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We explore the rheology and flow-induced morphological changes of cholesteric liquid crystal patterns subject to Poiseuille

flow within a slab geometry, and under different anchoring conditions at the wall. Our focus is particularly on the behaviour of

“Cholesteric Fingers of the first kind” and of Blue Phase II. Depending on the applied pressure gradient, we observe a number of

dynamic regimes with different rheological properties. Our results provide the first insight into the flow response of cholesteric

phases with fully two- or three-dimensional director field patterns and normal and planar degenerate anchoring conditions as

commonly realised in experiments. They are also of high relevance for a fundamental understanding of complex liquid crystals

in confinement and an important step towards future microfluidic applications that are based on cholesteric liquid crystals.

1 Introduction

Cholesterics, or chiral nematics, are liquid crystals in which

the local director field, representing the average direction

of orientational order, shows spontaneous twist in thermo-

dynamic equilibrium1,2. The simplest case is the standard

cholesteric phase where the director field precesses around a

single helical axis of fixed orientation. The associated director

field pattern, which only varies along one dimension, is also

called the “Grandjean texture”.

Sandwiching a cholesteric helix between two flat walls

where the director field is anchored normally (or “homeotrop-

ically”) creates frustration if the helix of the cholesteric axis

is parallel to the walls. This frustration is resolved by the

creation of more complex, two-dimensional director field pat-

terns which are known as “Cholesteric Fingers” 3 (CFs). Fully

three-dimensional structures are also possible, and are en-

countered for highly chiral systems, for which the preferred

configuration close to the isotropic boundary features twist

around two perpendicular axes, as opposed to just one axis

as in the regular cholesteric state. The corresponding confor-

mation is referred to as “double-twist cylinder” (DTC). As it

is topologically impossible to cover three-dimensional space

continuously with double-twist cylinders, defects arise by ne-

cessity. The resulting disclination lines, at which the nematic

director field is undefined, organise into a variety of three-

dimensional lattices, giving rise to the so-called cubic Blue

Phases (BPs)4,5. There are two experimentally observed cu-

bic Blue Phases, BPI and BPII. A third, BPIII, is thought to
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be amorphous 6. In the last decade BPs have moved from

little more than an academic curiosity into the forefront of liq-

uid crystal device technology after the discovery that they can

be stabilised over a much wider temperature range than previ-

ously thought possible7–9.

Even simple cholesterics are known to show strong non-

Newtonian flow behaviour that depends sensitively on the ap-

plied boundary conditions, and is due to interplay of elastic

forces and order-flow coupling. When probed along the di-

rection of the helical axis (also know as permeative mode)

cholesterics can have very large apparent viscosities at small

flow velocities, and typically display strong shear thinning at

larger flow rates 10–12. When the helical axis is oriented per-

pendicular to the flow direction (vorticity mode) an uncoiling

transition occurs at a critical flow rate 13,14. The flow of two-

or three-dimensional director field patterns such as the above

mentioned is even more intricate and is far from being under-

stood. Unsurprisingly, the presence of complex boundaries or

interfaces adds another level of complexity to the problem, and

may be the reason why the microfluidic flow of liquid crystals

has been left vastly unexplored since the emergence of this

field in the early 1990s.

The last few years have seen a rapidly increasing inter-

est in the flow of passive and active nematic liquid crystals

in microfluidic confinement 15,16. Anchoring conditions 17

and the defect topology 18 have been shown to play a cru-

cial role for the emerging flow profile in the microchannel.

Their behaviour at liquid-liquid interfaces 19,20 and in liquid

crystal emulsions 21 have also been studied. Another promis-

ing route focusses on nonlinear electrophoretic and electro-

hydrodynamic aspects and transport properties of suspended

nanoparticles 22,23. An intriguing application is the combi-

nation of liquid crystal microfluidics and optics 24,25 for ad-

vanced displays, tuneable filters and light modulation. In this
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respect, microfluidic applications based on cholesteric liquid

crystals with their intrinsic ability to order in 1D, 2D and 3D

superstructures offer exciting new avenues to a completely

new range of optofluidic applications like lasers and optical

sensors 26.

Our aim in this work is to study the rheology of Cholesteric

Fingers and Blue Phases subjected to normal and planar de-

generate anchoring of the director field at the boundary walls.

