance z away from the wall, and that the

scalar product of its director d with the vector normal to the

wall is d · ẑ. The normalization is given by Pwall = 1 for z → ∞;

in particular, calling p(z,d · ẑ) and pid(z,d · ẑ) the probability

densities of finding a ring at (z,d · ẑ) in the presence and ab-

sence of the wall, respectively, Pwall(z,d · ẑ) is defined as the

ratio:

Pwall(z,d · ẑ) = p(z,d · ẑ)
pid(z,d · ẑ) . (5)

Fig. 3 Visualization of the function Pwall(z,d · ẑ), which is

proportional to the probability that a single ring polymer is located a

distance z away from the wall and that the scalar product of its

director d with the vector normal to the wall is d · ẑ.

The distribution is visualized in Fig. 3 and its behavior of

Pwall is quite intuitive: The center of mass of rings with a di-

rector orthogonal to the wall (“face-on”) can come closer to

the wall than rings with a director parallel to the wall (“edge-

on”). For rings with a director parallel to the wall, the range

where Pwall is between 0 and 1 is larger than for rings with an

orthogonal director. The reason for this is that rings with their

director standing parallel to the wall can be squeezed which

4 | 1–16
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makes it possible for their center of mass to come closer to the

wall. However the squeezing also costs energy and thus the

probability for these squeezed states is suppressed. Therefore,

there is a range of wall-distances, corresponding to squeezed

states of the rings, for which Pwall is between 0 and 1. While

individual monomers can approach the wall up to the distance(
2
5

)1/6
σ ≈ 0.066Dg0 without feeling any energy penalty from

the wall, even rings with their director standing orthogonal to

the wall have a very small probability to approach the wall

closer than 0.2Dg0, because the entropy of the allowed config-

urations of the monomers of a ring is significantly affected if

its center of mass is held very close to the wall. The wall is

purely repulsive, and thus values of the function Pwall(z,d · ẑ)
are, within numerical accuracy, lower or equal to unity. In

the anisotropic effective model we then employ the effective

potential

βΦwall(z,d · ẑ) =− ln Pwall(z,d · ẑ) (6)

to describe the interaction between a ring polymer and the

wall. In Fig. 4 this potential is visualized for a homeotropic

and a planar orientation of the effective disc-like particle with

respect to the wall.

0 0.2 0.4 0.6 0.8 1
z/D

g0

0

1

2

3

4

5

6

7

8

9

10

βΦ
w

al
l(z

)

d . ẑ = 0
d . ẑ = 1

Fig. 4 The ring-wall interaction potential in the effective model

Φwall for a homeotropic (d · ẑ = 0) and a planar (d · ẑ = 1)

orientation of the ring with respect to the wall.

3 Details on Density Functional Theory and

Monte Carlo simulations

A system of disc like particles, described by their position r

and their director d, can be interpreted as a special case of a

system of point-like particles with one particle type for each

director orientation d. To investigate the structure of the fluid,

both in the bulk and under confinement, we employ both Den-

sity Functional Theory (DFT) and Monte Carlo computer sim-

ulations. In what follows, we present the main ingredients

of these approaches and their implementation, leaving some

technical details for Appendix B.

Integral equation theories are usually employed to investi-

gate the (pair) structure of uniform, classical fluids16,19. We

have applied the Ornstein-Zernike equation (OZE) together

with the Hypernetted Chain (HNC) approximation closure for

anisotropic, effective interactions to obtain two coupled inte-

gral equations, the OZE

h(r,d(1),d(2))− c(r,d(1),d(2)) =
ρ

4π

∫
dΩ

∫
dxc(x,d(1),d)h(r−x,d,d(2)), (7)

and the HNC closure,

h(r,d(1),d(2))+1 = exp
[
−βVeff(r,d

(1),d(2))
]
×

exp
[
h(r,d(1),d(2))− c(r,d(1),d(2))

]
, (8)

which must solved self-consistently to obtain the total and di-

rect correlation functions h(r,d(1),d(2)) and c(r,d(1),d(2)) re-

spectively. In Eq. (7) above, the integral
∫

dΩ is carried over

the polar and azimuthal angles of the director d.

The HNC can be formally derived from a more general

scheme, namely from DFT of inhomogeneous fluids20. The

key ingredient is to consider a particle of the fluid clamped

at the origin and acting to the bulk of the fluid as an ex-

ternal field, giving rise to an inhomogeneous density. As

shown by Percus21, this density profile is just the product

between the bulk density and the radial distribution function

g(r,d(1),d(2))≡ h(r,d(1),d(2))+1. Accordingly, each differ-

ent choice of the functional for the excess free energy deter-

mines a different closure. In particular, an excess free energy

functional quadratic to the deviation of the inhomogeneous

density from its bulk value gives rise to the HNC approxima-

tion22.

