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Many biological and technological complex fluids exhibit tight microstructural alignment that confers them nematic mechanical

properties. Among these we count liquid crystals and biopolymer networks, which are often available in microscopic amounts.

However, current microrheological methods cannot measure the directional viscoelastic coefficients that appear in the constitu-

tive relation of nematic complex fluids. This article presents directional two-point particle-tracking microrheology (D2PTM) – a

novel microrheology technique to determine these coefficients. We establish the theoretical foundation for D2PTM by analyzing

the motion of a probing microscopic particle embedded in a nematic complex fluid, and the mutual hydrodynamic interactions

between pairs of distant particles. From this analysis, we generalize the formulation of two-point particle tracking microrheology

for nematic complex fluids, and demonstrate that the new formulation provides sufficient information to fully characterize the

anisotropic viscoelastic coefficients of such materials. We test D2PTM by simulating the Brownian motion of particles in nematic

viscoelastic fluids with prescribed directional frequency-dependent shear moduli, showing that D2PTM accurately recovers the

prescribed shear moduli. Furthermore, we experimentally validate D2PTM by applying it to a lyotropic nematic liquid crystal,

and demonstrate that this new microrheology method provides results in agreement with dynamic light scattering measurements.

Lastly, we illustrate the experimental application of the new technique to characterize nematic F-actin solutions. These experi-

ments constitute the first microrheological measurement of the directional viscoelastic coefficients of an anisotropic soft material.

1 Introduction

Particle tracking microrheology (PTM)1,2 is a useful exper-

imental technique to determine the rheological properties of

soft materials that exhibit complex mechanical behaviors and

are conveniently available in minute amounts3,4. In PTM,

submicron-sized particles are embedded in a material sample,

excited with a known force, and their displacements are mea-

sured as a function of time. From these measurements one can

determine the material’s frequency-dependent shear modulus

G(ω). PTM methods can be classified as active or passive de-

pending on the nature of the force that drives particle motion.

Active PTM methods apply an external force on the probing

particle whereas in passive PTM methods, the embedded mi-

croparticles undergo random motion due to thermal and pos-

sibly non-thermal fluctuations. Active and passive PTM have

been applied to characterize, among other systems, colloidal

suspensions5–7, reconstituted protein gels8–10, and the cyto-

plasm of live cells11–13.

Regardless of the mechanism driving particle motion, a key
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step of PTM is to connect the measured motion with the un-

derlying rheological properties of the medium. This step re-

quires theoretical knowledge of the relation between the driv-

ing force and particle velocity as a function of G(ω). This

relation is usually idealized as Stokesian, i.e. F = 6πGa/ω
where a is the particle radius, but there is a number of near

field phenomena that generate deviations from Stokesian be-

havior. Examples of these are partial slip at the particle sur-

face14, compressibility15 and electrochemical surface inter-

actions16. To eliminate these short-range effects, Crocker et

al. 17 introduced two-point PTM, which analyzes the cross-

correlated motion of pairs of distant particles.

The vast majority of existing PTM protocols (active and

passive, single-point and two-point) assume that the probed

medium is isotropic. However, there is a substantial num-

ber of soft materials that exhibit molecular or supramolec-

ular alignment leading to anisotropic rheology. Anisotropic

particle diffusion has been reported in nematic liquid crys-

tals18,19, reconstituted polymer networks20,21, and the cyto-

plasm of cells12,22–25. However, there is a lack of microrhe-

ological methods to measure the directional viscoelastic co-

efficients of nematic complex fluids. Previous efforts ana-

lyzed particle motion in the principal directions of minimum

and maximal motion, and applied Stokes’ law in each direc-
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tion12,20–22,24,25. This approach provides effective shear mod-

uli that quantify the viscoelastic resistance experienced by the

particle in different directions. However, these effective shear

moduli do not represent true material viscosities4, and have

been shown to differ substantially from the material viscosity

coefficients of the fluid26. To address this limitation, Gómez-

González and del Álamo26 studied the flow of a nematic fluid

around a sphere using the Leslie-Ericksen constitutive rela-

tion. They calculated the drag coefficients of the sphere in the

directions parallel and perpendicular to the nematic as func-

tions of the three directional shear moduli of the fluid. They

also showed that one-point PTM can only provide up to two

independent drag coefficients, which is insufficient to calcu-

late the three shear moduli.

In this paper, we resolve this indetermination by analyz-

ing the cross-correlated motion of pairs of distant spheres in

a nematic fluid. Specifically, we derive a closed-form analyti-

cal solution for the spheres’ mutually induced velocity, i.e. the

multiparticle mobility tensor. We show that this approach pro-

vides three independent equations, so that two-point PTM can

be used to determine the rheological properties of nematic flu-

ids that follow the Leslie-Ericksen constitutive relation. The

novel directional two-Point PTM (D2PTM) formulation is val-

idated via numerical simulations, as well as experiments in a

nematic liquid crystal of known directional viscosity coeffi-

cients. Finally, we apply D2PTM to a nematic solution of

filamentous actin. These results represent the first direct mi-

crorheological measurement of the directional shear moduli of

F-actin, enabling future applications of D2PTM to other soft

materials.

2 Theoretical Foundation of Directional Two-

Point Particle Tracking Microrheology

This section describes the motion of spherical PTM probes

embedded in a nematic complex fluid defined by the director

~n (Fig. 1). The drag force experienced by the particles and the

interaction between pairs of distant particles (Fig. 2) are cal-

culated. These results are used to develop analysis algorithms

for D2PTM.

2.1 Mathematical Formulation

The velocity field of an incompressible complex fluid can be

described27 by the Cauchy’s momentum equation

ρ~̇v−∇ · τ = ~f , (1)

together with the continuity equation ∇ ·~v = 0, where ~f rep-

resents the applied external forces, ~v = ∂t~u is the velocity

field, ~u is the deformation field, ρ is the density and τ is

the stress tensor. These equations are valid for homogeneous

!F1

!v1

!n

a1

x3 = z

x1 = x

x2 = y

Fig. 1 Particle of radius a embedded in a nematic complex fluid

with director~n. The particle moves with velocity~v and experiences

a resistance force ~F .

one-component materials, and for semidiluted bio-polymer

networks that conform to certain conditions28, i.e. low vol-

ume fraction φ of the solute, characteristic length of the dis-

placements a larger than the mesh size ξ , and frequencies

ω ≪ 104 s−1. These conditions are often met in microrheol-

ogy studies of biological samples such as the eukaryotic cyto-

plasm (φ ∼ 0.01−0.0229) and reconstituted bio-polymer net-

works (φ ∼ 0.001−0.019,21,30), where the length scale is the

radius of the probing particle a ≫ ξ and the frequencies are

well below the specified limit26.

We estimate a Reynolds number Re = ρUa/η ∼ 10−6 in

PTM experiments26 and thus neglect inertial terms in the

equations of motion. We relate the stress and strain (ε) ten-

sors via a generalization of the Leslie-Ericksen constitutive

equations31–33 in the frequency domain,

τ̃i j =− p̃δi j + α̃∗
1 (s)ñkñqε̃kqñiñ j + α̃∗

2 (s)ñiÑ j + α̃∗
3 (s)ñ jÑi

+ α̃∗
4 (s)ε̃i j + α̃∗

5 (s)ñiñkε̃k j + α̃∗
6 (s)ñ jñkε̃ki, (2)

where p̃ represents the pressure, δ the Kronecker delta, ·̃ indi-

cates Laplace transform, s is the frequency and the subscripts i,

j, k and q represent space coordinates. The convention of sum-

mation over the repeated indices k and q holds for this equa-

tion. This expression is analogous to the generalized Stokes’

formula proposed by Mason and Weitz1. It depends on six

complex viscoelasticity coefficients α̃∗
k (s), the director of the

nematic ñi, and the rate of change of the director with respect

to the background fluid, Ñi. The viscoelasticity coefficients are

a generalization of the Leslie viscosity coefficients αk through

analytical continuation, and depend on the complex frequency

s. The vector Ñi is defined as the sum of the substantial deriva-

tive of ñi and the rotation of the fluid with respect to the direc-

tor, and is more conveniently expressed in real space as

~N = ∂t~n+(~v ·∇)~n− (∇∧~v)∧~n/2.

