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Journal Name

Pore emptying transition during nucleation in
hydrophobic nanopores

Miloš Knežević∗a and Julia M. Yeomansa

Using the 2D Ising model we study the generic properties of nucleation in hydrophobic nanopores.
To explore the pathways to nucleation of a spin-up phase from a metastable spin-down phase we
perform umbrella sampling and transition path sampling simulations. We find that for narrow pores
the nucleation occurs on the surface outside the pore. For wide pores the nucleation starts in the
pore, and continues outside the filled pore. Intriguingly, we observe a pore emptying transition
for a range of intermediate pore widths: a pre-critical nucleus fills the pore, continues to expand
outside of the filled pore, but then suddenly gets expelled from the pore before reaching its critical
size.

1 Introduction
Efficient design of hydrophobic surfaces is one of the important
contemporary challenges in fundamental and engineering sci-
ences1. When a liquid droplet is placed on a hydrophobic, rough
surface, it is typically found in one of two states: the droplet
may be suspended on top of any pores trapping air underneath
it, resulting in a Cassie-Baxter state2, or wet the pores resulting
in a Wenzel state3. The different fluid configurations result in
different properties: in the superhydrophobic Cassie-Baxter state
the drop has a higher contact angle and smaller hysteresis as the
substrate-liquid contact is minimised.

In a condensing environment, liquid condensate originates
from nanometric nuclei and usually starts to grow within the
pores thus giving rise to a Wenzel state which may alter the
physical character of the rough surfaces. Indeed, dew-repellent
surfaces found in nature4,5 often exhibit a nanoscale roughness
which obstructs formation of these nanometric nuclei in the cav-
ities. The nanostructural dew repellency in living systems has in-
spired artificial surfaces that are both superhydrophobic and an-
tidew6,7. Despite this progress, the antidew mechanism of the
nanostructured surfaces remains unclear, hindering the applica-
tions of superhydrophobicity in a variety of systems such as ef-
fective condensers8–13, self-cleaning materials5,14 and anti-icing
substrates15. The nanometric scale poses significant challenges
in terms of experimental measurements, because it is very diffi-
cult to realise a sufficiently good temporal and spatial resolution
to track the nucleation dynamics. To try to reveal the nucleation
mechanism at these scales one instead resorts to theoretical pre-
dictions and computer simulations. To this end, some progress
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has already been made by Guo et al.16 who used a constrained
lattice density functional theory to study the vapour-liquid nu-
cleation of droplets on nanopillared structures in the lattice-gas
model.

Our aim in this paper is to study the generic features of nucle-
ation in hydrophobic pores. To this end we perform Monte Carlo
simulations of the nearest-neighbour 2D Ising model to explore
the pathways to nucleation of a spin-up phase from a metastable
spin-down phase. The connection to the vapour-liquid transition
can then be made by the standard mapping17 of the Ising model
to the lattice-gas model. This approach has proved useful in the
study of homogeneous nucleation18–22, heterogenous nucleation
on impurities23, heterogeneous nucleation on a flat surface24,
and heterogeneous nucleation in pores25–27.

We analyse the nucleation pathways for hydrophobic pores,
that is pores with walls favouring spin-down states. Depending
on the pore size, we find that there are three possible nucleation
regimes. For small pore widths, the nucleation takes place on the
surface outside the pore (see Fig. 10). For sufficiently large pore
widths the nucleation occurs as a two-step process: a pre-critical
nucleus forms in one of the bottom corners of the pore and there
is a free energy barrier that must be overcome for the pore to
be filled; then there is a second nucleation outside the filled pore
characterised by a critical nucleus which forms on top of the filled
pore (Fig. 14). This two-step nucleation regime has already been
observed25 for pores with neutral walls (which do not favour ei-
ther the up or down spins). Finally, for moderate pore widths, we
observe a pre-critical nucleus that starts to grow in the pore, fills
the pore and proceeds to grow out of the pore without reaching a
critical size. Then at a given moment it is suddenly expelled from
the pore (see Fig. 12) and, after some further growth, forms a
critical nucleus that lies on the surface outside the pore as in Fig.
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10. Thus, in this nucleation regime one observes a pore emptying
transition of the pre-critical nucleus.