Since the anisotropic effective interaction Veff(r,d
(1),d(2))

is soft and penetrable, we also apply here a related closure,

put forward for ultrasoft isotropic interactions, the Mean Field

Theory (MFT), which is also based on a quadratic form of the

excess functional23 but with the additional approximation of

relating the direct correlation function to the interaction po-

tential via:

c(r,d(1),d(2)) =−βVeff(r,d
(1),d(2)). (9)

Combining this expression with the Percus test-particle ap-

proach, we obtain the MFT-closure for the pair correlation
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function:

h(r,d(1),d(2))+1 = exp
[
−βVeff(r,d

(1),d(2))
]
×

exp

[
−βρ

4π

∫
dΩ

∫
dr′Veff(x,d

(1),d)h(r−x,d,d(2))

]
.

(10)

We have solved Eqs. (7)-(8) and (10) numerically by the iter-

ative procedure explained in Appendix B. In the bulk, we ob-

tain the distribution function g(r,d(1),d(2))≡ h(r,d(1),d(2))+
1; in what follows, we will be showing results for a reduced

quantity, the radial distribution function g(r), which arises

from the former by averaging over the orientations of both

directors d(1) and d(2), namely:

g(r) =
1

(4π)2

∫ ∫
dΩ1dΩ2 g(r,d(1),d(2)). (11)

In the presence of a wall we have used DFT and Monte

Carlo simulations to predict the one-particle density of the

soft discs, ρ(1)(z,cosθ), as a function of the distance z from

the wall and the angle θ = cos−1 (d · ẑ) between the unit vec-

tor ẑ and the disc director d. For the DFT calculation of

the density profile of the fluid, we have employed the same

quadratic excess free energy functional that leads to the HNC

in the bulk; this time the full free energy functional includes

the contribution from the interaction with the wall potential

Φwall(z,cosθ). It follows that the inhomogeneous density

ρ(1)(z,cosθ) is determined from the following self-consistent

equation:

ρ(1)(z,cosθ) =
ρ

4π
exp [−βΦwall(z,cosθ)]×

exp

[∫
d cosθ ′dz′∆ρ(1)(z′,cosθ ′)c̄(z− z′,cosθ ,cosθ ′)

]
,

(12)

where ρ is the bulk density, far away from the wall, and we

also define the deviation of the density profile from the bulk

value:

∆ρ(1)(z′,cosθ ′) = ρ(1)(z′,cosθ ′)−ρ, (13)

and the laterally-averaged direct correlation function:

c̄(z,cosθ ,cosθ ′) =
∫

dx′dy′dϕ ′c
(
x′,y′,z,d,d′) , (14)

with (θ ′,ϕ ′) being the polar and azimuthal angles of the di-

rector d′. In order to use Eq. (12) we need to know the

direct correlation function c(r,d,d′) at the bulk density ρ ,

which we consistently obtain from the numerical solution of

the HNC-closure in the bulk, Eqs. (7) and (8). To solve the

self-consistent equation (12), we have again used the itera-

tive procedure described in Appendix B, where we have set

ρ(1)(z,cosθ) equal to the bulk density ρ for z > 4Dg0. Fi-

nally, we note that, in full analogy with the bulk case, the for-

mal substitution of Eq. (9) into Eq. (12) gives rise to the MFT

for confined systems.

In our Monte Carlo simulations, we have simulated a to-

tal of 3200 coarse-grained ring-polymers between two walls.

To perform a comparison to the DFT results obtained for

a single wall, we set the two walls apart by a distance of

Lz = 7.7Dg0, which is sufficiently large to obtain bulk behavior

in the middle of the simulation box. We have then superim-

posed the density distributions measured for z ∈ [0,Lz/2] and

z ∈ [Lz/2,Lz] to obtain the simulation result for ρ(1)(z,cosθ)
for z ∈ [0,Lz/2] in the presence of one wall. We have always

started the simulations with initial configurations where the

positions and the directors of the particles were generated ran-

domly and we have employed a total of 2× 109 MC moves

to equilibrate the system. We have employed single particle

MC moves, which randomly displaced and rotated individual

effective particles.