The nematic field ~n is determined from the equilibrium of

moments created by the viscoelastic stresses on the fluid and
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by the elastic stresses on the nematic, whose ratio is quanti-

fied by the Ericksen number, Er. In the limit of Er ≪ 1, the

viscoelastic forces on the fluid generated by the motion of the

particle are small enough to not perturb the nematic field, and

~n will be equal to the equilibrium distribution33. In a typi-

cal PTM experiment the low Ericksen number hypothesis is

reasonable far away from the particle. Thus, for the sake of

studying the correlated motion of pairs of distant particles to

formulate D2PTM, we assume the director field to be uniform

in space and constant in time,~n = (1,0,0).
To reduce the number of free material parameters, we group

the viscoelasticity coefficients into three generalized Miesow-

icz34 shear moduli,

G̃a = α̃∗
4/2,

G̃b = (α̃∗
3 + α̃∗

4 + α̃∗
6 )/2,

G̃c = (−α̃∗
2 + α̃∗

4 + α̃∗
5 )/2,

and make use of Parodi’s relation35, α̃∗
6 = α̃∗

2 + α̃∗
3 + α̃∗

5 . Un-

der these simplifications, equation (1) becomes

∂x ˜̄p = (G̃c − G̃a + α̃∗
1 )∂xxũx + G̃b∇2ũx + f̃x, (3)

∂y ˜̄p = (G̃c − G̃a)∂xxũy + G̃a∇2ũy + f̃y, (4)

∂z ˜̄p = (G̃c − G̃a)∂xxũz + G̃a∇2ũz + f̃z, (5)

where ˜̄p = p̃+(G̃c− G̃a− α̃∗
5 )∂xũx is a modified pressure, and

~r = (x,y,z) and ~̃u = (ũx, ũy, ũz) are the position and displace-

ment vectors in a Cartesian coordinate system.

The three Miesowicz coefficients have a clear physical

meaning in a nematic fluid36. For a uniform shear flow along

the x-direction, G̃b and G̃c are excited if~n is respectively par-

allel to the flow velocity or to the velocity gradient, whereas

G̃a is excited if ~n is perpendicular to both the flow velocity

and its gradient. Fig. 14 in Appendix A provides a graphical

interpretation of these coefficients.

2.2 Derivation of the Response Function

A spherical particle of radius a moving at low Reynolds num-

ber experiences a drag force that is proportional to its velocity,

~̃F =− ˜
ζ ·~̃v(~x =~0) =− ˜

ζ ·~̃v0 =−s
˜
ζ ·~̃u0, (6)

where
˜
ζ is the tensorial Response Function, also known as

Hydrodynamic Resistance37 or Self-Resistance38. Note that

~v0 and ~F are not parallel to each other in an anisotropic fluid

as
˜
ζ is not proportional to the identity matrix.

To calculate the response function of the particle, we per-

form a multipole expansion37,39,40. We first calculate the

Green’s function of equations (3)-(5) in the Fourier wavenum-

ber domain, and then integrate the Green’s function to obtain

the particle velocity as a function of the driving force. Due to

the linearity of the problem, we seek for solutions of the form

~̂v =
Ĝ · ~̂f
8π

=
1

8π





Ĝ1 j f̂ j

Ĝ2 j f̂ j

Ĝ3 j f̂ j




, (7)

p̂ =
~̂P · ~̂f
8π

=
1

8π
P̂ j f̂ j, (8)

where ·̂ denotes Fourier transform along the spatial coordi-

nates, Ĝi j and P̂ j are the Green’s functions for the velocity

and the pressure, and ~̂f is the driving force applied on the fluid.

Solving for the Green’s functions of the problem yields (see26

for more details)

P̂ j√
8/π

=
√
−1k j

(1−δ1 j)c+b

d
, (9)

and

Ĝ1 j

s
√

8/π
=

δ1 jk
2 − k1k j

d
, (10)

Ĝl j

s
√

8/π
=

δl j

b
− klk j

(1−δ1 j)c+b

db
, (11)

with l = 2,3, and where

b(~µ;~k) = (G̃c − G̃a)k
2
1 + G̃ak2,

c(~µ;~k) = α̃∗
1 k2

1 +(G̃b − G̃a)k
2,

d(~µ;~k) = α̃∗
1 k2

1(k
2
2 + k2

3)+ G̃bk4 +(G̃c − G̃b)k
2
1k2,

~k = (k1,k2,k3) = (kx,ky,kz) is the wavenumber vector,

~µ = (α̃∗
1 , G̃a, G̃b, G̃c) is the viscoelasticity vector, and δi j is

the Kronecker delta.

The particle velocity is calculated by performing the inverse

Fourier transform of equation (7) particularized at~x =~0,

~̃v0 =
1

(2π)3/2

∫∫∫
Ĝ

8π
· ~̂f (~k)d3k =− ˜

ζ
−1

· ~̃F, (12)

where ~̂f (~k) = ~f · Ĥ(~k) is the Fourier transform of ~f (~x) and the

function Ĥ(~k) is a regularization kernel that localizes the drag

force in physical and/or Fourier space. We choose to distribute

the force as a Gaussian around the origin41,42 so that

Ĥ(k) = e−a2k2/π . (13)

The response function is thus given by

˜
ζ−1

∣∣∣
i j
=

s

4
√

2πa

θ=π∫

θ=0

sinθ




ϕ=2π∫

ϕ=0

k2Ĝi j

8π
dϕ


dθ , (14)
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where~k = (k,φ ,θ) is the Fourier wavenumber vector in spher-

ical coordinates. Due to the symmetry of Ĝi j, the tensor
˜
ζ−1

is diagonal and equation (6) becomes

~̃F =−s




ζ̃|| 0 0

0 ζ̃⊥ 0

0 0 ζ̃⊥


 ·~̃u0, (15)

where ζ̃‖ and ζ̃⊥ are respectively the components of the re-

sponse function in the directions parallel and perpendicular to

~n. Their general form is provided in Appendix A (equations

46 and 47) together with its singularities and Taylor expansion

around the isotropy point.

The influence of the parameter α̃∗
1 in the response function

has been shown to be weak compared to that of the other coef-

ficients26, and its value has been measured to be very small for

many nematic materials43–47. Thus, we focus on the limit case

α̃∗
1 → 0, for which the principal components of the response

function are defined by

sζ̃||
∣∣∣
α̃∗

1→0
=

4πa(G̃c − G̃b)

G̃c

G̃b

arctan
(√

G̃c/G̃b−1
)

√
G̃c/G̃b−1

−1

, (16)

sζ̃⊥
∣∣∣
α̃∗

1→0
=

8πa(G̃c − G̃b)

1−
arctan

(√
G̃c/G̃b−1

)

√
G̃c/G̃b−1

+ G̃c−G̃b

G̃a

arctan
(√

G̃c/G̃a−1
)

√
G̃c/G̃a−1

, (17)

which exclusively depend on the three generalized Miesowicz

shear moduli.

