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Abstract

The dense packing of interacting particles on spheres has proved to

be a useful model for virus capsids and colloidosomes. Indeed, icosahe-

dral symmetry observed in virus capsids corresponds to potential energy

minima that occur for magic numbers of, e.g., 12, 32 and 72 identical

Lennard-Jones particles, for which the packing has exactly the minimum

number of twelve five-fold defects. It is unclear, however, how stable these

structures are against thermal agitation. We investigate this property by

means of basin-hopping global optimisation and Langevin dynamics for

particle numbers between ten and one hundred. An important measure
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is the number and type of point defects, that is, particles that do not

have six nearest neighbours. We find that small icosahedral structures

are the most robust against thermal fluctuations, exhibiting fewer excess

defects and rearrangements for a wide temperature range. Furthermore,

we provide evidence that excess defects appearing at low non-zero tem-

peratures lower the potential energy at the expense of entropy. At higher

temperatures defects are, as expected, thermally excited and thus en-

tropically stabilised. If we replace the Lennard-Jones potential by a very

short-ranged (Morse) potential, which is arguably more appropriate for

colloids and virus capsid proteins, we find that the same particle num-

bers give a minimum in the potential energy, although for larger particle

numbers these minima correspond to different packings. Furthermore, de-

fects are more difficult to excite thermally for the short-ranged potential,

suggesting that the short-ranged interaction further stabilises equilibrium

structures.

1 Introduction

Virus capsids1 and colloidosomes2 have been succesfully modelled as dense

packings of spherical particles constrained to a spherical surface, in particle-

based3–5 and phase-field calculations.6 The equilibrium packings follow from

the interplay between the curvature of the sphere and the interaction between

the particles. For fixed particle size and surface coverage, increasing the radius

of curvature of the surface leads to packings that exhibit varying numbers of

isolated point defects that, for large enough particle numbers, condense into

clusters of defects.6–11 Here, defects are particles that do not have the ideal six-

fold coordination. Studies of particles on unduloids and catenoids have shown

that for small particle numbers a Lennard-Jones potential produces different

minimum energy structures compared to a purely repulsive Coulomb poten-

tial, showing that the range and type of interaction also affect the geometry of

particle packings on curved surfaces.12 For packings on spherical surfaces, the
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minimum energy structures for N = 12, 24, 32, 44 and 48 particles are the same

for the Lennard-Jones and repulsive Coulomb potential, whereas for many other

sizes, including 72, these are different.13,14

In their study of why spherical viruses almost invariably exhibit icosahedral

symmetry, Zandi et al.4 found by Monte Carlo simulation of Lennard-Jones par-

ticles on a spherical surface that, if the particle number allows it, the equilibrium

packings do in fact have icosahedral symmetry. This effect occurs for the magic

numbers N = 12, 32 and 72, corresponding to T = 1, 3 and 7 icosahedral sym-

metry. By allowing a switch between larger and smaller particle sizes, modeling

pentameric and hexameric capsomeres, icosahedral symmetry is also recovered

for N = 42, which is the T = 4 structure. Fejer et al. studied a different model

of rigid bodies consisting of an attractive disk and two repulsive Lennard-Jones

axial sites on top and bottom. These sites induce a preferred curvature. In this

model, icosahedral packings turn out to be local potential energy minima for

N = 12, 32 and 72, but the T = 4 icosahedral zero temperature structure for

N = 42 is only a minimum energy structure if the disks assemble on top of a

template.15 In the single-particle description that we follow, all other particle

numbers give non-icosahedral structures, often with more than the minimum

required twelve five-fold point defects.

Apparently, even for a single particle size, the icosahedrally packed structures

have a lower potential energy per particle than the packings of adjacent sizes,

at least for the low non-zero temperatures considered.4 This result suggests

that viruses prefer icosahedral symmetry simply because it is the most optimal

packing for the effective interaction between the capsomeres. The Monte Carlo

simulations of Ref.4 are consistent with the zero-temperature simulated anneal-

ing studies of Lennard-Jones particles packings by Voogd,13 in the sense that

they recover potential energy minima at the same sizes. However, the latter

study provides more detail about the symmetry of all the packings found. In-

terestingly, Voogd identifies the global minimum for the N = 72 packing with a

D5h point group, rather than an icosahedral one, which is one of the structures
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that Zandi et al. identified at this size. This discrepancy could be due to the

non-zero temperature in the simulations of Zandi et al., hinting at the potential

importance of entropy. Indeed, our calculations of the potential energy for both

packings confirm that the D5h packing has lower potential energy while counter-

intuitively, the icosahedral packing with fewer defects is entropically stabilised

at a non-zero temperature. A similar finding is reported by Altschuler et al. for

the Thomson problem for N = 42.16

This analysis suggests that temperature could play an important role in

the thermodynamic stability of the symmetry of dense packings of particles

on a spherical surface. For non-zero temperature, minimum energy does not

imply minimum free energy. Indeed, our computer “experiments” reveal that

for certain numbers of Lennard-Jones particles confined to a spherical surface,

energy favours excess defects, i.e., these packings have more than twelve defects