4 Bulk structure: Theory vs. simulation

It has been previously demonstrated13 that the coarse-grained

model faithfully reproduces the pair correlation structure of

the system in comparison with monomer-resolved simulations

for densities as high as ρ∗ ∼= 10. Accordingly, we focus in

what follows exclusively on the question of the validity of

certain theoretical approximations to the determination of the

pair correlations of the coarse-grained model. To put these

theoretical approximations to the test, we have performed ex-

tensive measurements of various structural quantities and set

them against the results obtained for the same in the MC sim-

ulations carried out in ref.13. We have restricted ourselves to

densities ρ∗ ≤ 7, where we introduce the quantity ρ∗ ≡ ρD3
g0

as a dimensionless measure of the density ρ .

We first present, in Fig. 5, results for the angular-averaged

pair distribution function g(r) for ρ∗ = 1 and ρ∗ = 3. The

HNC is in full agreement with simulation, whereas the re-

sults from MFT are clearly inferior. One reason why the

MFT is unsuccessful in making accurate predictions is that

the anisotropic interaction potential is in fact not soft every-

where, but can become very high and steep for certain relative

orientations of the rings, as we have seen in Fig. 2. This ren-

ders the MFT less accurate, because it assumes that for every

configuration the distribution of other particles around a se-

lected one is given by the anisotropic pair correlation function

g(r,d(1),d(2)). This, however, leads to big interaction ener-

gies between particles in the vicinity of the selected one, since

according to the MFT approximation they can assume orien-

tations with respect to each other that involve very high ener-

gies. For this reason, we should expect MFT to overestimate

the strength of the interaction between the particles, and we
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can indeed see from our results that at a given density ρ∗ MFT

predicts a g(r) that looks similar to the result which the MC

simulation obtains at a higher density. Another reason why

MFT might be in general worse for systems where the parti-

cles can orient in different directions is that we now not only

assume that the overall number of particles in a thin spherical

shell around a reference particle is always identical but that

this is true for the number of each possible particle orientation

individually. This is of course an even stronger statement than

the assumption of MFT in the isotropic system, where there is

only one particle type. The results of HNC on the other hand

are in very good agreement with simulations; this agreement

persists also at much higher densities, as can be seen in par-

ticular in the two top sets of curves in Fig. 5 for the densities

ρ∗ = 5 and ρ∗ = 7. Here, no MFT-results are shown because

this approximation does not converge at such densities.

From the full, anisotropic pair correlation function

g(r,d(1),d(2)), we can also extract useful information about

the orientational correlations of the particles in the system. In

particular, we are interested in the probability distribution for

the scalar products between the directors d(1) and d(2) of two

effective particles which are a distance r < 0.6Dg0 away from

each other, to which we will refer to as P(d(1) · d(2)) in the

following. Results for P(d(1) ·d(2)) from theory and MC sim-

ulations of the effective system with anisotropic interaction

are shown in Fig. 6 for ρ∗ = 1 and ρ∗ = 3. As for the angular-

averaged pair correlation function g(r), the HNC approxima-

tion is in excellent agreement with the results from MC simu-

lations and correctly predicts the small change of P(d(1) ·d(2))
from density ρ∗ = 1 to ρ∗ = 3, while there are significant de-

viations for the MFT prediction. The two sets of top curves

in Fig. 6 show the results for P(d(1) ·d(2)) at the higher den-

sities ρ∗ = 5 and ρ∗ = 7. Once more, the HNC results are in

excellent agreement with MC simulations and they show the

propensity of the soft discs around an arbitrary disc to orient

themselves parallel to the former. The fluid displays short-

range orientational correlations, expressed by the propensity

of the rings to organize into one-dimensional stacks13,24,25.

We emphasize, however, that overall the fluid of the stiff rings

is, at these densities, isotropic. No sign of a nematic or colum-

nar order has been found in the simulations or in theory, al-

though the failure of the MFT to converge might point to an

instability of the isotropic phase at higher densities.

We have thus seen that the HNC approximation is able to

accurately predict the two observables g(r) and P(d(1) ·d(2))
for the system with anisotropic effective interactions. On the

basis of the excellent performance of the HNC in the bulk,

we follow up in the next section on these promising results,

to make DFT-predictions for the distribution of discs in the

presence of a wall and test them against MC simulations.