This is a first step towards understanding the flow behaviour

of complex liquid crystals in simple geometries. Previous re-

search into microfluidic aspects of liquid crystals has been

mostly devoted to studying simple liquid crystals (such as ne-

matics) in complex geometries. Importantly, while there have

been a number of computer simulation studies of the rheology

of confined cholesteric liquid crystals and Blue Phases, all of

these have considered either free boundary conditions where

the director field can freely rotate without energetic penalties,

or pinned boundary conditions where the cholesteric pattern

is permanently fixed at the walls. Pinning may provide a suit-

able approximation of a situation where there are impurities27.

However, a more natural scenario, which is simpler and can

be realised more easily in the lab, is anchoring of the director

field either normal or tangential to the walls. This can be en-

forced respectively either by using a surfactant or by mechan-

ical rubbing. In our work we consider these experimentally

more realistic boundary conditions, and ask how these affect

the rheological behaviour of cholesteric liquid crystals. This

is an important step forward to understand the rheological and

hydrodynamic aspects of these systems, and to allow a com-

parison between theoretical predictions and existing or future

experiments and emerging applications28. At the same time,

from a theoretical viewpoint, anchoring in for instance Blue

Phases is of interest because it leads to frustration of the bulk

topology, which in turn results in the creation of exotic defect

networks. These are stable only in thin films due to the anchor-

ing at the boundaries 29–31 and can be further manipulated by

means of dielectric or flexoelectric fields 27,32.

Our paper is organised as follows. In Section 2, we describe

the methods we use and review the hydrodynamic equations of

motion which we solve. In Section 3, we report our numeri-

cal results, first for our studies of Cholesteric Fingers (Section

3.1), followed by those of Blue Phase II (Section 3.2.1 with

normal anchoring, and Section 3.2.2 with planar degenerate

anchoring). Finally, Section 4 contains our conclusions.

2 Model and Methods

Our approach is based on the well-established Beris-Edwards

model for hydrodynamics of cholesteric liquid crystals 33,

which describes the ordered state in terms of a traceless, sym-

metric tensor order parameter Q(r). In the uniaxial approx-

imation, the order parameter is given by Qαβ = qs(n̂α n̂β −

1
3

δαβ ) with n̂ the director field and qs the amplitude of ne-

matic order. More generally, the largest eigenvalue of Q,

0≤ qs ≤
2
3

characterises the local degree of orientational order.

The thermodynamic properties of the liquid crystal are deter-

mined by a Landau-deGennes free energy F , whose density

f consists of a bulk contribution fb and a gradient part fg, as

follows,

fb =
A0

2

(

1−
γ

3

)

Q2
αβ

−
A0γ

3
Qαβ Qβγ Qγα +

A0γ

4
(Q2

αβ )
2,

fg =
K

2
(εαγδ ∂γ Qδβ +2q0Qαβ )

2 +
K

2
(∂β Qαβ )

2. (1)

The first term contains a bulk-free energy constant A0 and the

temperature-related parameter γ which controls the magnitude

of order. The second part quantifies the cost of elastic distor-

tions, which is proportional to the elastic constant K; we work

for simplicity in the one-elastic constant approximation1. The

wavevector q0 is equal to 2π/p0, where p0 is the cholesteric

pitch, the length scale over which the director field rotates a

full turn around the axis of the cholesteric helix.

The actual periodicity of the BP structure, p, does not need

to be equal to p0. Indeed, the “redshift” r = p/p0 is adjusted

during the equilibration phase of the simulation, to optimise

the free energy density before shearing begins. This is done

by following the procedure previously described in34.

Anchoring conditions are imposed by adding an extra term

to the Landau-deGennes free energy functional at the bound-

aries. For homeotropic or normal anchoring, where the direc-

tor field prefers to be oriented normal to the surfaces, this is

achieved through

fs =
W

2
(Qαβ −Q0

αβ )
2 (2)

with Q0
αβ as the preferred configuration of the order parameter

tensor at the surface. For planar degenerate anchoring condi-

tions 35 a fourth-order term has to be added:

fs =
W1

2
(Q̃αβ − Q̃⊥

αβ )
2 +

W2

2
(Q̃αβ Q̃αβ −S2

0)
2. (3)

S0 is a fixed surface amplitude. The two tensor Q̃ and Q̃⊥ are

defined as

Q̃αβ = Qαβ +
1

3
δαβ S0 (4)

Q̃⊥
αβ = Pαµ Qµν Pνβ (5)

with Pαβ = δαβ − nα nβ as projector onto the surface defined

by its unit normal nα .