for very low temperatures. Such energetically stabilised defects also appear for

the Thomson problem14,17 and as grain boundary scars.6–11 Of course, at higher

temperatures, entropy favours excess defects, in the form of thermally excited

dislocations and/or disclinations analogous to melting in a 2D flat surface. For

an extensive discussion we refer to the review of Strandburg.18

Another question that arises is how representative the atomic Lennard-Jones

potential is for interactions between complex particles such as proteins and

colloids, and how sensitive the structure of dense particle packings on curved

templates is to the shape of the potential. This question is relevant because

interactions between proteins are arguably better described by a short-ranged

potential,19–21 and Van der Waals interactions between colloids are also shorter-

ranged (stickier) than predicted by the Lennard-Jones model.22 For example,

the colloidosomes of the Manoharan group are induced by the presence of poly-

mer molecules that give rise to extremely short-ranged depletion interactions

between the colloids.23 For three-dimensional clusters it is already known that

the range of the potential strongly influences the potential energy landscape.

Previous work has shown that the shorter ranged the attractive part of the
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potential, the larger the number of local energy minima for a given number of

particles.24 Furthermore, for small clusters of short-ranged particles it was found

that temperature has a significant influence on the relative stability of different

packings.25 Finally, in a recent study of particles on ellipsoidal surfaces, Burke

et al. found that the potential softness plays a crucial role in determining the

particle number at which defects begin to appear.26

To address this issue in the context of particles confined to spherical surfaces,

we consider a Morse potential of much shorter range than the Lennard-Jones

form. For N = 32 and N ≤ 24, we find for the same particle numbers deep

local potential energy minima that also turn out to have the same structure.

For larger N , the Morse potential produces deeper local minima in the potential

energy landscape as a function of the N . Furthermore, for those sizes that are

a local minimum in the potential energy for both the Morse and Lennard-Jones

potential, the particle arrangement proved different. Hence, for a shorter-ranged

potential, for the same n, different packings minimise the potential energy. For

Morse particles it also proved more difficult to thermally excite defects, indi-

cating that a shorter-ranged potential stabilises the structures. This property

is especially clear in the case of the T = 3 icosahedron for N = 32.

However, we find that the T = 7 icosahedron for N = 72 is no longer an

equilibrium packing, nor a potential energy minimum. Thus, while the range of

the interaction potential broadens the temperature range over which structures

are stable, it also influences the symmetry of the equilibrium packing itself.

A similar observation was reported for simulations of disks with an adhesive

edge confined to a spherical surface.3 For adhesive disks, the effective range of

attraction is zero, and in this case, the global minima for both N = 32 and

N = 72 are no longer icosahedral packings. Thus, although a shorter range

appears to help stabilise the equilibrium structures over a larger temperature

range, it also changes the symmetry of the preferred packing.

Because in our simulations the particles fluctuate between different packings,

we can obtain free energy differences simply by determining the probability of
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finding each packing. From this probability we determine that the icosahedral

packing, which has the fewest defects, is indeed entropically more favourable

than the D5h structure, confirming that the ground state can exhibit excess

defects. This is similar to experimental observations and computational results

for very much larger systems in the form of grain boundary scars6,10 and for

packings of electrons on a sphere (the Thomson problem).14,17 Grain boundary

scars are predicted to appear around N ≥ 36010 based on elasticity theory,

while excess defects in the form of scars and rosettes appear for N ≥ 410 in the

Thomson problem.8,17 On ellipsoidal surfaces Burke et al. found that for hard

particles, excess defects are stable for systems from N ≥ 200.26 In this study

we consider significantly smaller particle numbers 10 ≤ N ≤ 100. We note that

in Ref.14 some minimum energy structures with excess defects for N as low as

44 have been identified, albeit that they do not form scars.

The remainder of this paper is organised as follows. First we describe in

Section 2 the computational methods. We also provide a discussion of how we

quantify defects and how we characterise them. Then, in Section 3, we discuss

how temperature influences the stability of packings of Lennard-Jones particles.

In Section 4 we discuss the appearance of defects in the global minimum and

determine free energy differences between the packings based on how often they

are encountered. We continue in Section 5 to show that the equilibrium struc-

tures of Morse particles are much more robust against thermal fluctuations than

those of Lennard-Jones particles, but that the minimum energy packings tend

to differ from the Lennard-Jones packings at larger N . Finally, in Section 6, we

underline the most important implications of the three different aspects of this

work discussed above.

2 Methods

We consider packings of two different types of particle on a spherical surface.

The first model employs the well-known Lennard-Jones potential, allowing us to
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directly compare our results with those of Zandi et al.4 and Voogd.13 We write

the Lennard-Jones potential in terms of the equilibrium spacing, r0, rather than

the more usual zero-potential distance, to allow for a straightforward comparison

with the Morse potential later on. Specifically, we have

VLJ(r) = ǫ

[

(r0
r

)12

− 2
(r0
r

)6
]

. (1)

The minimum value −ǫ occurs at r = r0, so ǫ can be treated as the interaction

strength or pair well depth. The second model employs the Morse potential

VM (r) = ǫ
[

e−2α(r−r0) − 2e−α(r−r0)
]

. (2)

In Eq. (2), the parameters ǫ and r0 have the same meaning as in Eq. (1), but

now there is an additional parameter α, which can be used to tune the interac-

tion range. In this work we set α to a specific value to model the interaction

potential induced by depletants that the Manoharan group propose to discuss

their experiments on colloidosomes.23 We do this by fixing the ratio of the dis-

tances at which the potential exhibits a minimum and where it is only one tenth

of that well depth. Applying this procedure leads to a value for the range pa-

rameter of α = (61.2± 2)/r0, which for convenience we rounded to α = 60/r0.