2.3 Particle-Particle Hydrodynamic Interactions in a Ne-

matic Complex Fluid

Consider two distant particles denoted α and β , embedded in

a nematic complex fluid as shown in Fig. 2, where aα and aβ

represent the particle radii,~rα,β is the vector that connects the

center of the particles, and ‖~rα,β‖≫ aα , aβ .

When particle β moves with velocity ~̃v 0
β it displaces the

fluid around itself and induces a velocity

~̃v I
α,β =

˜
G · ˜

ζ

8π
·~̃v 0

β (18)

on particle α . Contrary to the isotropic case, the induced

velocity depends not only on the distance between particles,

|~rα,β |, but also on the orientation of ~rα,β with respect to the

nematic director. Up to first order, the induced velocity will

create an additional drag force on particle α ,

~̃Fα =− ˜
ζ ·


~̃v 0

α +

˜
G

8π
· ˜
ζ ·~̃v 0

β


 . (19)

!n

x3 = z

x1 = x

x2 = y

!Fα

!vα

!vβ

!Fβ

!rα,β

aα

aβ

Fig. 2 Hydrodynamic interaction between two particles separated

by a vector~rα,β .

Reciprocally, the total velocity of particle α is

~̃vα =− ˜
ζ−1 · ~̃F 0

α −
˜
G

8π
· ~̃F 0

β . (20)

The dependence between the velocities and drag forces of

both particles can be expressed in matrix form38 as




~̃Fα

~̃Fβ


=− ˜

Z ·




~̃vα

~̃vβ


 , (21)

where
˜

Z (~r;s) is the multiparticle resistance tensor and its in-

verse is the multiparticle mobility tensor. When the two par-

ticles are far apart from each other their long range interac-

tion is very weak, and each particle’s self-induced drag force

dominates over their mutually-induced force. In that case, the

resistance and mobility tensors up to first order become

˜
Z ≈




˜
ζ

˜
ζ · ˜

G · ˜
ζ/8π

˜
ζ · ˜

G · ˜
ζ/8π

˜
ζ


 (22)

and

˜
Z

−1 ≈




˜
ζ−1 ˜

G /8π

˜
G /8π

˜
ζ−1


 . (23)

This result is essential to derive D2PTM formulae in §2.5 be-

low. To this end, it is necessary to transform the Fourier ex-

pressions (10)-(11) of the Green’s function back into the phys-

ical domain. For a nematic fluid, it is sufficient to obtain the
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inverse transform particularized at z = 0 due to the axial sym-

metry of the nematic configuration. To exploit this symmetry,

we work on the plane defined by~n and~rα,β and apply a simple

rotation of the coordinate system to transform this plane into

z = 0. The general form G (x,y,z = 0) is given in Appendix B

(equations 58-63), along with its singularities and Taylor ex-

pansion around the isotropy condition. In the limit α̃∗
1 → 0,

the components of the Green’s function are

G̃11

s

∣∣∣z=0
α̃∗

1→0

=
2

G̃b − G̃c


 1√

x2 + y2
− G̃c

G̃b

1√
x2 + G̃c

G̃b
y2


 ,

(24)

G̃12

s

∣∣∣z=0
α̃∗

1→0

=
2

G̃b − G̃c

x

y


 −1√

x2 + y2
+

1√
x2 + G̃c

G̃b
y2


 , (25)

G̃22

s

∣∣∣z=0
α̃∗

1→0

=
2

G̃b − G̃c

x2

y2


 1√

x2 + y2
− G̃b

G̃c

1√
x2 + G̃c

G̃b
y2

+
1

x2

(
G̃b

G̃c

−1

)√
x2 +

G̃c

G̃a

y2


 , (26)

G̃33

s

∣∣∣z=0
α̃∗

1→0

=
2

G̃b − G̃c

1

y2


−
√

x2 + y2 +
G̃b

G̃c

√
x2 +

G̃c

G̃b

y2

−
(

G̃b

G̃c

−1

)
x2

√
x2 + G̃c

G̃a
y2


 . (27)

2.4 Directional One-Point Particle Tracking Microrhe-

ology: An Undetermined Problem

The Einstein relation between the one-dimensional mean

squared displacements (MSD) of a particle undergoing Brow-

nian motion and its hydrodynamic drag is

ζ̃ =
2kBT

s2〈∆x(0),∆x̃(s)〉 , (28)

where kB is the Boltzmann constant, T the temperature and

〈∆x(0),∆x̃(s)〉 the Laplace transform of the MSD4,48. Using

the results derived in §2.1–2.2, this Einstein equation can be

adapted to describe the motion of a particle embedded in a

nematic complex fluid.

In the principal directions defined by ~n and its orthogonal

plane, the response function tensor is diagonal (see equation

15). Thus, the MSD measured in these principal directions are

independent of each other (zero cross-correlation) and equa-

tion (28) can be applied separately along each principal direc-

tion12,20,21, yielding

6πaG̃eff,|| = sζ̃|| =
2kBT

s〈∆x||(0),∆x̃||(s)〉
, (29)

6πaG̃eff,⊥ = sζ̃⊥ =
2kBT

s〈∆x⊥(0),∆x̃⊥(s)〉
. (30)

However, it is important to note that these two equations to-

gether with (16)-(17), are not sufficient to determine the three

Miesowicz shear moduli G̃a, G̃b and G̃c
26. The next section

shows that analyzing the correlated motion of pairs of distant

particles resolves this indetermination.

2.5 Directional Two-Point Particle Tracking Microrhe-

ology

Consider two distant particles whose coordinates and veloc-

ity components are represented by xα,i and vα,i in a Cartesian

coordinate system with its x1 = x|| direction parallel to ~n, its

x2 = x⊥ direction contained in the plane defined by the two

particles and~n, and the x3 = z direction perpendicular to said

plane (see Fig. 2). The two particles are thus contained in the

plane z = 0 and equations (24)-(27) hold. Following Squires

and Mason38, we obtain that

〈∆xα,i(0),∆x̃β , j(s)〉=
2kBT

s2

[
Z̃

−1(~rα,β ;s)
]

i, j
, (31)

where
˜

Z (~r;s) is the multiparticle resistance tensor derived

in §2.3, whose inverse is given in equation (23). The upper

left and lower right blocks of (23) provide the one-point di-

rectional PTM formula derived by Gómez-González and del

Álamo26 (summarized in §2.4). The off-diagonal blocks of

the tensor provide the two-point formulae

〈∆xα,i(0),∆x̃β , j(s)〉=
kBT

4πs2
G̃i j, α 6= β . (32)

This symmetric tensor relation offers six equations for G̃a,

G̃b and G̃c but these equations are not linearly independent.

The tensorial incompressibility condition ∇ ·G =~0 establishes

three constraints on the elements of G̃i j, effectively reducing

the number of independent equations in (32) to three.

In the ideal experimental scenario where one could mea-

sure 3D particle displacements as a function of time, it would

be convenient to use the diagonal equations of (32) to calcu-

late the Miesowicz shear moduli from the measured two-point

mobility tensor. However, typical experiments only provide

accurate measurements of 2D particle displacements. In this

scenario, it is still possible to calculate the three Miesowicz

shear moduli from the equations corresponding to G̃11, G̃12

and G̃22, but it is advisable to precondition the equations as

described below to minimize numerical error.
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Track Particles

Calculate one-point MSD

Calculate

Principal Directions

Calculate two-point MSD

in Principal Directions

Iteratively solve

equations (33)-(35)

G̃a(s)
G̃b(s)
G̃c(s)

Fig. 3 Flow diagram summarizing the D2PTM analysis procedures.