A thermodynamic state is specified by two dimensionless

quantities: the reduced temperature

τ =
27(1− γ/3)

γ
, (6)
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which vanishes at the spinodal point of a nematic (q0 = 0), and

the reduced chirality

κ =

√

108Kq2
0

A0γ
, (7)

which measures the ratio of gradient to bulk free energy.

The dynamical evolution of the order parameter is given by

the equation

(∂t + vα ∂α)Q−S(W,Q) = ΓH. (8)

The first term on the left hand side of Eq.8 is a material deriva-

tive, which describes the rate of change of a quantity advected

by the flow. The second term accounts for the rate of change

due to local velocity gradients Wαβ = ∂β vα , and is explicitly

given by33

S(W,Q) = (ξ A+Ω)(Q+
I

3
)

+(Q+
I

3
)(ξ A−Ω)−2ξ (Q+

I

3
)Tr(QW), (9)

where Tr denotes the tensorial trace, while A = (W+WT )/2

and Ω = (W−WT )/2 are the symmetric and antisymmetric

part of the velocity gradient, respectively. ξ is a constant de-

pending on the molecular details of the liquid crystal. Flow

alignment occurs if ξ cos2θ = (3qs)/(2+qs) has a real solu-

tion for θ , the so-called Leslie angle. We select this case by

setting ξ = 0.7 in our simulations. H is the molecular field,

which is a functional derivative of F that respects the trace-

lessness of Q:

H =−
δF

δQ
+

I

3
Tr

(

δF

δQ

)

. (10)

The rotational diffusion constant Γ in Eq.8 is proportional to

the inverse of the rotational viscosity γ1 = 2q2
s/Γ

1.

The time evolution of the fluid density and velocity are

respectively governed by the continuity equation ∂tρ =
−∂α(ρvα), and the following Navier-Stokes equation:

∂tvα +ρ vβ ∂β vα = ∂β Παβ +ν0 ∂β [∂α vβ + ∂β vα ].(11)

This emerges from the Chapman-Enskog expansion of the lat-

tice Boltzmann (LB) equations 36,37 that we solve numerically.

A further term ν0(1+3
∂P0

∂ρ )∂µ vµ δαβ that formally appears in

this expansion is negligible under the slow flows considered

here for which the fluid motion is almost incompressible38. In

Eq.11, ν0 is an isotropic background viscosity which is set to

ν0 = 5/3 in LB units (see discussion below). The thermody-

namic stress tensor reads explicitly

Παβ = P0δαβ −ξ Hαγ

(

Qγβ +
1

3
δγβ

)

− ξ

(

Qαγ +
1

3
δαγ

)

Hγβ +Qαγ Hγβ −Hαγ Qγβ

+ 2ξ

(

Qαβ +
1

3
δαβ

)

Qγν Hγν −∂α Qγν
δF

δ∂β Qγν

(12)

and is responsible for strong non-Newtonian flow effects. In

the isotropic state Q ≡ 0 and Eq.12 reduces to the scalar pres-

sure as would appear in Eq.11 for a Newtonian fluid.

We next define a dimensionless number that describes the

deformation of the director field under flow. This so-called

Ericksen number is given by

Er =
ν0V l

K
(13)

with ν0 and K defined previously, and V and l a typical ve-

locity and length scale. In the present work l = p0/2 = π/q0

was used as this is the approximate size of the BP unit cell.

Likewise, V was taken to be the velocity difference across one

unit cell, i.e. V = γ̇ l. The apparent viscosity νapp = Φ/Φ0 is

found as ratio between the volumetric flow rate

Φ =
∫ Lx

0

∫ Ly

0
vz(x) dxdy (14)

through a plane perpendicular to the flow or z-direction and

the flow rate Φ0 of a Newtonian fluid at the same pressure gra-

dient. The volumetric flow rate Φ0 of a Newtonian fluid with

dynamic viscosity ν0 through a gap Lx driven by a pressure

difference ∆p = f Lz in plane Poiseuille flow is

Φ0 =
∫ Lx

0

∫ Ly

0

L2
x

2ν0

∆p

Lz

(

x

Lx

−

(

x

Lx

)2
)

dxdy (15)

=
L3

x Ly f

12ν0
. (16)

Here, the parameter f plays the role of a forcing parameter

which is equivalent to a homogenous pressure gradient be-

tween inlet and outlet.