Such a large value for α leads to a much faster decay in the interaction strength

and destabilises the liquid phase.23,27–29 We specifically choose one tenth of the

well depth because the separation from the minimum covers most of the peak

shape, and hence we expect to obtain a better match. We performed calcula-

tions for α = 72 as well and found qualitatively similar results. In particular,

for N = 72 we find the same minimum energy structures in the same order,

albeit at slightly different (higher) total potential energies.

In our Langevin dynamics simulations, performed with the LAMMPS pro-

gram,30 we truncate and shift the potential at some cutoff distance rc by defin-

ing as actual interaction potential V (r) = VLJ/M (r) − VLJ/M (rc), where the

subscript LJ denotes the Lennard-Jones potential and subscript M the Morse
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potential. We take as time unit the Langevin damping time τL, which describes

the time over which the velocity autocorrelation decays. For our purposes, the

exact value of the damping time should be irrelevant because all our simula-

tions focus on systems under conditions of thermodynamic equilibrium. We

take rc = 2.5r0/2
1/6 ≈ 2.2272r0, at which the untruncated Lennard-Jones and

Morse potentials have values of −0.016 ǫ and −2.1 10−32 ≈ 0 ǫ respectively.

The distance rc corresponds to a cut-off at exactly 2.5σ in terms of the more

common Lennard-Jones distance parameter σ. Furthermore, ǫ will serve as the

reference energy unit and r0 as reference length unit, producing a reference mass

unit of m0 = ǫτ2L/r
2
0. For all simulations the particle masses are set to 1 m0.

Care was taken to ensure that the centre of mass of all particles did not

acquire an angular momentum from coupling to the thermostat. This restriction

is achieved by subtracting at each step from all particle velocities, the vector

ωCM × xi/N with ωCM the angular velocity of the centre of mass, xi the

position vector of particle i, and N the number of particles. After subtracting

this component, the velocities are all rescaled such that the kinetic energy before

and after the correction is unchanged. Note, however, that the kinetic energy is

not constant, as the Langevin thermostat imposes fluctuations consistent with

the canonical ensemble. Because the particles are constrained to the surface of

a sphere, there is no need to subtract the linear velocity of the centre of mass.

For both potentials, we attempt to find for all 10 ≤ N ≤ 100 the potential

energy minimum using the basin-hopping method31 as well as thermal equilib-

rium packings in a temperature range between T = 0.001 ǫ/kB and T = 2 ǫ/kB ,

where kB is Boltzmann’s constant. For each N a surface density ρ has to be

chosen. Let R be the radius of the spherical surface. Then ρ = N/4πR2, and

R has to be determined for each N. A natural choice for R is the radius that

results in the lowest potential energy at zero temperature. For Lennard-Jones

potentials, these radii are tabulated by Voogd in13 and are consistent with our

basin-hopping calculations, but for a Morse potential we have not been able to

find tabulated values. We therefore employ the following strategy.

8
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We perform Langevin dynamics simulations of N particles constrained to a

sphere using a special case of the RATTLE algorithm32 described in,33 where we

linearly shrink the radius from an initial value R0 to a final value R1 over a time

span of 104τL. The values for R0 and R1 we estimate from considerations of hard

disk packings, which gives rise to a natural sphere radius R∗. To calculate R∗,

consider N hard disks of diameter d0 that cover an area fraction φ = Nd20/16R
2

of the sphere. The upper limit to φ in a flat, two-dimensional geometry is

φm = π/
√
12.3 The radius that gives this maximum is then R∗ = d0

√

N/φm/4.

With d0 we associate the minimum of the interaction potential r0, because for

r < r0 both potentials are steeply repulsive.

We search for a minimum in the potential energy around R∗ by putting

R0 = 1.3R∗ and R1 = 0.8R∗. For each N we monitor over time the potential

energy and radius of the spherical template as it shrinks from R1 to R0. This

schedule produces an energy trace for each N as a function of R similar to those

presented by Voogd,13 with a characteristic deep minimum just before a steep

increase for small R, from which the optimal radius can be determined with a

simple post-processing script.

We present the optimal radii R as a function of N in Fig. 1 for both the

Lennard-Jones and Morse particles for the case α = 60/r0. Note that for the

Morse particles, the sphere radius is larger for all 10 ≤ N ≤ 100, because the

penalty for overlap is much greater and cannot be compensated easily by next-

nearest neighbour interactions. For the Lennard-Jones particles, the difference

in the optimal radius R between our data and Voogd’s is less than 2% for

all N and the largest deviation in total energy is below 1%. Additionally,

the potential energies we find at the optimal radius match closely with those

presented by Zandi et al. in.4 Furthermore, if we use the same method of

quantifying defects as Voogd,13 which is based on Voronoi constructions, we

find the same distribution of topological charges, reassuring us that we obtain

the same structures. For a complete tabulation of our energies and sphere radii,

see Section SI 1.
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Figure 1: (Colour online.) Sphere radii R∗ that minimise the potential energy
for N particles interacting either through a Lennard-Jones (LJ) or a Morse
(Morse) potential, as fraction of the estimated radius that would tightly pack
N hard disks of diameter d0, d0

√

N/φM/4. Note that the LJ data coincides well
with the results of Voogd (reproduced with permission).13 The largest difference
between the two is no more than 0.02r0 (< 2%).