The cross-correlated displacements in the left hand side of

(32) have very low values due to the low energy and long

range of the particle-particle interactions. Thus, it is neces-

sary to compile averages over a large number of particle pairs

to obtain statistically meaningful results. But since G̃i j ∼ r−1
α,β ,

the averaging procedure converges faster if equation (32) is

renormalized by rα,β . Additionally, G̃12 is typically much

smaller than G̃11 and G̃22, which can lead to numerical er-

rors when jointly solving the three equations. Considering

that G̃12 ∼ x/(y
√

x2 + y2), we use this factor to renormalize

the corresponding equation. The resulting system of equations

for the calculation of the Miesowicz shear moduli is

∑
α,β

rα,β 〈∆xα,||(0),∆x̃β ,||(s)〉=
kBT

4πs2
· ∑

α,β

rα,β G̃11(~r;s),

(33)

∑
α,β

y

x
rα,β 〈∆xα,||(0),∆x̃β ,⊥(s)〉=

kBT

4πs2
· ∑

α,β

y

x
rα,β G̃12(~r;s),

(34)

∑
α,β

rα,β 〈∆xα,⊥(0),∆x̃β ,⊥(s)〉=
kBT

4πs2
· ∑

α,β

rα,β G̃22(~r;s),

(35)

where α and β represent every possible particle pair in the

experimental domain. Equations (33)-(35) form a non-linear

system that must be solved iteratively for each Laplace fre-

quency. In this system, kB is a physical constant, s is a param-

eter of the problem, while T ,~rα,β and ∆xi, j are experimental

measurements, and G̃i, j are provided by equations (24)-(27).

Once the experimental measurements are defined, the only

three unknowns of the problem are G̃a, G̃b and G̃c.

Fig. 3 presents a flow chart summarizing the D2PTM anal-

ysis. We first track the embedded probing particles in two

orthogonal directions x and y that define a plane containing

the director of the fluid, ~n. We then calculate the ensemble

averaged MSD, i.e. 〈∆x2(τ)〉, 〈∆y2(τ)〉 and 〈∆x,∆y(τ)〉. From

these data, we calculate their principal directions x|| and x⊥,

i.e. the two orthogonal directions where the cross-MSD term

〈∆x||,∆x⊥(τ)〉 is zero (down to experimental error). Then, we

calculate the two-point MSD of each particle pair in principal

directions and solve equations (33)-(35) to obtain the values

of G̃a(s), G̃b(s) and G̃c(s).

3 Materials and Methods

3.1 Experimental Methods

3.1.1 Sample preparation

3.1.1.1 Nematic F-actin solutions: F-actin samples were

prepared following well-established protocols21,49. Pre-

formed actin filaments from rabbit skeletal muscle were pur-

chased from Cytoskeleton, Inc. (Denver, CO). This F-actin

mixture was diluted in Milli-Q water at room temperature to

a concentration of 0.4 mg/ml. The resulting F-actin solution

contained 5 mM Tris−HCl pH 8.0, 0.2 mM CaCl2, 0.2 mM

ATP, 2 mM MgCl2 and 5% (w/v) sucrose. The samples were

incubated for 10 minutes at room temperature, allowing the

filaments to completely dissociate from each other. In order

to protect the samples from bacterial growth, ampicillin was

added to a final concentration of 100 µg/ml. The salt con-

centration of the buffer produces an average filament length

of 8 µm, which is substantially smaller than the persistence

length of F-actin, ξp ∼ 20 µm50. Thus, the actin filaments in

our experiments can be safely assumed to be straight. To in-

duce the nematic transition of the samples, the F-actin concen-

tration was increased to 4 mg/ml while keeping constant the

salt concentration and filament length by dialyzing the sam-

ple, i.e. the sample was centrifuged at 2,000 g and 19◦C in an

Amicon Ultra-4 Centrifugal Filter Unit (EMD Millipore, Bil-

lerica, MA) until the target concentration was reached. The

protein concentration was monitored using a spectrophotome-

ter to measure the absorbance at 650 nm.

Carboxylate modified red latex beads with 0.5 µm nominal

diameter (Fluospheres, Invitrogen, Carlsbad CA) were diluted

in the supernatant solution and then added to the protein solu-

tion. The surface chemistry of the probing particles is not de-

terminant for the experiments, given that the near-field effects

are negligible for the two-point particle tracking microrheol-

ogy experiments. Likewise, the particle size is also not im-

portant, as long as the interparticle separation is much larger

than the particle radii17. The protein solution with beads was

stored at 4◦C for no longer than a week. Rectangular capil-

lary tubes with internal dimensions 0.1 mm × 1 mm × 50 mm

(VitroCom, Mountain Lakes, NJ) were filled through capillar-

ity with the protein solution. The filling flow provides enough
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its major axis aligned along the nematic, consistent with the

anisotropic rheological properties of the simulated fluid.

3.2.2 Numerical implementation of Laplace trans-

forms

Laplace transforms were calculated using the Fast Laplace

Transform (FLT) approach66. The FLT is based on the ob-

servation that the complex Laplace frequency s is related to

the Fourier frequency ω as s = c + iω , so that the Laplace

transform can be calculated by using the coefficients of the

Fast Fourier Transform. We used an efficient implementation

of the Fast Fourier Transform called the FFTW67,68. The ac-

curacy of the FLT was characterized as a function of the free

frequency parameter c66, being c = 4π/T the optimal value,

which we employed throughout the simulations. We found the

errors introduced by the FLT for the specific data of our sim-

ulations to be ∼ 10−6%69. We dismissed the implementation

of an improved Talbot approximation to the Inverse Laplace

Transform70–72 because, while it would provide a smoother

result, it is singular at τ = 0.

4 Validation of D2PTM

In order to assess the feasibility and accuracy of D2PTM, we

applied this new technique to measure the directional viscosi-

ties of a lyotropic chromonic nematic liquid crystal73, and

compared the results with reference values available in the lit-

erature52. Existing methods to measure the anisotropic rhe-

ology of liquid crystals typically assume constant viscosity

coefficients. However, other complex fluids may exhibit non-

trivial frequency dependence in their shear moduli, with both

elastic and viscous components. In order to assess the capac-

ity of D2PTM to capture these effects in nematic fluids, we

also tested this technique in numerically simulated directional

viscoelastic gels.

4.1 D2PTM of a lyotropic nematic liquid crystal

Water based liquid crystals such as disodium cromoglycate

(DSCG)52,73 are a convenient benchmark for D2PTM since

the probing microparticles are easily available as a water sus-

pension. DSCG is a lyotropic chromonic nematic liquid crys-

tal that has recently sparked attention due to its biocompati-

bility51 and other interesting properties74. We chose DSCG

because its directional viscosity coefficients were previously

characterized by means other than D2PTM. Zhou et al. 52

measured the twist viscosity (ηtwist ) of DSCG, as well as its

splay (ηsplay) and bend (ηbend) viscosities. These coefficients

can be used to calculate two of the Miesowicz viscosities mea-

sured by D2PTM, namely ηb and ηc
33, by solving the equa-

14 wt%

(Pa s) Zhou et al. D2PTM PTM

ηa n.a. 0.032 ± 0.001 n.a.