0 0.5 1 1.5 2
r/D

g0

0

1

2

3

4

5

g(
r)

MC
HNC
MFT

ρ∗
=1.0

ρ∗
=3.0

ρ∗
=5.0

ρ∗
=7.0

Fig. 5 The radial distribution function g(r) obtained from MC

simulation of the effective system, the HNC closure and the MFT

approximation. The plots show results for the densities ρ∗ = 1, 3, 5,

and 7 off-set by one unit along the vertical axis. MFT-results are not

shown for the highest densities for which the MFT-iteration does not

converge.
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0 0.2 0.4 0.6 0.8 1

d
(1)

· d
(2)

0
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2

3

4

5

6

P
(d

(1
) · d

(2
) )

MC
HNC
MFT

ρ∗
=1.0

ρ∗
=3.0

ρ∗
=5.0

ρ∗
=7.0

Fig. 6 Probability distribution for the scalar product between

directors of nearby particles P(d(1) ·d(2)) from a MC simulation of

the effective system (MC), density functional theory employing the

HNC closure (HNC) and the MFT approximation (MFT). The plots

show results for the densities ρ∗ = 1, 3, 5, and 7 off-set by one unit

along the vertical axis.

5 Confinement and surface ordering

MC:

DFT:

Fig. 7 The one-particle density profile scaled over the bulk value,

ρ(1)(z,d · ẑ)/ρ , in the presence of a wall for bulk density ρ∗ = 1.

The panels correspond to results from MC simulations and DFT, as

indicated in the legends.

Within the DFT approach in the presence of the wall, we

obtain the full position- and orientation dependent equilibrium

one-particle density ρ(1)(z,cosθ), which minimizes the free

energy functional of the system for a given temperature T and

chemical potential µ; alternatively, we can work with the bulk

density ρ∗ far away from the wall, as an equivalent parameter

to µ . The one-particle density ρ(1)(z,cosθ) is a measure of

the probability to find a particle at a distance z from the wall

with its director d oriented relatively to the wall normal ẑ in

such a way that d · ẑ = cosθ . Since the bulk is a uniform

and isotropic phase, ρ(1)(z,cosθ)→ ρ for z → ∞; practically,

bulk is reached at a separation of a few molecular sizes from

the wall.
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MC:

DFT:

Fig. 8 Same as Figs. 7 but for bulk density ρ∗ = 5.

In Figs. 7 and 8, we present results for the one-particle

density ρ(1)(z,cosθ) at bulk densities ρ∗ = 1 and 5, respec-

tively. The plots indicate the magnitude of density profile

scaled over the bulk value of the same for a region close to

the wall (z < Dg0), beyond which the deviations from the bulk

are insignificant. Both the MC-results and the DFT predic-

tions obtained by numerically solving Eq. (12) are shown, i.e.,

the DFT results pertain to the quadratic functional with HNC

bulk input. For the MC simulations the box is large enough

such that the system converges to the bulk state in the mid-

dle of the box. Up to ρ∗ = 5 the results of simulations and

DFT are in very good agreement and show a system where

the density profile has a pronounced maximum close to the

wall (z ∼= 0.2Dg,0), where in addition the rings prefer to ori-

ent such that their directors stand perpendicular to the wall,

d · ẑ = 1. This corresponds to planar anchoring and, indeed, a

comparison with Fig. 4 readily demonstrates that at a separa-

tion z ∼= 0.2Dg,0 the planar orientation wall-disc potential is of

order of the thermal energy. Wall-particle separations closer

than this are forbidden due to the strong repulsions between

wall and ring, whose range grows as the rings change their

orientation, gradually, from planar (d · ẑ = 1) to homeotropic

(d · ẑ = 0).

Employing the mean-field theory (MFT) approach (results

not shown) brings forward density profiles that are as well

consistent with this description for ρ∗ ≤ 4. However, in

the MFT, the one-particle distribution ρ(1)(z,cosθ) features

a maximum that is almost a factor 2 higher than for simula-

tions, which is consistent with the notion that MFT overem-

phasizes the influence of the interactions between the parti-

cles. At higher densities, the MFT is also qualitatively very

different and predicts a long range layering for ρ∗ ≈ 5, where

the first layer of rings is oriented such that d · ẑ ≈ 0, followed

by a layer of rings with d · ẑ ≈ 1, followed by another layer

of rings with d · ẑ ≈ 0, and so forth. Since the MFT seems,

however, to deviate strongly from the simulation results, we

do not further consider it as a reliable theoretical tool for this

system.