While Voronoi tesselation, as used by Voogd, is a natural way to determine

nearest neighbours in a hexagonal lattice, issues arise with Voronoi tesselation

when particles are packed in other types of lattice, as the tesselation can be

degenerate. These issues are discussed in more detail in Section SI 2. In previous

works on global energy minima of the Thomson problem such configurations

were encountered,14,17 so this apparent pathology was anticipated in the present

work. Because of these problems, we opted instead for a distance criterion to

quantify the number and type of defects.

With this criterion, all particles separated by less than a distance r∗ are

considered nearest neighbours. In this case, care has to be taken to select a

sensible value for r∗. One way to do this is to determine for every N at what

distance the second minimum in the pair distribution function is located and to

use this to fix r∗. Some structures, however, produce a split first peak at around

the minimum of the potential energy r = r0. In that case, we choose as r∗ a
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distance after the split peak but before the second major peak.

In principle, r∗ is a function of temperature, so it should be determined

for every temperature T. For practical reasons, however, we determine r∗ only

at the low temperature of T = 0.01ǫ/kB . For N = 24, 32, 44, 48 and 72 we

verified that r∗ obtained this way still coincides with a minimum in the time-

averaged pair correlation function at a higher temperature of T = 0.5ǫ/kB .

With the distance criterion, square lattices are identified more robustly in the

presence of thermal fluctuations than by means of tesselation, especially at

lower temperatures. See Section SI 3 for a more thorough description of this

procedure and a tabulation of the cut-off radii r∗ obtained Note, however, that

the network generated by connecting the nearest neighbours in general does not

have the proper Euler characteristic, an issue we choose to ignore. Because of

the drawbacks associated with both methods, we apply both and compare them.

For the representative case of N = 72 particles, we determine the free energy

difference between specific packings as a function of temperature to extract the

relative contributions of potential energy and entropy. Our first attempts to de-

termine these properties with thermodynamic integration as described in34 did

not produce satisfactory results. However, since in our simulations the packings

fluctuate between different symmetries, we count their occurrence frequencies.

From these frequencies we can reconstruct at each temperature the probability

of finding a packing. From the probability ratio for two different configurations,

say, a and b, we calculate a free energy difference. The probability Pa of en-

countering a scales with the Boltzmann factor as Pa ∼ exp(−Fa/kBT ), where

Fa is the free energy of packing a. Hence, the ratio of two of these probabil-

ities is Pa/Pb = exp(−(Fa − Fb)/kBT ) = exp(−∆Fab/kBT ). In other words,

∆Fab = −kBT ln(Pa/Pb). Entropy differences can be derived from the slope of

the free energy difference as a function of temperature, since S = −(∂F/∂T )N,R

evaluated at constant particle number N and sphere radius R.

We next consider the thermal stability of Lennard-Jones packings in Section

3 by investigating the number of point defects at various temperatures. We
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then focus in Section 4 on some packings that have additional defects in the

global minimum, and we determine their stability at different temperatures by

calculating the free energy. Finally we perform the same stability analysis for a

short-ranged Morse potential in Section 5.

3 Lennard-Jones defect landscape

For the Lennard-Jones potential we determine the number of point defects as

a function of temperature and particle number. Point defects are particles that

do not have six nearest neighbours. For completeness and to facilitate straight-

forward comparison with earlier work, e.g., Ref.13, we present results using

the distance criterion in this section and those with the Voronoi tessellation in

Section SI 2. The data for T = 0 are generated by means of basin-hopping

calculations with the aid of the GMIN program.31,35 The data for T > 0 are

obtained from a Langevin dynamics simulation using the LAMMPS program.30

The damping time of the thermostat, τL, is the reference time unit, while the

time step size is fixed at 0.005 τL. The time step size was chosen empirically by

finding a value for which the particles have good energy conservation proper-

ties, when the thermostat is disabled. For the Langevin thermostat we invoked

the Grønbech-Jensen-Farago formulation,36 which generates positions that are

correctly Boltzmann distributed at the thermostat temperature for larger time

steps, albeit at the expense of inaccuracies in the velocity distribution. Since

none of the properties we are interested in depend on the velocity distribution,

this is an acceptable drawback.

In Fig. 2 we show the fractions of particles with five and six nearest neigh-

bours within the distance r∗ at which the pair distribution function has its

second minimum. In Fig. SI 3 we present the fraction of particles with seven

nearest neighbours, which we find to be lower than 0.02 for all N and T. From

Fig. 2 we see that for many N there are more than twelve particles with five

nearest neighbours across the entire temperature range probed. Apart from
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Figure 2: (Colour online.) Fraction of particles with five (top) and six (bottom)
neighbours as a function of temperature for N = 10 to N = 100 Lennard-Jones
particles, using the distance criterion. For the (small) fraction of particles with
seven neighbours, see Fig. SI 3. Other numbers of nearest neighbours were not
observed.