The system of coupled partial differential equations, Eqs.8

and11, is solved by means of a hybrid method39 which

uses a combination of lattice Boltzmann and finite difference

schemes. (This is in contrast with some earlier methods us-

ing solely LB38,40.) The Navier-Stokes equation is solved

via the lattice Boltzmann approach, using a standard three-

dimensional model with 19 discrete velocities (D3Q19). A

regular lattice with spacing ∆x = ∆y = ∆z = 1 is used and the
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Fig. 11 Flow velocity profiles at different pressure gradients f for weak (left column) and strong (right column) homeotropic anchoring. The

top row shows snapshots of the z-component of the flow velocity 〈vz(x)〉yz across the gap in x-direction (averaged along the y and z direction).

The bottom row gives snapshots of the y-component of the flow velocity 〈vy(x)〉yz (averaged along the y and z direction). Note that the data

has been scaled to make it comparable to the data obtained for the largest applied pressure gradient.

f Min/max secondary velocity vx Min/max secondary velocity vy Min/max primary velocity vz Er

10−4 −1.01×10−4 / 9.35×10−5 −2.16×10−4 / 2.18×10−4 5.66×10−4 / 2.57×10−2 21.905

10−5 −2.48×10−5 / 2.70×10−5 −5.63×10−5 / 4.49×10−5 5.55×10−5 / 2.31×10−3 1.972

10−6 −8.20×10−6 / 8.13×10−6 −1.93×10−5 / 1.94×10−5 2.82×10−6 / 2.34×10−4 0.199

10−7 −8.04×10−6 / 8.00×10−6 −1.91×10−5 / 1.90×10−5 −2.53×10−6 / 2.81×10−5 0.024

Table 1 The secondary velocity components vx and vy and the primary flow component vz for strong homeotropic anchoring conditions and

different pressure gradients f . The data gives the minimum and maximum value of the components and the Ericksen number Er during a

snapshot at time step t = 250k.
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Fig. 12 Slices through the secondary flow velocity pattern

(vx,vy,0) in xy-plane at Lz = p/4 for strong homeotropic anchoring.

The pictures display snapshots at time step t = 250k for a pressure

gradient of f = 10−4 (top) and f = 10−5 (bottom), respectively. The

colour code gives the magnitude of the secondary flow velocity, i.e.

the flow velocity with omitted primary flow component vz (see also

Tab. 1), whereas the arrows show the direction of the secondary flow

field in xy-plane. The grey isosurfaces show the disclination

network immediately before the intersection plane.

gradient leading to a higher apparent viscosity. However, for

both anchoring strengths the curves follow roughly the same

trend with a plateau-like region at intermediate pressure gra-

dients followed by a decreasing apparent viscosity to reach ν0

at large pressure gradients, corresponding to shear thinning.

Comparing the whole curve for BPII and CF1, we find two

main differences: first, BPII has a smaller apparent viscosity

at low forcing; second, for strong homeotropic anchoring the

decline in viscosity is a lot smoother for BPII, which is di-

rectly related to the rather gradual breakup of the DTCs with

increasing pressure gradient, which can be seen in Fig. 8.

The anchoring strength and the disclination network im-

pacts on the flow velocities as well. Fig. 11 shows averaged

velocity profiles of the BPs for weak and strong homeotropic

anchoring. The top row shows y- and z-averaged snapshots

of the z-component of the flow velocity 〈vz(x)〉yz at particu-

lar times during the flow cycles. The data has been scaled

by the magnitude of each pressure gradient to allow direct

comparison of the data for all pressure gradients in one pic-

ture. Clearly visible is that for larger pressure gradients the

dominating velocity component in z-direction approaches the

parabolic Poiseuille profile, here representatively plotted for

a pressure gradient of f = 10−4. For intermediate pressure

gradients the liquid crystal instead flows more in a plug-like

manner. At the lowest pressure gradient f = 10−7 where we

observe permeative flow, we detect small fluctuations, a resid-

ual effect of the stationary DTC structure. In the case of weak

normal anchoring there is also an asymmetry, a consequence

of the fact that the DTCs are not completely symmetrically

aligned in the channel, as e.g. visible in Fig. 9.