The article is organised as follows. We first present the model
in Section 2. Nucleation on a flat hydrophobic surface is studied
in Section 3 using umbrella sampling and transition path sam-
pling. In Section 4 we briefly examine the case of neutral pores
using umbrella sampling to compare with the results of Ref. [25].
We present our results on nucleation from hydrophobic pores in
Section 5. A summary of our findings is given in the final section.

2 The model
We study nucleation in the simple pore geometry shown in Fig.
1. The lattice has N = L×L spins with periodic boundary condi-
tions in the x direction and closed boundaries in the y direction.
Portions of the lattice are removed to give pores of depth d and
width w. Each lattice site i is occupied by an Ising spin si = ±1.
The system is described by the Hamiltonian

H =−J ∑
〈i, j〉

sis j−h∑
i

si−hS ∑
i∈PS

si−hT ∑
i∈TR

si, (1)

where J > 0 is the exchange coupling constant, h is the bulk mag-
netic field, and hS and hT are additional surface magnetic fields.
The first term describes interactions between spins, and the brack-
eted sum over i and j indicates a restriction to nearest-neighbour
pairs. The second term represents the coupling of all spins si with
the uniform external bulk magnetic field h. The third term is the
coupling of spins located at the pore surface (PS; dark grey in
Fig. 1) with the surface magnetic field hS, while the last term de-
scribes the coupling of spins in the top row (TR; light grey in Fig.
1) of the lattice with an additional surface magnetic field hT. All
spins in PS and TR have three nearest neighbours, except for the
two spins located in the bottom corners of the pore which have
only two neighbours.

We measure the temperature in units of J/kB and magnetic
fields in units of J; here kB is the Boltzmann constant. At h = 0
the 2D Ising model undergoes a continuous transition from the
disordered phase to one of the two ordered phases28 at a crit-
ical temperature Tc = 2.27J/kB. We set the temperature to be
T = 1.25J/kB, well below Tc. We start in the spin-down phase but
choose a positive bulk magnetic field h = J/16, so that the ini-
tial configuration is metastable. The system evolves following a
Metropolis single spin-flip Monte Carlo (MC) algorithm with ran-
dom choice of trial spin. Time is measured in units of MC sweeps.
For our choice of T and h the nucleation of the spin-up phase
from the spin-down phase is typically not rapid, and brute-force
simulations of the system are prohibitively slow. We thus apply
rare event sampling methods, umbrella sampling and transition
path sampling (TPS), to gain insight into nucleation of the stable
phase.

We set L = 60 as this turns out to be sufficiently large to avoid
artefacts from finite lattice size for our choice of T and h. Tun-
ing the surface field hS allows us to set the contact angle θ of
the nucleating spin-up cluster on a flat surface: one obtains a hy-
drophilic surface (θ < 90◦) for hS > 0, and a hydrophobic surface
(θ > 90◦) for hS < 0. The case hS = 0, θ = 90◦, which does not
favour either spin-up or spin-down, was previously examined in

Ref. [25]. The additional surface field hT in the top row of the
lattice is set to a high negative value, thus ensuring that the nu-
cleation always occurs at the bottom surface.

d

w

h
S

h
T

x

y

L

Fig. 1 A schematic of the pore geometry, with L the lattice size, d the
pore depth and w the pore width (distance is measured in number of
lattice vertices). Periodic boundary conditions are used in the x
direction. The surface field hS acts on spins marked with dark grey, while
surface field hT acts on spins marked with light grey.

3 Nucleation on a flat surface

3.1 Classical nucleation theory

According to the classical theory of homogeneous nucleation29–31

for a 2D system the free energy needed to form a nucleus of n
molecules of the stable phase can be written

∆G =−n|∆µ|+ γC, (2)

where ∆µ < 0 is the difference between the chemical potentials
of the stable and metastable phases under bulk conditions, γ is
the macroscopic surface tension between the two phases, and C
is the circumference of the growing nucleus. For a circular nu-
cleus of radius r, n = ρnπr2, and C = 2rπ, where ρn is the number
density of the nucleating phase. For the Ising model the chemical
potential difference is19 |∆µ| ≈ 2h, which gives

∆G =−2hn+2
(

πn
ρn

)1/2
γ. (3)

The surface tension γ is given as a function of temperature T by
Onsager’s exact expression28. The expression (3) holds for a non-
circular nucleus as well, provided that the surface tension γ is
substituted with an “effective” surface tension32. The free energy
of the nucleating cluster depends on the reaction coordinate, the
nucleus size n. In our study n represents the size of the largest
cluster consisting of +1 spins. We consider a set of +1 spins to
form a cluster if each spin in the set is a nearest neighbour of at
least one other spin.