ηb 0.008 ± 0.002 0.011 ± 0.002 n.a.

ηc 3.2 ± 0.8 2.0 ± 0.3 n.a.

ηe f f ,|| n.a. n.a 0.08 ± 0.005

ηe f f ,⊥ n.a. n.a 0.35 ± 0.01

16 wt%

(Pa s) Zhou et al. D2PTM PTM

ηa n.a. 0.04 ± 0.02 n.a.

ηb 0.011 ± 0.002 0.015 ± 0.001 n.a.

ηc 20 ± 5 24 ± 2 n.a.

ηe f f ,|| n.a. n.a 0.13 ± 0.009

ηe f f ,⊥ n.a. n.a 0.8 ± 0.016

Table 1 Miesowicz viscosity coefficients of a 14 wt% and a 16 wt%

nematic DSCG solution, as measured by Zhou et al. (left column)

and by using D2PTM (center column). Effective viscosity

coefficients obtained by applying Directional One-Point PTM (right

column). All viscosity coefficients were calculated for frequencies

around 1 Hz.

tions:

ηsplay = ηtwist −α2
3/ηb, (42)

ηtwist = α3 −α2, (43)

ηbend = ηtwist −α2
2/ηc, (44)

ηb −ηc = α2 +α3. (45)

Table 1 displays the values of ηb and ηc calculated from

by Zhou et al. ’s measurements for two DSCG concentrations

(14 wt% and 16 wt%). We prepared DSCG samples at these

two concentrations as detailed in §3.1.1.2, and particle motion

was imaged as explained in §3.1.2. Then, the motions of the

probing particles were analyzed following our new D2PTM

protocol, which is described in §2.5.

Fig. 7(a) shows the principal MSDs measured for probing

microparticles immersed in a nematic 16 wt% DSCG solution.

Due to the dominantly viscous nature of this fluid, the MSDs

vary almost linearly with τ and the curves have a roughly unit

slope for τ < 100s. However, the slopes are not exactly one,

and they are different along different directions, suggesting

that the DSCG is, as expected, not completely viscous. Any-

how, given that there is not data available in the literature to

compare with the measurement of the elastic response of the

DSCG solutions, we will only regard the viscous part of its di-

rectional shear moduli. At longer time scales, the MSDs man-

ifested a departure from linear slope, probably due to incom-

plete statistical convergence. Consistent with this explanation,

the standard deviation of the MSDs increased significantly for

τ > 100s, and we observed a similar long-time behavior for
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one-point PTM, makes an important contribution to the mi-

crorheology of nematic F-actin solutions. More importantly,

the one-point data would suggest that G′′
eff,|| < G′′

eff,⊥ despite

that G′′
|| > G′′

⊥ (Fig. 13a), implying that one-point PTM may

fail to identify the direction of maximum viscosity in nematic

complex fluids. Additionally, one-point PTM underestimates

G′
⊥ while it overestimates G′

|| (Fig. 13b), thus severely under-

predicting the level of anisotropy in the elastic response of

nematic F-actin solutions.

6 Discussion and Conclusion

Soft viscoelastic materials often exhibit microstructural align-

ment along a common direction leading to anisotropic rhe-

ological properties. Liquid crystals75, nematic viscoelas-

tomers76, the cell cytoplasm12,77, and the extracellular ma-

trix78 are examples of nematic soft materials. For small dis-

tortions of the nematic direction field (i.e. low Ericksen num-

ber limit), the anisotropic rheology of nematic complex fluids

can be approximately described by three frequency-dependent

Miesowicz complex shear moduli26,79,80. These coefficients

can be macroscopically measured by subjecting the sample to

simple shear in different geometrical configurations81,82, by

propagating ultrasound waves or electromagnetic fields, and

by light scattering techniques83. However, there is a lack

of microscopic methods to characterize the rheological prop-

erties of nematic complex fluids. This paper introduces a

novel particle tracking microrheology method to address this

limitation: directional two-point particle tracking microrheol-

ogy (D2PTM). Compared to existing macroscopic methods,

D2PTM can be applied to minute samples and involves a sim-

ple experimental setup.

The theoretical foundation of D2PTM is established by ex-

tending previous analyses of nematic flow around a microrhe-

ological probe26. We determine the mutual hydrodynamic

interactions between pairs of distant particles immersed in a

nematic complex fluid, and we use this knowledge to gen-

eralize two-point particle-tracking microrheology17 to these

soft materials. This new analysis allows for calculating the

three Miesowicz shear moduli from the measured cross-MSD

of particle pairs. Further work would be needed to extend this

derivation to smectic or cholesteric phases.

In order to experimentally validate D2PTM, we applied this

new technique to disodium cromoglycate (DSCG), a lyotropic

nematic liquid crystal whose directional viscosity coefficients

were recently measured by dynamic light scattering meth-

ods52. These validation experiments suggest that D2PTM

measurements agree well with measurements from previous

methods. D2PTM was validated further by simulating the

Brownian motion of spheres embedded in a nematic complex

fluid with prescribed frequency-dependent Miesowicz shear

moduli. We then applied the D2PTM analysis to the trajecto-

ries of the particles and recover the Miesowicz moduli, which

resulted to be in close agreement with the prescribed ones.

To demonstrate the experimental application of D2PTM to

nematic complex fluids with viscoelastic anisotropic rheology,

we perform particle-tracking experiments on F-actin solutions

where the actin filaments are aligned by flow shear. The one-

point statistics of particle motion obtained in our experiments

are consistent with those previously reported for similar F-

actin solutions21. Moreover, D2PTM provides direct infor-

mation about the microstructure of the material that is not

accessible from one-point measurements of particle mobility.

Specifically, we observed that the microrheological response

of F-actin solutions is predominantly viscous in the direction

parallel to ~n probably due to filament-solvent sliding, while

their response is predominantly elastic in the perpendicular

direction due to fiber distortions and fiber bending. This two-

point analysis of particle trajectories revealed important dif-

ferences between the true material shear moduli of nematic

F-actin solutions, and the so-called effective shear moduli de-

rived by previous one-point analyses12,20,21. In addition to not

being able to capture the rotational shear modulus of the ne-

matic, one-point PTM may incorrectly determine the direction

of maximum viscosity in nematic F-actin solutions, and may

underestimate the anisotropy in their elastic response. There-

fore, further experimental studies on the relation between the

microstructure of F-actin and other viscoelastic nematic solu-

tions and their micro- and macroscopic mechanics will greatly

benefit from D2PTM.

Because hydrodynamic interactions between distant parti-

cles are weak, two-point PTM typically requires a large num-

ber of particle tracks in order to achieve statistically converged

measurements of cross-correlated particle motion. D2PTM is

no exception to this rule, especially for the cross-correlation

of particle motion along orthogonal directions (e.g. motion of

particle α in || direction with motion of particle β in ⊥ di-

rection, see Figs. 7b, 8b and 11b). However, proper normal-

ization of the D2PTM equations (33)–(35) can significantly

accelerate statistical convergence. Our experiments provide

a quantification of the standard deviation of cross-MSD and

shear modulus measurements in D2PTM experiments. This

quantification could be used in designing future experiments

to estimate the number of particle pairs necessary to achieve a

given error in the estimation of a sample’s mean shear moduli

(i.e. the standard error). In the case of our 16 wt%-DSCG,

14 wt%-DSCG and F-actin experiments with 3,315, 816 and

6,105 particle pairs respectively, the errors in the samples’

mean shear moduli are expected to be negligible.