The bottom row of Fig. 11 shows y- and z-averaged snap-

shots of the y-component of the flow velocity 〈vy(x)〉yz across

the gap. These are generally at least one, but up to two orders

of magnitude smaller than the primary velocity component vz

along the flow direction. This secondary flow is induced by

the underlying cholesteric ordering and occurs along the direc-

tions perpendicular to the primary flow direction. The spatial

dependency of these averages is less clear, but note that these

profiles represent only a snapshot during a specific time dur-

ing one cycle of breakup and reformation of the disclination

network. There is an overall trend of these secondary velocity

components to become smaller at larger pressure gradients as

the DTC structure and disclination network gradually breaks

up and the LC adopts the Grandjean-like texture in the regions

with large velocity gradients (see Fig.8 bottom row).

In Fig. 12 we show cuts through the secondary flow velocity

pattern at Lz = p/4, i.e. a quarter of a pitch length away from

the system boundary. The cuts were obtained by projecting

the total flow velocity ~v = (vx,vy,vz) onto xy-planes perpen-

dicular to the primary flow direction (and hereby projecting

out the dominating vz-component). The resulting projected

velocity vectors are then visualised with their direction in xy-

1–17 | 11
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plane (arrows) and their magnitude (colour code). Although

the magnitude is in the percent range of the primary flow ve-

locity, it is interesting to see that there are very clearly defined

regions where the liquid crystal flows to a small degree also

perpendicularly to the primary flow. For the larger pressure

gradient f = 10−4 we see actually counterflow in both the top

and the bottom half of the channel. It is worth mentioning that

these patterns change constantly as the disclination network

breaks up and reconnects as it flows downstream.

Table 1 shows an overview of the extreme values of the pri-

mary and secondary flow components at a specific time during

a cycle of breakup and reformation of the disclination network

and how these vary with the applied pressure gradient. Quite

strikingly, it can be seen that the minimum values of the pri-

mary flow changes by almost two orders of magnitude, and

change even sign for f = 10−7. As for the secondary flow ve-

locity components vx and vy, their magnitude reaches that of

the primary flow velocity component vz for the lowest applied

pressure gradients.

3.2.2 Planar Anchoring We now turn to the case of pla-

nar degenerate anchoring conditions, for which the director

field prefers to be aligned parallel to the wall surface. It can,

however, freely rotate in plane without any energetic con-

straints or costs. On the level of the Landau-deGennes free

energy functional this is modelled by introducing a fourth-

order term 35 (see Eq. 3). Fig. 14 shows how the DTC struc-

ture is modified by the applied pressure gradient for anchoring

strength W1/K = W2/K = 10. This is the analogue situation

of the one depicted in Fig. 8 for homeotropic anchoring. For

simplicity we always set the two strengths characterising pla-

nar degenerate anchoring to be the same, i.e. W1 =W2.

At the lower end of applied pressure gradients, as shown in

the top row of Fig. 14 for f = 10−5, we find that planar degen-

erate anchoring conditions have a twofold effect on the con-

formation of the confined BPII. First, the anchoring dictates a

change in the preferred orientation of the liquid crystal in the

immediate vicinity of the walls. Second, planar degenerate

anchoring is more compatible with the director conformation

inside DTCs; this leads to an effective attraction of DTCs to

the wall, which results in a stretching of the BPI disclination

network across the channel, with the DTC further apart with

respect to the case of homeotropic anchoring case in Fig. 8.

The x-position of the y-oriented DTCs is a clear manifestation

of this feature (see Fig.14, top left image).

This conformational difference between the two anchor-

ing conditions becomes less pronounced as the forcing f in-

creases, as also for planar degenerate anchoring the DTCs

begin to dissolve, starting from the walls and continuing to-

wards the centre of the channel. Nevertheless, the behaviour in

the proximity of the walls remains different across the whole

range of pressure gradients. This is because planar anchoring

 0.95

 1.05

 1.15

 1.25

1·10-6 1·10-5 1·10-4 1·10-3

ν a
pp

pressure gradient

W/K = 10
W/K = 0.1

Fig. 13 Apparent viscosity νapp against pressure gradient f for

BPII with weak and strong planar degenerate anchoring conditions

at the walls.

conditions are fully compatible with flow alignment, whereas

homeotropic anchoring prevents the director field from align-

ing with the flow close to the walls. While this may appear as

a minor detail as it affects only a small layer of liquid crystal

close to the wall, it has a measurable effect on the apparent

viscosity of the confined BPII.