The critical nucleus n∗ corresponds to the maximum of the free
energy barrier ∆G∗ separating the metastable and stable states.
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From (3) one finds

n∗ = π

(
γ

2hρ
1/2
n

)2

, ∆G∗ =
πγ2

2hρn
. (4)

Nuclei containing fewer than n∗ particles shrink spontaneously
due to their large circumference to surface ratios, while nuclei
larger than n∗ tend to spontaneously grow as the bulk free energy
contribution dominates.

Extension of the classical theory to the case of heterogeneous
nucleation predicts that the interaction of the nucleus with the
surface dramatically reduces the free energy barrier for nucle-
ation29, resulting in heterogeneous nucleation being dominant
over homogeneous nucleation. For the simplest case of a uni-
form infinite planar surface the classical theory33 envisages that
the barrier to heterogeneous nucleation ∆G∗surface differs from the
homogeneous one by a function solely of the contact angle, f (θ):

∆G∗surface = ∆G∗ f (θ), (5)

where 0≤ f (θ)≤ 1, with limits f (θ = 0◦) = 0 and f (θ = 180◦) = 1.
In the case of a neutral surface the theory predicts f (θ = 90◦) =
1/2.

3.2 Umbrella sampling

We determine the free energy barrier for nucleation using um-
brella sampling34,35. We perform the Ising model Monte Carlo
simulations in the (N,h,T ) ensemble, which corresponds to the
(V,µ,T ) ensemble in the lattice gas model. The probability for
the formation of sufficiently large clusters (typically n > 20 in our
simulations) can be approximated by the probability to find one
such cluster in the system36,37, as the simultaneous occurrence
of two large clusters is very unlikely. Thus we choose umbrella
sampling windows with bias potentials that constrain the size of
the largest cluster in a given system configuration.

To do this a system configuration x = {si}i=1,2,... has, in each
umbrella window k, a potential energy Uk(x) which differs from
the Hamiltonian by a weighting umbrella bias potential Wk(x),

Uk(x) = H (x)+Wk(x). (6)

This bias potential is chosen to be a harmonic function of the size
of the largest +1 spin cluster n(x) in the given configuration,

Wk[n(x)] =
1
2

κ[n(x)−nk]
2. (7)

The harmonic constant κ is set to the same value, κ = 0.2, in
all windows, and the minimum nk determines which cluster sizes
are sampled preferentially in each umbrella window k. Thus the
Monte Carlo simulation is split into a number of smaller simula-
tions with overlapping umbrella windows.

To implement the umbrella sampling we start the system in the
first umbrella potential centred about n1 = 0. After equilibrating
in the potential U1(x) for 5×104 time steps, we sample the equi-
librated system for 5× 105 time steps and record the size of the
largest cluster n at each step. We follow Ref. [37] by performing
Metropolis MC moves according to the Hamiltonian H (x), and

then additionally deciding whether to accept or reject all these
moves according to the pure biasing potential Wk(x) after every
5 MC sweeps. The minimum of the bias potential is then incre-
mented and the whole procedure is repeated for the next um-
brella window. The chosen sequence of bias potential minima is
nk = 0,5,10 . . . up to sizes significantly greater than the critical
cluster size.

We use the multi-state Bennet acceptance ratio method of
Shirts and Chodera38 to estimate the free energies Gk(T,h) cor-
responding to the potential Uk in the umbrella window k. The
method allows one to calculate the ensemble average of any ob-
servable A(x) with respect to the Hamiltonian H (x). We divide
the space of cluster sizes n into bins. The probability for the for-
mation of a cluster of size n falling into i-th bin is given by the
expectation with respect to H (x),

pi = 〈χi[n(x)]〉, (8)

where χi[n(x)] is an indicator function that takes the value of 1 if
the size of the largest cluster n(x) in configuration x falls into bin i,
and is zero otherwise. The free energy ∆G(n) for the formation of
a cluster of size n can then be computed (up to an irrelevant ad-
ditive constant) from the probability p(n) that the largest cluster
has size n:

∆G(n) =−kBT ln[p(n)]. (9)

We set the unknown additive constant by requiring that ∆G = 0
in the first bin.

bulk
hS = 0

hS= -0.2J

hS= -0.4J

hS= -0.6J

hS= -0.8J
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Fig. 2 Free energy barriers for homogeneous and heterogeneous
nucleation for T = 1.25J/kB and h = J/16. Free energy curves for
hS ≤−0.8J practically coincide with the homogeneous free energy curve
(red).