Returning to the HNC-based functional, an unexpected and

novel gradual transition takes place at bulk density ρ∗ ∼= 6. In

particular, it is predicted that as the density grows beyond this

value, the rings closest to the wall are no more lying flat on

the wall (”face-on” or planar) but rather preferentially assume

a vertical (”edge-on” or homeotropic) configuration, where

their directors are oriented parallel to the wall. We observe

this phenomenon for both simulations and our DFT approach,

although it sets in at slightly different densities in the two ap-

proaches. In Fig. 9, we show simulation and DFT results for

the profile at bulk density ρ∗ = 6.9, which is the highest den-

sity where we have obtained convergence for the DFT scheme.

It can be seen that for the DFT approach there is now a clear

accumulation of rings with a homeotropic anchoring to the
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wall. This result is quite surprising given that the wall itself

is structureless and that the planar orientation of the rings is

preferable as far as their interaction with the wall is concerned;

accordingly, it can be surmised that it is the interparticle inter-

actions and their interplay with the particle-wall interaction

that bring about this crossover, an issue to which we will be

returning shortly. Also in the simulations the equilibrium pro-

file ρ(1)(z,cosθ) exhibits a local maximum at z ∼= 0.5Dg0 for

rings which assume a homeotropic orientation with respect to

the wall, but the maximum corresponding to the rings in the

planar configuration is still higher at this density. This sit-

uation finally changes at higher densities, as can be seen in

Fig. 10 where a snapshot as well as the one-particle density

ρ(1)(z,cosθ) is shown for a MC simulation at the reduced

density ρ∗ = 8.0.

MC:

DFT:

Fig. 9 Same as Figs. 7 but for bulk density ρ∗ = 6.9.

Let us first quantify the onset of the crossover of the anchor-

ing from planar to homeotropic by introducing a suitable order

parameter. We consider for this purpose the expectation value

↑ ẑ

Fig. 10 Top panel: Snapshot of a MC simulation at the reduced

density ρ∗ = 8. Each coarse-grained ring is represented by a perfect

circle with a diameter Dg0 and its corresponding orientation and

centers-of-mass position. Bottom panel: the corresponding scaled

density profile ρ(1)(z,d · ẑ)/ρ in the presence of a wall with respect

to the bulk density ρ .
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Fig. 11 Average value of the second Legendre Polynomial in d · ẑ,

P2(d · ẑ), for rings with a distance z from the wall that is smaller than

their diameter of gyration at infinite dilution (Dg0) as a function of

the bulk density ρ∗.

of the second-order Legendre Polynomial of cosθ ≡ d · ẑ, i.e.,

P2(cosθ) = (3cos2 θ − 1)/2, evaluated for all rings in a slab

adjacent to the wall, z ≤ Dg0, as a function of the density ρ∗.

The results are shown in Fig. 11. The function changes drasti-

cally throughout the density domain where the ordering tran-

sition takes place. While the agreement between DFT predic-

tions and simulations is very good up to ρ∗ ≤ 5, DFT predicts

a more abrupt ordering transition than simulations. There is

no discontinuity, cusp or nonanalytic behavior of any kind:

accordingly, the flipping of the rings on the surface is not a

phase transition but rather an abrupt crossover phenomenon.

Nevertheless, a rapid decrease of 〈P2(cosθ)〉 within a very

narrow density range takes place, and its value changes from

positive (planar anchoring) to negative (homeotropic anchor-

ing) at about ρ∗ ∼= 6.2 (DFT) or ρ∗ ∼= 6.5 (MC).

It is intuitive that the particles are more likely to accumu-

late close to the wall, since the side of them that faces the wall

has no other particles to interact with and the ring will there-

fore on average interact with fewer other particles. Initially,

i.e., at sufficiently low densities, the rings prefer to be parallel

to the wall, which is intuitive since in this configuration they

will have on average less interaction partners if the rest of the

configuration space is filled homogeneously with rings. More-

over, the planar orientation allows them to approach closer to

the wall than the homeotropic one, leaving thus more space for

the remaining rings in the z-direction. The price for the planar

anchoring, however, is that the layers of planar rings experi-

ence a strong repulsion to one another due to the neighbors

lying laterally along the wall, caused by the steep and longest-

range effective ring-ring interaction V||(r) that can be seen in

Fig. 2. The fact that at even higher densities the rings show

the propensity of orienting their director parallel to the wall

and their surface orthogonal to it, seems to indicate that the

wall-ring potential Φwall(z) combined with the anisotropic and

penetrable interactions between the rings allow them to use the

configuration space more efficiently and block less space for

other rings, if they orient with their surface orthogonal to it.

We will put this idea in more quantitative terms in what fol-

lows.