Fig. 13 shows the apparent viscosity versus applied pres-

sure gradient for weak and strong planar degenerate anchor-

ing. The curves for strong and weak anchoring are very

close together, unlike for homeotropic anchoring where we

observed stronger shear thinning for the larger anchoring

strength (see Fig. 10). The apparent viscosity shows a plateau

from f = 10−6 on and decreases gradually for larger pressure

gradients in excess of f = 10−5. The overall trend, however, is

qualitatively similar to the one observed for homeotropic an-

choring. The reason why strong and weak anchoring lead to

a very similar rheological response is readily understood from

what was stated above. Planar degenerate anchoring condi-

tions, whether strong or weak, promote the flow alignment of

the director field near the wall, which we observe also at rela-

tively modest pressure gradients.

Fig. 15 depicts the averaged velocity profiles across the

gap for weak and strong planar degenerate anchoring. For

both anchoring strengths the y- and z-averaged velocity com-

ponents along the flow direction 〈vz(x)〉yz are now symmet-

ric with respect to the centre of the channel, unlike for the

case of weak homeotropic anchoring where an asymmetry was

visible at low pressure gradients f (see Fig.11). This is be-

cause the DTCs are now positioned symmetrically within the
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Fig. 15 Flow velocity profiles at different pressure gradients f for weak (left column) and strong (right column) planar degenerate anchoring.

The top row shows y- and z-direction averaged snapshots of the z-component of the flow velocity 〈vz(x)〉yz across the gap along the

x-direction. The bottom row gives y- and z-direction averaged snapshots of the y-component of the flow velocity 〈vy(x)〉yz. Note that the data

has been scaled to make it comparable to the data obtained for the largest applied pressure gradient.
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cell, as shown in Fig. 14. For the lowest pressure gradients

f = 10−7 we observe again (as for homeotropic anchoring) a

small residual modulation due to the stationary disclination

network in the permeative mode of flow. This gives grad-

ually way to a smoother profile as the pressure gradient in-

creases and the DTC structure breaks up. In line with what

we observed in the plots of the apparent viscosity νapp, there

is much more consistency in the y- and z-averaged profiles

of the velocity component along the y-direction 〈vy(x)〉yz be-

tween weak and strong planar degenerate anchoring as com-

pared to the case of homeotropic anchoring. This applies par-

ticularly to the results at low pressure gradients f = 10−7 and

f = 10−6. The profiles for the two larger pressure gradients

f = 10−5 and f = 10−4 resemble very much those shown in

Fig. 11.

4 Conclusion

This study provides the first theoretical treatment of the

pressure-driven, Poiseuille flow of cholesteric liquid crystals

with a non-trivial two- or three-dimensional director field pat-

tern subject to normal or planar degenerate anchoring condi-

tions as they are commonly realised in experiments. Indeed,

previous computational studies assumed, for simplicity, either

free or pinned boundary conditions, where a non-trivial direc-

tor field pattern is fixed at the wall43–45. Such boundary con-

ditions were used as they are those which should least affect

bulk ordering, and this is especially an issue if sample size is

small (as the regions where boundaries affect ordering would

extend to a significant part of the sample). In our case, we can

use a more realistic boundary condition because the sample

size is larger.

While we limited our studies to Cholesteric Fingers of the

first kind (CF1) and Blue Phase II (BPII), we expect that other

BPs, or other Cholesteric Fingers, should lead to qualitatively

similar behaviour. Our choice of phases was dictated by pre-

vious experience which suggest that these structures can be

realised experimentally, and at the same time have a simpler

response to bulk shear flow with respect to other cholesteric

phases with 2D or 3D director field patterns 42. Because of the

more complex order structure of the investigated cholesteric

phases, we limited our study to the simplest possible microflu-

idic geometry, an infinitely long, one-dimensional channel.

Nevertheless, and despite these limitations, we believe the re-

sults we present here are an important step towards real-world

microfluidic applications where a more complicated geometry

is coupled to the experimentally realistic boundary conditions

we considered.