The theoretical framework employed here to develop

D2PTM is based on a number of simplifications that could

potentially limit the applicability of this new microrheology

technique. Specifically, we work with a continuum incom-
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pressible formulation that assumes small deformations. Thus,

the accuracy of D2PTM is expected to deteriorate in experi-

ments that cause large deformations, for strongly non-linear

materials, and for materials that are heterogeneous at the

length scale of the distance between particle pairs. It is im-

portant to note, however, that these simplifications are com-

mon to most if not all existing PTM methods4. For materials

that are partially compressible84, the Poisson’s ratio should be

taken into consideration and the theoretical framework should

be modified following an approach similar to that of Levine

and Lubensky15.

An additional important simplification made in this work is

that the orientation of the nematic director remains uniform

over the length scale of the inter-particle distance. This as-

sumption is reasonable in the present experiments. Actin fila-

ments are externally aligned as part of the sample preparation,

and their persistence length ξp is approximately twice their

total length and 80 times the particle radius. The assumption

of uniform nematic orientation can be particularly delicate in

the vicinity of the particle due to surface effects85. Likewise,

when probing polymer solutions with ξp ≫ a the particle may

alter the local orientation of filaments near itself86. However,

these near-field effects have a negligible influence on the hy-

drodynamic interaction of pairs of distant particles, and thus

the ability of D2PTM to quantify the bulk response of the fluid

remains largely unaffected15. Furthermore, D2PTM is robust

with respect to errors in the direction of the nematic director

(see Appendix C).

Distortions of the nematic orientation could be incorporated

into the D2PTM analysis by considering static non-uniform

nematic fields that include defects near the particle surface79.

Alternatively, the dynamics of the nematic director could be

solved taking into account its Frank elasticity constants87, or

using the Poisson-bracket approach88. Nonetheless, these re-

finements would introduce additional material parameters un-

known a priori, and a two-particle protocol would be insuf-

ficient to determine these new parameters together with the

Miesowicz shear moduli.

In conclusion, we have developed a new directional two-

point particle tracking microrheology method (D2PTM) that

provides important new information about the anisotropic vis-

coelastic response of nematic complex fluids, which had been

unaccessible to currently available microrheology techniques.
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Equations (49)-(50) present other singularities, for different

combinations of G̃a, G̃b and G̃c, with finite limits:

sζ̃||
∣∣∣α̃∗

1=0

G̃b=G̃c

= 6πaG̃c, (54)

sζ̃⊥
∣∣∣α̃∗

1=0

G̃a=G̃c

=
8πa(G̃c − G̃b)

2− G̃b

G̃c
−

arctan
(√

G̃c/G̃b−1
)

√
G̃c/G̃b−1

, (55)

sζ̃⊥
∣∣∣α̃∗

1=0

G̃b=G̃c

=
24πaG̃a

G̃a

G̃c
+3

arctan
(√

G̃c/G̃a−1
)

√
G̃c/G̃a−1

, (56)

sζ̃⊥
∣∣∣α̃∗

1=0

G̃a=G̃b=G̃c

= 6πaG̃c. (57)

B Two-particle response function

This appendix provides the general form of the components of

the hydrodynamic interaction tensor
˜
G (~r;s) (see equation 18)

of pairs of distant particles moving in a directional complex

fluid, calculated as the inverse Fourier transform of equations

(10)-(11) when both particles are located in the same plane z=
0. For the sake of completeness, we also provide the Green’s

function for the pressure, i.e. the inverse Fourier transform of

(9).

The hydrodynamic interaction tensor in a nematic complex

fluid, with general values of the shear moduli α∗
1 , G̃a, G̃b and

G̃c, is given by

G̃11

s

∣∣∣
z=0

=

√
2

eb

(
d + ex2

√
c− ey2

− d − ex2

√
c+ ey2

)
, (58)

G̃12

s

∣∣∣
z=0

=
G̃21

s

∣∣∣
z=0

=

√
2

eb

x

y

(√
c+ ey2 −

√
c− ey2

)
, (59)

G̃13

s

∣∣∣
z=0

=
G̃31

s

∣∣∣
z=0

= 0, (60)

G̃22

s

∣∣∣
z=0

=

√
2

Gcy2

[
√

2

√
x2 +

Gc

Ga

y2

+
1

eb
·
(

m−√
c− ey2

− m+√
c+ ey2

)]
, (61)

G̃23

s

∣∣∣
z=0

=
G̃32

s

∣∣∣
z=0

= 0, (62)

G̃33

s

∣∣∣
z=0

=

√
2

Gcy2


−

√
2x2

√
x2 + Gc

Ga
y2

+
b

e
·
(

n+√
c+ ey2

− n−√
c− ey2

)]
, (63)

where x, y and z are the coordinates of the particle-particle sep-

aration in the Cartesian coordinate system defined in Fig. 2,

and

b(~µ;~r) =
√(

α̃∗
1 + G̃b + G̃c

)
x2y2 + G̃bx4 + G̃cy4,

c(~µ;~r) =
(
α̃∗

1 + G̃b + G̃c

)
y2 +2G̃bx2,

d (~µ;~r) =
(
α̃∗

1 + G̃b + G̃c

)
x2 +2G̃cy2,

e(~µ) =

√(
α̃∗

1 + G̃b + G̃c

)2 −4G̃bG̃c,

m+ (~µ;~r) = (c−Gbx2)(d + ex2 −2Gcy2)−2GbGcx2y2,

m− (~µ;~r) = (c−Gbx2)(d − ex2 −2Gcy2)−2GbGcx2y2,

n+ (~µ;~r) = α̃∗
1 + G̃b + G̃c + e,

n− (~µ;~r) = α̃∗
1 + G̃b + G̃c − e.

It should be noted here that all (58), (59), (61) and (63)

depend on G̃b and G̃c, while only (61) and (63) depend on G̃a.

The Green’s function for the pressure has the form

P̃1

∣∣∣
z=0

=
2
√

2x

eb3

[
Gc

(
3G̃bh+ ly4

)
(

1√
c+ ey2

− 1√
c− ey2

)

−Gb

(
q−

(c+ ey2)3/2
− q+

(c− ey2)3/2

)]
, (64)

P̃2

∣∣∣
z=0

=
2
√

2y

eb3

[
Gc

(
3G̃bh+ ly4

)
(

1√
c+ ey2

− 1√
c− ey2

)

−Gb

(
q−

(c+ ey2)3/2
− q+

(c− ey2)3/2

)]
, (65)

P̃3

∣∣∣
z=0

= 0, (66)

where

h(~µ;~r) =
(
α̃∗

1 − G̃a + G̃b + G̃c

)
x2y2 + G̃bx4 + G̃cy4,

l (~µ) =
(
α̃∗

1 − G̃a + G̃b + G̃c

)(
α̃∗

1 + G̃b + G̃c

)
−4G̃bG̃c,

p(~µ;~r) = 2G̃cy2
[(

h+2G̃bx4
)(

α̃∗
1 + G̃b + G̃c

)

+ G̃cy2
(
2G̃bx2 − G̃ay2

)]
,

q+ (~µ;~r) = p+ G̃bx6
(
G̃am++4G̃bG̃c

)
,

q− (~µ;~r) = p+ G̃bx6
(
G̃am−+4G̃bG̃c

)
,

For a complex fluid with α̃∗
1 = 0, equations (58)-(65) are

simplified into:

G̃11

s

∣∣∣z=0
α̃∗

1=0

=
2

G̃b − G̃c


 1√

x2 + y2
− G̃c

G̃b

1√
x2 + G̃c

G̃b
y2


 ,

(67)
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G̃12

s

∣∣∣z=0
α̃∗

1=0

=
2

G̃b − G̃c

x

y


 −1√

x2 + y2
+

1√
x2 + G̃c

G̃b
y2


 , (68)

G̃22

s

∣∣∣z=0
α̃∗

1=0

=
2

G̃b − G̃c

x2

y2


 1√

x2 + y2
− G̃b

G̃c

1√
x2 + G̃c

G̃b
y2

+
1

x2

(
G̃b

G̃c

−1

)√
x2 +

G̃c

G̃a

y2


 , (69)

G̃33

s

∣∣∣z=0
α̃∗

1=0

=
2

G̃b − G̃c

1

y2


−
√

x2 + y2 +
G̃b

G̃c

√
x2 +

G̃c

G̃b

y2

−
(

G̃b

G̃c

−1

)
x2

√
x2 + G̃c

G̃a
y2


 , (70)

P̃1

∣∣∣z=0
α̃∗

1=0

=
2x

G̃b − G̃c

(
G̃a − G̃c

(x2 + y2)3/2
− G̃c

G̃b

G̃a − G̃b(
x2 + G̃c

G̃b
y2
)3/2

)
,

(71)

P̃2

∣∣∣z=0
α̃∗

1=0

=
2y

G̃b − G̃c

(
G̃a − G̃c

(x2 + y2)3/2
− G̃c

G̃b

G̃a − G̃b(
x2 + G̃c

G̃b
y2
)3/2

)
.

(72)

For nearly isotropic complex fluids, the particle-particle in-

teraction can be approximated by its Taylor expansion around

α̃∗
1 = 0 and G̃a = G̃b = G̃c = G̃ as

G̃G̃11

s

∣∣∣
z=0

≈ 2x2 + y2

(x2 + y2)3/2
− y2

8

8x4 +4x2y2 + y4

(x2 + y2)7/2

α̃∗
1

G̃

− 1

4

8x4 +8x2y2 +3y4

(x2 + y2)5/2

(
G̃b

G̃
−1

)

− y2

4

4x2 + y2

(x2 + y2)5/2

(
G̃c

G̃
−1

)
, (73)

G̃G̃12

s

∣∣∣
z=0

≈ xy

[
1

(x2 + y2)3/2
− y2

8

6x2 + y2

(x2 + y2)7/2

α̃∗
1

G̃

−1

4

4x2 + y2

(x2 + y2)5/2

(
G̃b

G̃
−1

)

−3

4

y2

(x2 + y2)5/2

(
G̃c

G̃
−1

)]
, (74)

G̃G̃22

s

∣∣∣
z=0

≈ x2 +2y2

(x2 + y2)3/2
− 5

8

x2y4

(x2 + y2)7/2

α̃∗
1

G̃

− 1√
x2 + y2

(
G̃a

G̃
−1

)

− 3

4

x2y2

(x2 + y2)5/2

(
G̃b

G̃
−1

)

− y2

4

x2 +4y2

(x2 + y2)5/2

(
G̃c

G̃
−1

)
, (75)

G̃G̃33

s

∣∣∣
z=0

≈ 1√
x2 + y2

− 1

8

y4

(x2 + y2)5/2

α̃∗
1

G̃

− x2

(x2 + y2)3/2

(
G̃a

G̃
−1

)

− 1

4

y2

(x2 + y2)3/2

(
G̃b

G̃
−1

)

− 3

4

y2

(x2 + y2)3/2

(
G̃c

G̃
−1

)
, (76)

P̃1

∣∣∣
z=0

≈ x

(x2 + y2)3/2

[
2− 3

4

4x2 − y2

(x2 + y2)2
y2 α̃∗

1

G̃

+
2x2 − y2

x2 + y2

(
G̃a

G̃
−1

)
+

2x2 − y2

x2 + y2

(
G̃b

G̃
−1

)]
,

(77)

P̃2

∣∣∣
z=0

≈ y

(x2 + y2)3/2

[
2− 3

4

4x2 − y2

(x2 + y2)2
y2 α̃∗

1

G̃

+
2x2 − y2

x2 + y2

(
G̃a

G̃
−1

)
+

2x2 − y2

x2 + y2

(
G̃b

G̃
−1

)]
.

(78)

Equations (58)-(65) are also singular for other combinations of

the viscoelasticity parameters. Here we list their limit values.

For α̃∗
1 = α̃ =−

(√
G̃b −

√
G̃c

)2

, we have:

G̃11

s

∣∣∣z=0
α̃∗

1=α̃

=
1

G̃b

2x2 +
√

G̃c

G̃b
y2

(
x2 +

√
G̃c

G̃b
y2
)3/2

, (79)

G̃12

s

∣∣∣z=0
α̃∗

1=α̃

=
1

G̃b

xy
(

x2 +
√

G̃c

G̃b
y2
)3/2

, (80)

G̃22

s

∣∣∣z=0
α̃∗

1=α̃

=
1

G̃cy2

(
2

√
x2 +

G̃c

G̃a

y2 − x2
2x2 +3

√
G̃c

G̃b
y2

(
x2 +

√
G̃c

G̃b
y2
)3/2

)
,

(81)
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G̃33

s

∣∣∣z=0
α̃∗

1=α̃

=
1

G̃cy2

(
−2x2

√
x2 + G̃c

G̃a
y2

+
2x2 +

√
G̃c

G̃b
y2

√
x2 +

√
G̃c

G̃b
y2

)
, (82)

P̃1

∣∣∣z=0
α̃∗

1=α̃

=
x

G̃b

(
x2 +

√
G̃c

G̃b
y2
)5/2

[

3G̃cy2 + G̃a

√
G̃c

G̃b

y2
5x4 − G̃c

G̃b
y4

(
x2 +

√
G̃c

G̃b
y2
)2

+2G̃ax4
x4 − G̃c

G̃b
y4

(
x2 +

√
G̃c

G̃b
y2
)3

]
, (83)

P̃2

∣∣∣z=0
α̃∗

1=α̃

=
y

G̃b

(
x2 +

√
G̃c

G̃b
y2
)5/2

[

3G̃cy2 + G̃a

√
G̃c

G̃b

y2
5x4 − G̃c

G̃b
y4

(
x2 +

√
G̃c

G̃b
y2
)2

+2G̃ax4
x4 − G̃c

G̃b
y4

(
x2 +

√
G̃c

G̃b
y2
)3

]
. (84)

For α̃∗
1 = α̃ =−

(√
G̃b +

√
G̃c

)2

:

G̃11

s

∣∣∣z=0
α̃∗

1=α̃

=
1

G̃b

2x2 −
√

G̃c

G̃b
y2

(
x2 −

√
G̃c

G̃b
y2
)3/2

, (85)

G̃12

s

∣∣∣z=0
α̃∗

1=α̃

=
1

G̃b

xy
(

x2 −
√

G̃c

G̃b
y2
)3/2

, (86)

G̃22

s

∣∣∣z=0
α̃∗

1=α̃

=
1

G̃cy2

(
2

√
x2 +

G̃c

G̃a

y2

− x2
2x2 −3

√
G̃c

G̃b
y2

(
x2 −

√
G̃c

G̃b
y2
)3/2

)
, (87)

G̃33

s

∣∣∣z=0
α̃∗

1=α̃

=
1

G̃cy2

(
−2x2

√
x2 + G̃c

G̃a
y2

+
2x2 −

√
G̃c

G̃b
y2

√
x2 −

√
G̃c

G̃b
y2

)
, (88)