A key quantity to consider is the surface tension γ induced

by the wall. The DFT approach given by Eq. (12) can be de-

rived by carrying out a first order expansion of the first-order

direct correlation function c(1) in density deviations ∆ρ(1) with

respect to the bulk system. Using the same approximation one

arrives at the following expression for the surface tension γ
due to the repulsive wall15:

γ = γw + γc (15)

with

γw =
ρ

2

∫
dzd cosθ f (z,cosθ)Φwall(z,cosθ)+

ρkBT

2

∫
dzd cosθ f (z,cosθ) ln [ f (z,cosθ)]−

ρkBT

2

∫
dzd cosθ [ f (z,cosθ)−1] (16)

and

γc ≡ −ρ2kBT

16π

∫
dzd cosθdz′d cosθ ′ [ f (z,cosθ)−1]×

[
f (z′,cosθ ′)−1

]
c̄(z− z′,cosθ ,cosθ ′), (17)

where

f (z,cosθ)≡ ρ(1)(z,cosθ)/ρ. (18)

The definition of c̄ is given in eq. (14) and corresponds

to the lateral average over the direct correlation function

c(r,d(1),d(2)) in the bulk, which we have obtained employ-

ing the HNC approximation. The term γw, Eq. (16), expresses

the contribution of the particle-wall interactions to the surface

tension, whereas the term γc, Eq. (17), expresses the contribu-

tion of the interparticle interactions to the same. Being surface

tension terms, they both, naturally, arise from the difference

between the free energy over the bulk contributions, which

scale linearly with area; the ratio of this excess over the area

are thus the two contributions to the surface tensions.

Using this formula we have computed γ and γc for the one-

particle density ρ(1) obtained via the DFT approach as well

as simulations and have plotted the corresponding results over

the reduced density ρ∗ in Fig. 12. For all investigated den-

sities we obtain very good agreement between the results of

γ computed from the ρ(1) distribution obtained in simulations

and theory. However the ordering transition does not result
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Fig. 12 (a) The total surface tension γ , Eq. (16), of a fluid of stiff

ring polymers next to a planar wall, plotted against the

reduced-density ρ∗. (b) The contribution γc, Eq. (17), to the surface

tension, which is due to the inter-particle interactions.

in a significant change in the behavior of the function γ(ρ∗),
which is almost a straight line. In terms of absolute values,

using a typical ring diameter Dg0
∼= 10nm and the numbers

in Fig. 12(a), we obtain γ ∼= 10 µN/m, typical of soft matter

systems. For γc(ρ
∗) on the other hand, which is the part of

the surface tension that is due to the difference in the inter-

particle interaction close to the wall with respect to the bulk,

we observe a radical change throughout the densities where

the surface-reordering takes place. The reorientation of the

effective particles leads to a significant decrease in the value

of γc and thus the free energy due to the mutual interaction

between the particles can be reduced by the reordering. This

free-energy reduction is therefore the driving force behind the

surface reorientation transition. By flipping up so that they

stand vertically to the surface, the rings benefit from the fact

that in this orientation they can take advantage of their own

mutual rotations (while maintaining d · ẑ ∼= 0 in the first layer

next to the wall) to assume interpenetrating orientations that

drastically reduce the cost of interparticle interactions. This is

accompanied by a second layer above the first, which has pla-

nar ordering, visible in both panels of Fig. 10, which, again,

has an orientation perpendicular to the first layer, which is fa-

vorable for interparticle interactions at close separations. This

advantage comes from the fact that the effective discs are soft

and interpenetrable, i.e., it is a unique characteristic of ultra-

soft anisotropic colloids, and it is dominating, at sufficiently

high bulk densities, over the propensity of the wall-particle in-

teractions to induce planar ordering. The drop in γc is again

more abrupt for the ρ(1) distribution from DFT, where the or-

dering transition also happens at lower densities ρ∗.

6 Conclusions

We have performed a combined theoretical and computational

study of the effective models arising from a coarse-graining

of stiff ring polymers, putting DFT-approaches and integral

equation theories in the bulk and in confinement at a strong

test and examining the structural properties of isotropic ring

fluids close to planar walls. We have shown that for DFT com-

putations in the bulk MFT strongly overestimates the strength

of the interactions, while the application of the HNC closure

to anisotropic systems offers a description which is in very

good agreement with simulation results for all densities in-

vestigated (ρ∗ ≤ 7). The HNC approach in the bulk gives us

a prediction for the full anisotropic pair-correlation function

g(r,d(1),d(2)), as well as for the direct-pair correlation func-

tion c(r,d(1),d(2)). The latter is useful to apply DFT in order

to predict the one-particle density of rings in the vicinity of a

wall. We found that by increasing the density one can induce

a reorientation of the effective near-wall rings, which prefer

to orient themselves parallel to the surface (planar) for low

densities ρ and reorient orthogonal to the wall (homeotropic)
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for higher values of ρ . This unusual phenomenon is observed