N = 12, N = 32 is the only packing that retains icosahedral symmetry for

a large temperature range. For low temperatures it has exactly 12 five-fold

particles, for a fraction of 12/32 = 0.375. If the temperature is increased to

T = 2 ǫ/kB , four more five-fold particles appear, leading to an increased five-

fold fraction of 16/32 = 0.5. This indicates that the T = 3 icosahedral structure

of 32 particles is very robust against thermal fluctuations, as it exhibits a smaller

increase in excess defects than packings with other N.

Typically, the number of excess defects increases with temperature. Re-

markably, however, for certain N we observe additional defects in the ground

state and a non-monotonic dependence of the number of defects as a function of
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(a) (b) (c) (e)(d)

Figure 3: (Colour online.) The five Lennard-Jones packings for N = 72 with
the lowest potential energy found using the GMIN program35 from two different
orientations (top and bottom) (a): D5h packing with energy per particle U/N =
−3.0564ǫ, (b): D3 packing with U/N = −3.0559ǫ, (c): icosahedral packing with
U/N = −3.0548ǫ, (d): tetrahedral packing with U/N = −3.04636ǫ and (e):
packing with two times three rectangular patches that wrap around the sphere
similar to the seam on a baseball, with U/N = −3.04630ǫ. The colour indicates
the coordination numbers five (blue) or six (red).

temperature, most notably for N = 44, 48 and 72. N = 72 is particularly inter-

esting because one might expect the minimum energy structure to be a T = 7

icosahedron. While the icosahedron is a low energy minimum, it turns out there

are two more packings with a lower potential energy, namely, a D5h structure

and a D3 structure, as well as two additional packings with a slightly higher

potential energy, one of which exhibits tetrahedral symmetry. We present all of

them in Fig. 3. Apart from the icosahedral structure in Fig. 3c, they all exhibit

clusters of point defects. The two lowest minima have square arrangements of

particles. From this result we can conclude that for N = 72 an icosahedral

packing is stabilised entropically rather than energetically. We demonstrate

that this is indeed the case in Section 4. Note that there are other N values

for which excess defects disappear at intermediate temperatures, e.g., N = 24,

44, 48, 60 and 90. For all these sizes but N = 24, excess defects reappear at

higher temperatures. The excess defect fraction for these N values is plotted as

function of temperature in Fig. 4.
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Figure 4: (Colour online.) Excess defect fraction for N = 38, 44, 48, 60, 72
and 92. Lennard-Jones particles as a function of temperature as determined
by the distance criterion. Note the reentrance of excess defects with increasing
temperature for N 6= 24.

4 Defects near the ground state

As we have seen in Section 3, some values of N produce packings that exhibit ex-

cess defects at very low temperatures. For two thirds of the clusters considered,

the number of excess defects obtained for T = 0 by means of basin-hopping is

equal to the number of excess defects at the lowest non-zero temperature result

from our Langevin dynamics simulation (T = 0.001 ǫ/kB). This correspondence

suggests that these packings are not the result of kinetic trapping but are ener-

getically stabilised. Some sizes, however, exhibit a discrepancy between the two

approaches.

The even N for which there was a minor discrepancy in the excess defect

fraction between these two simulations were N = 28, 30, 50, 58, 74, 94, and 98.

For these packings, the particles fluctuate between different low energy struc-

tures even at this low temperature, and therefore the average number of excess

defects does not exactly match the number of excess defects in the global min-

imum. The largest relative deviation in the excess defect fraction between the
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two is 0.14% for N = 30. From this result we conclude that if we would go to

even lower temperatures, we would get the right structures because the global

minimum dominates. We have not pursued this limit further on account of the

very long equilibration times required for proper sampling.

For the odd particle numbers, we see similar discrepancies, namely for par-

ticle numbers N = 37, 39, 41, 43, 47, 51, 55, 59, 73, 79, 85 and all odd N ≥ 89,

where the largest discrepancy in the excess defect fraction amounts to 0.12%.

Again, at the lowest non-zero temperature tested, the particle packing fluctu-

ates between different symmetries, where the dominant structure is the global

minimum. For all other odd and even N, we found no discrepancies between

the two methods.

For some N that exhibit excess defects in the low temperature regime, we

find that these defects disappear at intermediate temperatures and reappear at

higher temperatures. This effect occurs for even N = 28, 40, 42, 46, 60, 62, 64,

68, 72, 76 and 86, and for odd N = 37, 39, 41, 61, 71, 91 and 97. To inves-

tigate this unexpected behaviour we focus attention on N = 72, for which we

know that the lowest temperature Langevin dynamics packing coincides with

the zero temperature basin-hopping result. Apart from the global minimum,

basin-hopping finds four additional local potential energy minima with a sig-

nificantly lower potential energy than the other local minima (1.4% difference).

The differences in potential energy between the five lowest energy packings are

very small (< 0.04%). Recall that these minimum energy structures are shown

in Fig. 3.