P̃1

∣∣∣z=0
α̃∗

1=α̃

=
x

G̃b

(
x2 −

√
G̃c

G̃b
y2
)5/2

[

3G̃cy2 − G̃a

√
G̃c

G̃b

y2
5x4 − G̃c

G̃b
y4

(
x2 −

√
G̃c

G̃b
y2
)2

+2G̃ax4
x4 − G̃c

G̃b
y4

(
x2 −

√
G̃c

G̃b
y2
)3

]
, (89)

P̃2

∣∣∣z=0
α̃∗

1=α̃

=
y

G̃b

(
x2 −

√
G̃c

G̃b
y2
)5/2

[

3G̃cy2 − G̃a

√
G̃c

G̃b

y2
5x4 − G̃c

G̃b
y4

(
x2 −

√
G̃c

G̃b
y2
)2

+2G̃ax4
x4 − G̃c

G̃b
y4

(
x2 −

√
G̃c

G̃b
y2
)3

]
. (90)

When α̃∗
1 = 0 and G̃b = G̃c:

G̃11

s

∣∣∣z=0
G̃b=G̃c

=
1

G̃c

2x2 + y2

(x2 + y2)3/2
, (91)

G̃12

s

∣∣∣z=0
G̃b=G̃c

=
1

G̃c

xy

(x2 + y2)3/2
, (92)

G̃22

s

∣∣∣z=0
G̃b=G̃c

=
1

G̃cy2

(
2

√
x2 +

G̃c

G̃a

y2 − x2 2x2 +3y2

(x2 + y2)3/2

)
,

(93)

G̃33

s

∣∣∣z=0
G̃b=G̃c

=
1

G̃cy2

(
2x2 + y2

√
x2 + y2

− 2x2

√
x2 + G̃c

G̃a
y2

)
, (94)

P̃1

∣∣∣z=0
G̃b=G̃c

=
x
[
2G̃a +3

(
G̃c − G̃a

)
y2

x2+y2

]

G̃c (x2 + y2)3/2
, (95)

P̃2

∣∣∣z=0
G̃b=G̃c

=
y
[
2G̃a +3

(
G̃c − G̃a

)
y2

x2+y2

]

G̃c (x2 + y2)3/2
. (96)

When α̃∗
1 = 0 and G̃a = G̃b = G̃c:

G̃22

s

∣∣∣z=0
G̃a=G̃b=G̃c

=
1

G̃c

x2 +2y2

(x2 + y2)3/2
, (97)

G̃33

s

∣∣∣z=0
G̃a=G̃b=G̃c

=
1

G̃c

1√
x2 + y2

, (98)

P̃1

∣∣∣z=0
G̃a=G̃b=G̃c

=
2x

(x2 + y2)3/2
, (99)
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P̃2

∣∣∣z=0
G̃a=G̃b=G̃c

=
2y

(x2 + y2)3/2
. (100)

Another singularity arises when y = 0, independently of the

viscoelasticity coefficients:

G̃12

s

∣∣∣z=0
y=0

= 0, (101)

G̃22

s

∣∣∣z=0
y=0

=
1

G̃ax
, (102)

G̃33

s

∣∣∣z=0
y=0

=
1

G̃ax
. (103)

C Influence of the uncertainty in the determi-

nation of the director

Prior to calculating directional shear moduli, it is necessary

to determine the orientation of the nematic director ~n from

the principal directions of the MSD matrix (see §2.5). This

process adds a potential source of error on top of the er-

ror associated to the value of the principal MSDs. To quan-

tify how errors in the orientation of ~n may affect the mea-

sured velocity Green’s function, G̃ ∗
i j, we calculate the devia-

tion ∆G̃i j = G̃ ∗
i j − G̃i j of this function from its exact value G̃i j,

when the orientation of~n has an error ∆θ .

We consider a nematic complex fluid, and a coordinate sys-

tem where x is aligned with the director. Two particles, α and

β are located, respectively, at the origin and at a location (x,y).
The plane z = 0 is defined by the location of the particles and

the director ~n, as in §2.3. In polar coordinates, the particle β
is located at (R,θ), where R is the distance between the par-

ticles, and θ is the angle between~n and the line that connects

both particles. Consistent with our D2PTM formulation, we

examine the case α∗
1 = 0, for which G̃i j is given in (67)-(72).

We focus on the components of the Green’s function used in

eqs. (33)–(35) to determine the Miesowicz shear moduli, and

we keep the normalization used in those equations (i.e.
y
x
G̃12

instead of G̃12). Up to first order in ∆θ , the relative error of

these components is

∆G̃11

G̃11

∣∣∣z=0
α̃∗

1=0

=

=

G̃c

G̃b

(
1− G̃c

G̃b

)
sinθ cosθ

(
cos2 θ + G̃c

G̃b
sin2 θ

)(
G̃c

G̃b
−
√

cos2 θ + G̃c

G̃b
sin2 θ

)∆θ ,

(104)

∆
(

y
x
G̃12

)
y
x
G̃12

∣∣∣z=0
α̃∗

1=0

=

=

(
1− G̃c

G̃b

)
sinθ cosθ

(
cos2 θ + G̃c

G̃b
sin2 θ

)(
1−
√

cos2 θ + G̃c

G̃b
sin2 θ

)∆θ ,

(105)

∆G̃22

G̃22

∣∣∣z=0
α̃∗

1=0

=

=

(
G̃b

G̃c
−1
)

sinθ
cosθ ∆θ

1−
G̃b
G̃c√

cos2 θ+ G̃c
G̃b

sin2 θ
+

(
G̃b
G̃c

−1

)√
cos2 θ+ G̃c

G̃a
sin2 θ

cos2 θ

·
(

− cos2 θ
(

cos2 θ + G̃c

G̃b
sin2 θ

)3/2
+2

√
cos2 θ + G̃c

G̃a
sin2 θ

cos2 θ
−

1− G̃c

G̃a√
cos2 θ + G̃c

G̃a
sin2 θ

)
− 2∆θ

cosθ sinθ
. (106)

We focus on the quasi-isotropic limit (i.e. when G̃a ≈ G̃b ≈
G̃c), in which the uncertainty in the determination of the ne-

matic director is expected to be highest. The relative error in

this limit is

∆
(
G̃11

)
(
G̃11

)
∣∣∣z=0
α̃∗

1=0

→−2sinθ cosθ

1+ cos2 θ
∆θ ,

∆
(

y
x
G̃12

)
(

y
x
G̃12

)
∣∣∣z=0
α̃∗

1=0

→ 2cotθ∆θ ,

∆
(
G̃22

)
(
G̃22

)
∣∣∣z=0
α̃∗

1=0

→ 2sinθ cosθ

1+ sin2 θ
∆θ . (107)

As expected, the relative error in G̃22 in the quasi-isotropic

limit is related to the error in G̃11 by a rotation θ → θ +π/2.

The leading order factor in both errors is bound by 0.71, so

that the errors remain small and of order ∆θ . The relative

error of
y
x
G̃12 becomes singular near the nematic axis θ = 0.

However, it is important to note that
y
x
G̃12 ∼ sin2 θ near the

nematic axis in the quasi-isotropic limit. Thus, the absolute

contributions to the error coming from this component of the

Green’s function are in fact negligible near the nematic axis.

In conclusion, this analysis suggest that deviations in the

orientation of the nematic director cause small relative errors

in the equations (33)–(35) used to determine the Miesowicz

shear moduli.
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