in DFT as well as in computer simulations and is in stark

contrast to confined hard discs, where the surface structure

is mostly controlled by the interaction potential between the

rings and the wall, while density has little effect. Future di-

rections will focus on the occurrence of ordered phases (ne-

matic or columnar) and on the behavior of such systems under

non-equilibrium conditions, where the type of anchoring is ex-

pected to affect the rheological properties of the system, such

as viscosity or transport coefficients.
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A Monomer-resolved Model

We here give a brief overview of the main characteristics of

the underlying monomer-resolved model that was introduced

in Ref.13 and is employed to obtain the effective interactions

between two rings as well as that between a ring and the wall.

The model is based on the original bead-spring model devel-

oped by Kremer and Grest26 for polymeric chains, in which

the monomeric units interact via the truncated and shifted

Lennard-Jones potential

VLJ(r) =

{
4ε
[(

σ
r

)12 −
(

σ
r

)6
+ 1

4

]
if r < 21/6σ ;

0 if r ≥ 21/6σ .
(19)

This interaction is purely repulsive in nature and mimics the

monomer excluded volume interactions. The connectivity in

the chain, in our case the ring polymer, is enforced by a finitely

extensible non-linear elastic potential (FENE)

VFENE(r) =−kR2
0

2
ln

[
1−
(

r

R0

)2
]
. (20)

The last ingredient that is added is an additional bending po-

tential that allows us to control the rigidity of the polymer

Vbend(θ) = κ(1− cosθ)2, (21)

where θ is the angle between two consecutive bond vec-

tors and penalizes any deviation from the straight connec-

tions. Here, we focus entirely on small rings composed on

N = 50 monomers and have chosen the interaction parame-

ters for the rings to be ε = kBT , k = 30kBT/σ2, R0 = 1.5σ

and κ = 30kBT , where kB is the Boltzmann constant and T the

temperature.

These rings are semi-flexible with a ration of contour length

over persistence length l/lp
∼= 6.7. This particular choice of

parameters also ensures that the crossing of chains is prohib-

ited and hence that the topology of the system is automatically

preserved to remain non-concatenated.

Finally, it should be pointed out that such a polymeric sys-

tem is assumed to be embedded in a good quality solvent. The

solvent is treated in an implicit fashion, i.e., the interaction be-

tween monomers, and consequently also rings on the coarse-

grained level, are solvent-mediated in nature.

B Numerical solution of the self consistent

equations

The self consistency equations which we need to solve to com-

pute the bulk structure of the anisotropic effective fluid em-

ploying the HNC, Eq. (7), and MFT, Eq. (10), approximations,

respectively, are of the form

h(r,d(1),d(2)) = F [h](r,d(1),d(2)), (22)

where F is a functional of h and a function of (r,d(1),d(2)).
We solve these equations numerically via an iterative scheme

that starts with some initial guess function f0 and where suc-

cessive iterations are computed as

fn+1 = fn +∆s(F [ fn]− fn). (23)

The mixing parameter ∆s > 0 is usually set to a value smaller

than 1. When applying this iterative scheme, we hope that fn

converges to a function that solves Eq. (22). Whether or not

the iteration scheme converges also depends on the size of ∆s.

If one chooses ∆s too large the scheme might not converge,

however if ∆s is very small one progresses in very small steps

and will therefore need to carry out many iterations. For all

the applications in this work we have obtained convergence

with the choice ∆s = 0.1. For the initial guess function f0 we

have chosen a flat profile for ρ∗ = 0 and have then increased

the density in small steps of ∆ρ∗ = 0.2 and used the solution

for ρ∗−∆ρ∗ as the initial condition for the iterative scheme

at density ρ∗. Since the numerical evaluation of the integrals

arising in the functional F is computationally demanding, we

discuss their computation in more detail.