In order of increasing potential energy, the symmetries of these packings

are icosahedral, tetrahedral, and finally a packing consisting of two domains

containing three rectangular patches that wrap around each other, similar to

a baseball pattern. Of these five packings, only those that correspond to the

lowest three potential energy minima, (a), (b) and (c) in Fig. 3, are observed

in our LD simulations at low but non-zero temperatures, indicating that either

the barrier between these three states and the other two is too large, or that
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the free energy difference destabilises the two packings with higher potential

energy. Taking into account the contribution of the potential energy to the

Boltzmann weight of a configuration, in particular near zero temperature, this

last explanation seems plausible. For these low potential energy packings we

present the ratios of the calculated Boltzmann factors for six temperatures in

Table 1. We calculated these Boltzmann factors from the potential energies of

the packings obtained by means of basin-hopping, given in the caption to Fig.

3. From Table 1 it is clear that at very low temperatures the potential energy

differences are amplified and that this is what destabilises the tetrahedral and

baseball packings.

To quantify the free energy rather than the potential energy differences be-

tween the three packings found in our dynamics simulations, we determine the

frequency of occurrence of the different packings, as outlined in Section 2. To

verify ergodicity, we keep track of the normalised frequencies of each packing

as a function of time, and verify that they reach a steady state value. We also

keep track of how often the packings switch between the identified types. For

a detailed analysis, see Section SI 5. In particular, in Fig. SI 7 we show two

time traces of the observed packings and in Fig. SI 8 we show the convergence

of the observed frequencies. For T > 0.03 ǫ/kB we are close to achieving steady

states, and we presume ergodicity to hold for those temperatures.

In Fig. 5 we show the frequencies at which the different packings occur as

a function of temperature. Note that at low temperatures, the low potential

energy packings D3 and D5h are energetically stabilised, while the icosahedral

Table 1: Estimated relative probabilies of observing a D3 (Fig. 3b), icosahedral
(ico, Fig. 3c), tetrahedral (tetra, Fig. 3d) or a packing with two domains with
three rectangular patches (rect, Fig. 3e) compared to that of finding D5h (Fig.
3a), using the Boltzmann weight of the respective calculated potential energy.

kBT/ǫ 0.001 0.01 0.02 0.03 0.04 0.05
P (D3)/P (D5h) 0.556 0.943 0.971 0.980 0.985 0.988
P (ico)/P (D5h) 0.199 0.851 0.922 0.948 0.960 0.968
P (tetra)/P (D5h) 4.18 10−5 0.365 0.604 0.715 0.777 0.817
P (rect)/P (D5h) 3.95 10−5 0.363 0.602 0.713 0.776 0.816
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Figure 5: (Colour online.) Probability of encountering an icosahedral, D5h

or D3 packing with N = 72 Lennard-Jones particles on a sphere with radius
R = 2.55037r0, where r0 is the equilibrium spacing of the pair potential, as a
function of the dimensionless temperature kBT/ǫ. The frequencies do not sum
to unity because for some time frames the packing could not be identified.

packing is completely suppressed. At higher temperatures, the icosahedral pack-

ing becomes more and more dominant, while the D5h and D3 packings become

entropically suppressed. Basin-hopping predicts a D5h packing for the global

potential energy minimum, which is consistent with the trend shown in Fig.

5, but reliable data for the temperatures in between T = 0 and 0.03 ǫ/kB are

difficult to obtain due to the increased simulation time needed for proper sam-

pling. Thus, while for T ≤ 0.03 ǫ/kB the trend seems to be consistent with the

basin-hopping calculations, the exact values for the frequencies might not be as

reliable. For T > 0.03 ǫ/kB a clear steady state was reached that converged for

all three initial packings, and we presume these data to be reliable.

Using the relative occurrence frequencies of the different symmetries we ex-

tract free energy differences, presuming ergodicity, from the associated Boltz-

mann weights. In Fig. 6 we plot these free energy differences, from which we

immediately see that at around T ≈ 0.032 ǫ/kB all three packings are equally

likely, and that above this temperature the free energy of an icosahedral packing

is the lowest. Thus, above T = 0.032 ǫ/kB , we expect to see predominantly the
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Figure 6: (Colour online.) Free energy differences between packings of N = 72
particles on a sphere radius R = 2.55037r0. At low temperatures the D3 and
D5h packings are nearly equal in free energy, but an increasing importance of
entropy destabilises the D3 packing more than the D5h at higher T. Both the
D5h and D3 packing are destabilised at higher kBT in favour of the icosahedral
packing. At kBT ≈ 0.032ǫ the three packings appear to be equally probable.

icosahedral packing, which is consistent with Fig. 5.

We can determine entropy differences by calculating the slope of ∆F, since

S = −(∂F/∂T )N,R, evaluated at constant particle number N and spherical

template radius R. This analysis immediately reveals that the entropy of an

icosahedral packing is larger than that of both the D5h and D3 packings, as

the slopes of F (D5h) − F (ico) and F (D3) − F (ico) are positive for the entire

temperature range probed. Also note that the entropy of the D5h packing is

larger than that of the D3 packing for most temperatures, as F (D5h)− F (D3)

has a negative slope for T > 0.025 ǫ/kB . Hence, at higher temperatures, the

icosahedral packing is favoured over both the D5h and D3 packings due to its

higher entropy, while at low temperatures the D5h packing is preferred due to

its low potential energy and the fact that its entropy is higher than that of the

D3 packing.