Our umbrella sampling results for homogeneous nucleation
and for heterogeneous nucleation on a flat surface are shown in
Fig. 2. In all simulations T = 1.25J/kB and h = J/16. The bar-
rier for homogeneous nucleation is shown in red. Its height is
β∆G∗bulk = 45.52± 0.27 (here β = 1/kBT ), while the size of the
critical nucleus is n∗bulk ≈ 515. Here we do not attempt to fit the
homogeneous nucleation free energy curve obtained in simula-
tions to the classical theory. This is because it was shown in Ref.
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[19] that, for the 2D Ising model, the expression (3) should be
corrected to include an additional term which accounts for the
shape fluctuations of the clusters to obtain a satisfactory match
between the simulations and theory.

We varied the surface field hS from the value hS = 0 to a nega-
tive value hS = −J. The results for a neutral surface (hS = 0) are
shown in black. The barrier height is β∆G∗neutral = 21.55± 0.14
and the size of the critical nucleus is n∗neutral ≈ 235. This case
corresponds24 to a contact angle of 90◦ and, according to (5),
∆G∗neutral = ∆G∗bulk/2. In our simulations ∆G∗bulk/∆G∗neutral = 2.1,
which is in surprisingly good agreement with (5), given its sim-
ple nature. As the surface field hS is decreased, the barriers for
nucleation become higher, until they eventually reach the barrier
for homogeneous nucleation for hS ≈ −0.8J where the energies
for flipping a spin at the surface and in the bulk become equal.
Further decrease of the field hS does not alter the nucleation bar-
rier, as the nucleation no longer occurs on the surface, but rather
occurs in the bulk. In the opposite case, when the surface field is
increased above the value hS = 0, the nucleation barriers become
lower than the barrier shown in black in Fig. 2, and eventually
become negligible (not shown in the figure).

3.3 Transition path sampling
We use transition path sampling (TPS)39–41 to determine the con-
tact angles θ corresponding to the surface fields shown in Fig.
2. TPS also provides an independent check on our estimates
for the sizes of the critical nuclei. This method utilises a Monte
Carlo walk in the space of reactive trajectories, connecting the
the metastable spin-down state and the nucleating spin-up state,
to sample multiple examples of rare nucleation events. We use
the size of the largest +1 spin cluster n(x) in the system config-
uration x as the order parameter, which discriminates between
the initial and product states. Further, we define the TPS char-
acteristic functions39–41 h↓(x) and h↑(x), which indicate whether
a configuration x is in the spin-down and spin-up state, respec-
tively:

h↓(x) =

{
1, n(x)< n↓
0, n(x)≥ n↓

, h↑(x) =

{
0, n(x)≤ n↑
1, n(x)> n↑

(10)

where n↓ and n↑ are the largest cluster size limits chosen to
define the spin-down and spin-up states. In our TPS simulations
we choose n↓ = 20 and n↑ = 600 or 700 (see Table 1) such that the
initial state and product state basins do not overlap, and are both
far enough from the transition state region found in the umbrella
sampling simulations described in Section 3.2 (Fig. 2).

With our choice of T and h we are in a regime where a nucle-
ation event is very rare, making it extremely difficult to sample
even one such event with brute force simulations. Thus we con-
structed the initial trajectory for TPS by taking an umbrella sam-
pling configuration with n = n∗ and generating trajectories, with
both forward and backward propagation using the underlying dy-
namics of the system, until a trajectory was found connecting the
initial and nucleating states.

Trajectories of 900 time units in length are sampled using the

TPS shooting method41. This trajectory length turned out to be
long enough to harvest a sufficiently large number of transition
states (critical clusters).

The TPS shooting move consists of choosing a random con-
figuration xr on the current trajectory and choosing randomly to
evolve the system either forwards or backwards. The new tra-
jectory is then constructed by replacing the relevant part of the
current path by the newly generated configurations. The updated
trajectory is accepted if it connects the spin-down and spin-up
states specified by functions (10). The initial trajectory, con-
structed with the help of umbrella sampling data, may be unphys-
ical, so we first equilibrate it with 2500 shooting moves, and then
harvest about 60 independent trajectories, one every 50 accepted
shooting moves.