Our work shows that the different anchoring conditions lead

to large quantitatively differences with respect to previously

reported results. For instance, it was found that in the per-

meative mode the viscosity of a cholesteric liquid crystal with

pinning boundary conditions was 30-fold larger than at large

flow 46. Here, we observe that for CF1, where we find the

largest shear thinning, the apparent viscosity decreases only

less than a factor of 2 (Fig.6). Likewise, it was previously

found that a system consisting of a single BPII cell with the

director frozen at the wall had a viscosity which was over

twice the Newtonian limit 44. Here, in contrast the appar-

ent viscosity of BPII is sizeably smaller. Notwithstanding

these significant quantitative difference, strikingly, we find

that qualitatively several phenomena are common to the case

of pinned boundary conditions or bulk shear flow, and the

homeotropic/planar degenerate anchoring we consider. First,

in all cases there is permeative flow for very low pressure gra-

dients 45. Second, at larger pressure gradient we observe a

continuous cycle of breakup and reformation of the disclina-

tion network of BPII, similarly to the case of bulk flow 42.

Third, the bubble regime, corresponding essentially to floating

DTCs, is reminiscent of the doubly-twisted texture observed

for strongly forced cholesterics 45. In this work, we find that

this regime is ubiquitous, as floating DTCs are common in

both CF1 and BPII, and we explain the mechanism leading to

this pattern: it is generically observed when a strong enough

shear at the boundary breaks the two- or three-dimensional

cholesteric director field pattern, so that the region in the cen-

tre does not feel the constraining torque from the wall.

We characterise the sequence of dynamical, flow-induced

regimes, which we predict CF1 and BPII structures should dis-

play when subjected to a pressure driven flow in a microfluidic

geometry with controlled anchoring conditions. Such exper-

iments are now feasible, with techniques similar to those re-

ported in a recent experimental work 47. For CF1s we only

considered strong and weak homeotropic anchoring condi-

tions, as these are crucial for obtaining a stable CF1 phase

without flow. We identified four different dynamic regimes.

At very low pressure gradients we observe a permeative

regime where the finger pattern remains static whilst having

a finite mass flow through the channel. At larger pressure gra-

dients the finger pattern drifts downstream but remains ’at-

tached’ to one side of the channel breaking the symmetry with

respect to its centre. The reasons for this emerging asymme-

try are the backflow mechanism together with the fact that

CF1s have a point symmetry with respect to the finger axis.

At even larger pressure gradients the CF1s ’detach’ from the

second wall and form symmetric bubble-like conformations at

the centre of the channel. This change in the local order struc-

ture entails a pronounced decrease in the apparent viscosity of

the flowing CF1. At the largest applied pressure gradient the

CF1 transforms into a Grandjean texture where the cholesteric

helical axis is oriented perpendicular to the flow direction and

the walls.

BPII has been simulated with both homeotropic and pla-

nar degenerate anchoring conditions and at different anchoring
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strengths in a parameter region where it is thermodynamically

stable in bulk. Following the permeative regime at the lowest

pressure gradient (associated with strongly non-parabolic ve-

locity profiles), we find for slightly larger forcing a regime in

which the BPII disclination network drifts downstream. BPII

shows the previously mentioned periodic breakup and recon-

nection of the disclination network 42. In the drifting regime,

the network also slowly moves along the neutral direction, i.e.,

perpendicular to both the flow and flow gradient directions.

We observe a gradual breakup of the double twist cylinders

(DTCs) with increasing pressure gradient, starting at the walls

where the velocity gradients are largest and then continuing

from both sides towards the centre of the channel. At the

largest pressure gradients only one floating row of DTCs re-

mains at the centre of the channel whereas everywhere else

the liquid crystal adopts a Grandjean-like texture with the

cholesteric helical axis perpendicular to the flow direction and

the walls. While we do not observe the Grandjean or nematic

texture in the BPII case, we would expect that these may be

observed for yet larger forcing, which cannot be reached in

our LB simulations.

Finally, the apparent viscosity declines in all cases. This

is expected as all systems we consider should shear thin, as

found both in other simulations and experimentally 47. The

decrease of the apparent viscosity with increasing pressure

gradient is more gradual for BPII than for CF1, which reflects

the gradually dissolving DTC structure in the former. It is

also interesting to note that, again for the BPII case and planar

degenerate anchoring, the apparent viscosity is practically in-

dependent of the anchoring strength. This is however not the

case for normal anchoring. Our interpretation is that this is

due to the fact that planar anchoring is more compatible with

flow alignment of the director field close to the walls.
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The first theoretical treatment of pressure-driven Poiseuille flow of

cholesteric liquid crystals with a non-trivial two- and three-dimensional

director field pattern.
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