For even larger temperatures T > 0.1 ǫ/kB the icosahedral packing becomes

less stable because of the emergence of thermally excited excess defects, as is

clear from Fig. 2. For this range of temperatures we did not explicitly obtain
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a free energy difference because we find many different packings, none of which

seem to be clear potential energy minima. Thes results confirm, not surprisingly,

that the equilibrium packings of particles on a curved surface are not just a

result of potential energy minimisation but rather of free energy minimisation.

Finally, it is clear that on curved surfaces, additional point defects can actually

lower the potential energy, and are thus energetically stabilised. Although we

have only explicitly shown this for N = 72, we hypothesise that the same effect

occurs for other particle numbers that exhibit additional defects in the ground

state, which disappear for intermediate temperatures, e.g., N = 60 and N = 92.

Now that we have shown that the temperature, or, equivalently, the inter-

action strength, plays a crucial role in stabilising different packings, we turn to

the role of the range of attraction of the interaction potential.

5 Morse defect landscape

In the previous section we saw that for Lennard-Jones particles there exist

energetically stabilised defects at low temperatures. Furthermore, we found that

icosahedral packings are stabilised energetically forN = 32 but only entropically

for N = 72. Since a shorter ranged potential is a more realistic model in the

context of colloidosomes and virus capsomeres, it is of interest to see how robust

our findings are if we reduce the effective range of the interaction potential.

We set the range parameter α = 60/r0, as discussed in Section 2, and again

determined the excess point defect landscape as a function of particle number

N and temperature T. Since this larger value of the parameter α makes the

potential sharper around the minimum, a smaller time step is needed to maintain

stability. Following the same procedure described in Section 3, we found a time

step size of ∆t = 5× 10−4τL to be adequate.

In Fig. 7 we show the number of particles with 5 and 6 nearest neighbours

obtained by the distance criterion. In Figs. SI 4, SI 5 and SI 6 we also show

the fraction of particles with three, four and seven nearest neighbours. Particles
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with seven nearest neighbours are very rare, with the highest fraction being

0.001 for T ≈ 1.8 ǫ/kB and N = 86. Three and four nearest neighbours occur

more frequently for smaller N than compared to the Lennard-Jones packings,

which can also be seen from the optimal template radii in SI 1. Note that for the

Morse potential, N = 32 has no additional defects in the ground state, indicating

that the icosahedral packing is again energetically stabilised. The fraction of

particles with five nearest neighbours is 0.375, independent of the temperature.

For N = 72, however, there is no longer an intermediate temperature range for

which the icosahedral packing is thermally stabilised.

The ground state of the N = 72 packing obtained by basin-hopping consists

of three strips of particles with six-fold coordination surrounded by those with

five-fold coordination (see Fig. 8a). The packing corresponding to the second-

lowest local potential energy minimum is shown in Fig. 8b, where the potential

energy is 0.068% larger. The other local potential energy minima have signif-

icantly higher energies, with the third-lowest having a potential energy 3.4%

larger than the second-lowest.

In our Langevin dynamics simulations the two packings shown in Fig. 8 are

also the most dominant ones. Even at T = 2 ǫ/kB the system tends to fluctuate

between these two packings, where the second minimum shown in Fig. 8b only

appears very infrequently. See Fig. SI 7 for more analysis on the fluctuations

between the different packings. Therefore, it seems that for shorter-ranged

potentials the energetic penalty is more difficult to overcome by entropy.

From these findings, it seems that a shorter-ranged potential destabilises

icosahedral symmetry as expected.3,28,29 For virus capsids this result would

imply that, if the capsomeres are all one size, their effective range parameter

should be smaller than α < 60/r0. On the other hand, icosahedral packings can

be made more stable by switching between different particle sizes, as discussed

by Bruinsma, Zandi et al.3,4 We intend to pursue this question in future work.

Our simulations highlight two major differences between the Lennard-Jones

and Morse particle packings. First, we note that excess defects are barely ex-
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Figure 7: (Colour online.) Fraction of particles with five (top) and six (bottom)
neighbours as a function of temperature for N = 10 to N = 100 Morse particles
with α = 60/r0, using the distance criterion. For the fraction of particles with
three, four and seven neighbours, see Section SI 4. Other numbers of nearest
neighbours were not observed.

cited at higher temperatures for particles interacting via the short-ranged Morse

potential. This is not entirely surprising because the Morse potential consid-

ered here is much steeper than the Lennard-Jones potential, implying that at

equivalent thermal energies Morse particles have less opportunity to rearrange.

Second, and perhaps more strikingly, clusters with N > 32 that exhibit a local

minimum in the potential energy for both potentials correspond to very different

arrangements. These features result in different numbers of excess defects for

the two potentials for the same N and T . This analysis confirms that the range

of the potential is very important for determining which particle arrangement

is the most favourable28,29.
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(a) (b)

Figure 8: The two lowest potential energy packings for N = 72 particles for
a Morse potential with effective range parameter α = 60/r0, where r0 is the
pair potential equilibrium spacing, shown from two sides (top and bottom).
Colour codes the number of nearest neighbours (using the distance criterion) of
5 (blue) or 6 (red). (a): the packing with the lowest observed potential energy
U/N = −2.32506ǫ. (b): The second lowest local potential energy minimum with
U/N = −2.32348ǫ.

