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take the form

∂tρ = D∇
2ρ +DQ∇∇ : Q (3)

∂tQ =−γ−1 δF

δQ
+

λC

ρ
[ ~∇Q] ·~∇Q−

λS

2ρ
Q(∇∇ : Q)

−
λR

ρ

(

Q ·∇∇ ·Q−~∇( ~∇Q) ·Q
)S

−λE ∇
2Q (4)

where A : B=Ai jBi j, and S denotes symmetrization (i.e.
(

A
)S

=
1

2
(A+AT))

The self-generated flow enters through the curvature induced

density flux (CIDF), controlled by DQ in the dynamics of the den-

sity, and through the coefficients λx in the dynamics of the order

parameter. λC = f

ξ
λ̄C, λR = f

ξ
λ̄R, and λS = f

ξ
(λ2 − λ̄C) control

the strength of active convection and active torque, and flow-

alignment due to active shearing respectively. The term with coef-

ficient λE = f

ξ
λ1 also comes from the flow-alignment, and appears

as the Laplacian of the nematic order tensor. This term, therefore,

acts as a negative Frank elasticity in the dynamics.

Before we proceed with the analysis of our theory, we make the

following observations in order to place this model in the context

of other the existing literature in this field:

(1) The CIDF, introduced by Ramaswamy et. al.32,33, is the only

active contribution to the dynamics which is first order in Q and

therefore gives a universal description of the behavior of active

nematics near the critical density, where Q is small. This term

gives rise to striking phenomena, such as giant number fluctua-

tions, phase separation, and band formation near the critical den-

sity20,34–45. In this work we will focus on the dynamics of a sys-

tem which is well above the critical density and highly ordered,

away from this well-studied regime.

(2) Existing theories of active nematics that account for the novel

defect dynamics seen in these systems consider nematohydrody-

namic equations coupled to a Stokes equation for the activity-

induced flow (such as8–14,18). In the presence of a screening

mechanism such as confinement to 2D, the flow field can be

eliminated in terms of the active stress yields Eqs. (3-4), but

with DQ = λC = λR i.e., a Galilean invariant version of our the-

ory18,46–48.

(3) The approach taken here is one which can be generalized

to other active systems. We consider gradient descent on a free

energy, in an imposed flow, and allow for broken Galilean invari-

ance. We then replace the general flow with one which depends

on the local order parameter, and arises due to the active forces.

The same prescription can be applied to polar systems to get the

dynamical equations of Toner and Tu27–29. The difference being

that, in a polar system, the flow from the active forces is ~u ∝ ~P

where ~P is the polar order parameter. In both cases the gradient

descent dynamics are purely smoothing and allow for a homoge-

neous solution, but the flow which arises due to the motion of

those particles, or the forces that they exert, can lead to instabil-

ities in that homogeneous solution, and inhomogeneous dynami-

cal steady states.

Parameters of the Theory

The relaxational contributions to the dynamics of the order pa-

rameter arising from a free energy take the form

[∂tQi j]Eq = Dr[α −βTrQ2]Qi j +2D̄E ∇
2Qi j

+
Dδ

ρ

(

2∂k(Qkl∂lQi j)− ([∂iQkl ]∂ jQkl)
T
)

+Dρ (∂i∂ j)
T ρ −K∇

4Qi j

where α = (ρ−1) and β = 1

ρ2 (ρ+1) , Dr is the rotational diffusion

constant and Dρ is a kinetic term also seen in prior works36,37,41.

There are three elastic terms. D̄E is the mean elasticity, and it

competes with the active term with coefficient λE . We will there-

fore work with an effective mean-elastic relaxation term with co-

efficient DE = D̄E − λE . Dδ is a differential elasticity, measur-

ing the difference between bend and splay energies. Finally, a

fourth-order gradient term (with coefficient K) is included to en-

sure smoothness and numerical stability.

The relevant parameters for the phenomenology discussed are:

the active force and torque (λC,R) and the effective mean and

the differential elastic constants DE and Dδ . The active shear

(with coefficient λS) does not affect the linear stability or the

phenomenology considered here. In the following, we non-

dimensionalize our equations by setting our time scale to be the

rotational diffusion time, 1

Dr
, and our length-scale to be the dif-

fusion length, ℓD ≡

√

D/Dr. In all of the subsequent sections we

will work in these dimensionless variables.

Instabilities of the Nematic State

In the homogeneous limit, Eqs. (4) and (3) admit a uni-axial

nematic solution with average density ρ0 > 1, and the order pa-

rameter Q= ρ0S0(x̂x̂− 1

2
I), with degree of ordering S0 =

√

2(ρ0−1)
ρ0+1

.

Let us consider spatial fluctuations about this state.

Phase Separation Instability

There is an instability which occurs near the critical density for

the onset of ordering, and leads to phase separation. It oc-

curs when fluctuations perpendicular to the director cause an

instability in the degree of ordering, which occurs for DQ >
√

2(ρ2

0
−1)

(

ρ0+1

ρ2

0
+ρ0−1

)

. This instability causes phase separation

into bands of dense ordered regions coexisting with dilute dis-

ordered regions when the material is near the critical density

(ρc = 1). This has been discussed in previous work by us45 and

others39–41,43,44,49,50. The nonlinear active terms (λC, λR and λS)

do not significantly alter the phenomenology discussed in previ-

ous work.

Splay and Bend Instabilities

Let us also consider fluctuations in the direction of order δQxy.

The Fourier transform (X̃ =
∫

d~rei~k·~rX(~r, t)) of the linearized equa-

tion for this mode can be expressed as

∂tδ Q̃xy =−k2

(

2DE ∓S0(
λR

2
−Dδ )+ k2K

)

δ Q̃xy
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