The integrals appearing in the functional F are of the form:

f ∗h(r,d(1),d(2))≡
∫

dxdΩ f (x,d(1),d)h(r−x,d,d(2)),

(24)

where
∫

dΩ denotes the integration over the director d. We

will refer to this expression as an anisotropic convolution. The

functions f and h both exhibit a rotational symmetry, i.e.:

f (Rr,Rd(1),Rd(2)) = f (r,d(1),d(2)), (25)
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where R is an arbitrary rotation matrix. The anisotropic con-

volution f ∗h is therefore also rotationally symmetric and it is

sufficient to compute f ∗ h for the particular choice d(1) = ẑ

and d(2) = sinψ x̂+ cosψ ẑ, since it is always possible to find

a choice for R, s and cosψ such that

(r,d(1),d(2)) = (Rs,Rẑ,sinψRx̂+ cosψRẑ). (26)

In other words, we can choose the direction of d(1) as the ẑ-

axis and also define the plane spanned by the directors d(1)

and d(2) as the x− z-plane, rotating along the vector r onto the

vector s. Knowledge of f ∗ h(s, ẑ,sinψ x̂+ cosψ ẑ) therefore

allows for the reconstruction of the entire function f ∗ h and

we are left with the computation of

f ∗h(s,cosψ)≡ (27)∫
d cosθdϕ

∫
dt f (t, ẑ,d)h(s− t,d,sinψ x̂+ cosψ ẑ).

The integration over the angular coordinates of d is denoted

by
∫

d cosθdϕ . The inner integration corresponds to a three

dimensional convolution over two functions that do not exhibit

spherical symmetry. Using the convolution theorem

f̃ ∗h(k) = f̃ (k) h̃(k), (28)

where f̃ (k) is the Fourier transformed of the function

f (r,d(1),d(2)) with respect to r, we can thus carry out the in-

ner integral with computational complexity of O(N3
r logNr),

where Nr is the number of grid points in which we have dis-

cretized the three dimensions of r. To this end, we approxi-

mate the Fourier transformations in the convolution theorem

by Fourier series coefficients, which we can compute using

the Fast Fourier Transform algorithm. The functions which

are to be convoluted depend on d and cosψ . When we carry

out the integration over d cosθdϕ we discretize cosθ and

ϕ within Ncosθ and Nϕ intervals, while cosψ is discretized

within Ncosψ bins. In total we thus need to carry out a num-

ber of O(Ncosψ Ncosθ Nϕ N3
r logNr) computations to evaluate

the anisotropic convolution f ∗h. Because all the functions re-

main invariant if we flip an individual director, it is sufficient

to compute two times the integration over cosθ ∈ [0,1] for

cosψ ∈ [0,1]. We have used Ncosψ ,Ncosθ ,Nϕ = 8 and Nr = 32

discretization points for all iterations.

Due to rotational symmetry the functions f , h and f ∗h are

only four-dimensional instead of seven-dimensional. We have

originally tabulated these functions using the effective vari-

ables (r,cosθ1,cosθ2,ϕ) defined in Eq. (2), i.e., any given

combination (r,d(1),d(2)) is represented by its correspond-

ing point (r,cosθ1,cosθ2,ϕ) in a four-dimensional grid, in

which only the magnitude of r and relative orientations show

up. If one knows the functions f and h at these effec-

tive coordinates, one can in principle evaluate them for all

values of (r,d(1),d(2)) due to rotational symmetry. How-

ever we only know the function values on a rectangular grid

in the effective variables, and if we for instance need to

evaluate f (s, ẑ,sinψ x̂ + cosψ ẑ) at a grid point in (s,cosψ)
space, the corresponding point in the effective coordinates

(r,cosθ1,cosθ2,ϕ) will in general not lie directly on the grid.

We have used linear interpolation to evaluate the function on

a grid point in the (s,cosψ) variables with the tabulated func-

tion values on the grid in (r,cosθ1,cosθ2,ϕ) space. In gen-

eral, we use linear interpolation in this way to transform the

functions between different representations of their collective

variables.

The self-consistency condition for the inhomogeneous den-

sity profile, Eq. (12), which we have employed to derive the

surface-ordering of rings close to the wall is of the form

ρ(1)(z,cosθ) = G [ρ(1)](z,cosθ) (29)

and it has been solved with the same iterative scheme that we

employed to compute the solution of Eq. (22). Fortunately the

functional G [ρ(1)] is numerically much easier to evaluate than

F [h], since the function ρ(1) has less degrees of freedom than

h. In particular, the spatial convolution appearing in Eq. (12)

is merely one-dimensional and it can be easily carried our for

every value of the second variable, cosθ , which is tabulated

on a grid.
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Fig. 13 TOC figure: Simulation snapshot showing a system of ultrasoft discs before (green) and after (blue) the density induced surface

ordering transition.
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