For some N, Morse particles exhibit additional defects in the ground state

that are energetically stabilised. This result is true forN = 40, 66, 68, 70, 82, 86

and 90 although for Morse particles the effect is less pronounced, i.e., the range

of variation in the excess defect fraction is not as large as for the Lennard-Jones

particles. In fact, the range of variation is so small that it is almost indiscernible

in Fig. 7. Hence, we also plot the excess defect fraction as a function of temper-

ature for the N values quoted in Fig. 9. From the figure, we conclude that these

sizes show a clear non-monotonic behaviour in the excess defect fraction with

increasing temperature, indicating that the defects at low T for these packings

are energetically stabilised, just like the defects we find for the Lennard-Jones

packings in Fig. 2.
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Figure 9: Temperature dependence of the fraction of excess defects for N = 40,
66, 68, 70, 82, 86 and 90 Morse particles with range parameter α = 60/r0.

6 Conclusions

Inspired by virus capsid and colloidosome assemblies, we have studied by means

of computer simulation the packings from N = 10 to 100 point particles con-

strained to a spherical surface. Our aim was to investigate how the optimal

particle arrangements are influenced by temperature, or, equivalently, interac-

tion strength, and the range of the interaction potential. These factors have

not received extensive attention in the literature, although we find from our

simulations that both have a profound impact. The simulation techniques that

we applied involved Langevin dynamics for non-zero temperatures and basin-

hopping calculations for determining the global potential energy minima, which

confirm that our Langevin simulations are not kinetically trapped at low tem-

peratures. We have focused mainly on how the number and configuration of

point defects, as a measure for the structural stability of packings, vary with

temperature. Since at least twelve five-fold point defects are required by geom-

etry, we focus specifically on the number of defects in excess of these twelve.

For N = 12, 32 and 72 Lennard-Jones particles, we find in the temperature

range of T = 0.05 ǫ/kB to T = 0.067 ǫ/kB that the equilibrium packing is an

icosahedron, consistent with the earlier work of Zandi et al.4 Our basin-hopping
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calculations show that the icosahedral packing is the global potential energy

minimum for N = 12 and 32, but not for 72, for which the global minimum is a

D5h packing, in agreement with the results of Voogd.13 This result is surprising

because the D5h packing exhibits additional defects, which apparently have an

energetically stabilising effect. Hence, the icosahedral structure for N = 72 at

non-zero temperature must be entropically stabilised. In fact, our simulations

suggest that for a fairly large number of particle packings the lowest energy

structure exhibits excess defects that, remarkably, disappear when raising the

temperature. Of course, at higher temperatures still, defects become thermally

excited. For these specific particle numbers the number of defects is a non-

monotonic function of temperature, whilst for all others, the number of defects

increases with temperature monotonically.

To investigate this kind of “reentrant” behaviour in more detail, we consider

N = 72 Lennard-Jones particles, for which we have explicitly determined free

energy differences between the three lowest-energy structures. We find that

packings with more excess defects have a lower free energy at sufficiently low

temperatures, implying that they are energetically favoured over packings with

fewer defects. The global potential energy minimum has D5h symmetry. How-

ever, our calculations show that the T = 7 icosahedral packing has a higher

entropy than the D5h packing and is therefore thermally stabilised at higher

but not too high temperatures. Therefore the packing of Lennard-Jones par-

ticles on curved surfaces is not just governed by minimisation of the potential

energy. What is true for N = 72 seems to be true for many sizes, because the

symmetries of the associated packings exhibit a strong temperature dependence.

On the other hand, the T = 3 icosahedral symmetry for N = 32 particles is

stable over a wide temperature range.

Our main conclusions are not significantly altered if we replace the Lennard-

Jones potential by a short-ranged Morse potential, which arguably is more repre-

sentative of attractive interactions between large molecules or colloidal particles,

because it accounts for a larger excluded volume effect.24,28 Again we find that
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for certain sizes, the number of excess defects is a non-monotonic function of

the temperatures although for most packings we find that it is more difficult

to thermally excite additional defects. The latter result implies that packings

of particles with a shorter range of attraction are more stable against thermal

fluctuations. Another notable difference between Lennard-Jones and Morse par-

ticles is that for equal N and T , the equilibrium packings may exhibit different

symmetries. In particular, this is the case for N > 24, with the exception of

the T = 3 icosahedron for N = 32. Unfortunately, for a shorter-ranged Morse

potential, rearrangements of packings become too rare to determine entropies

of packings through simply counting their frequencies. A dedicated free energy

method like free energy basin-hopping might provide more insight for these

types of potentials37.

Our calculations suggest that specific predictions for particle geometries on

a curved surface depend not only on the strength but also on the exact shape of

the interaction potential. Both factors impact upon to what extent temperature

is able to affect the competition between particle packings.
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Basin-hopping and Langevin dynamics calculations

reveal that particle packings on curved surfaces

can exhibit energetically stabilised defects.
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