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1.0

 

 

n

p(n)

Fig. 3 Committors for the case hS =−0.3: p↓(n) – blue line; p↑(n) – red
line; and their sum – black line. Fleeting trajectory lengths are ts = 1800
MC sweeps.

We use the sampled ensemble of accepted trajectories to calcu-
late the committors39–41 p↓(n, ts) and p↑(n, ts) for the spin-down
and spin-up states, respectively. The committor p↑(↓)(n, ts) is the
probability that a system with initial configuration with a nucleus
of size n will reside in the spin-up (spin-down) state at time ts.
From each point of the sampled accepted trajectories we run 50
fleeting trajectories of length ts = 1800 time units. The spin-down
and spin-up committors are then determined as the fraction of
fleeting trajectories that end in the spin-down and spin-up regions
respectively for each n. Our results for hS =−0.3 are shown in Fig.
3. The committor graphs are qualitatively similar for all values of
hS. In general, not all fleeting trajectories end in spin-down or
spin-up states; some of them might end in the region between
these states. However, the fact that p↓(n, ts) + p↑(n, ts) ≈ 1 for
all n in our simulations shows that the chosen fleeting trajectory
length ts is long enough to correctly sample the transition states.
The transition region is defined as that consisting of states n∗ that
are equally accessible, meaning p↓(n∗) ≈ p↑(n∗). The results we
obtain for n∗ are in good agreement with the corresponding um-
brella sampling n∗ values for all surface fields hS.

A more general procedure would be to determine committors
p↓(x, ts) and p↑(x, ts) for all system configurations x. However this
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would present an extraordinary computational challenge. Fortu-
nately, for our needs it is enough to examine only the configu-
rations x of the ensemble of accepted trajectories connecting the
spin-down and spin-up states. We follow the procedure described
in Ref. [39] to determine members of the transition state ensem-
ble (TSE). TSE consists of states x such that half of the fleeting
trajectories initiated from x end in spin-down state, and the other
half end in spin-up state.

Fig. 4 A typical member of TSE for the case hS =−0.5J. The lattice size
is 60×60 and the surface is located at the bottom. The -1 spins are blue,
and the +1 spins are red.

For each slice x of all sampled trajectories connecting the spin-
down and spin-up states, we first generate 10 fleeting trajecto-
ries starting from x, and determine p↑(x, ts) from the fraction of
paths that end in the spin-up state. Since in this approach we are
dealing with the same configurations x as in the above commit-
tor p↑(↓)(n, ts) analysis, we take the same fleeting trajectory length
ts = 1800 time units to ensure p↑(x, ts)+ p↓(x, ts) ≈ 1. The config-
uration x is rejected as a member of the TSE if the calculated p↑
falls outside the 95% confidence interval around p↑ = 0.5. Other-
wise more fleeting trajectories are generated until either p↑ falls
outside this confidence interval, or an upper limit of 50 fleeting
trajectories is reached. If former is the case, the configuration
is rejected, otherwise it is accepted as a member of the TSE.
From the trajectories connecting spin-down and spin-up states
harvested with TPS, we typically found between 2000 and 3000
TSE members for each value of the surface field hS. A typical
critical nucleus taken from the TSE has a rough interface and is
anisotropic (see Fig. 4).

Table 1 Surface fields hS and the corresponding choices of limits for the
spin-down state n↓ and spin-up state n↑. Also shown is a comparison
between the critical cluster sizes n∗ obtained with TSE analysis and
umbrella sampling (US). The typical variance of the cluster size in the
TSE is of the order of 1.

hS n↓ n↑ TSE n∗ US n∗

-0.1J 20 600 288 285
-0.2J 20 600 324 325
-0.3J 20 600 357 355
-0.4J 20 700 395 405
-0.5J 20 700 430 415
-0.6J 20 700 454 445

For all configurations x in the TSE we can calculate the size

of largest cluster n(x), and hence determine its distribution. The
average value of this distribution is then taken to be the size of
the critical cluster n∗. Table 1 shows that the TSE results are
in good agreement with the corresponding values of n∗ obtained
using umbrella sampling.

3.4 Contact angles

We use TPS to estimate the contact angle of a growing nucleus
with the surface for different surface fields hS. In these simula-
tions we set n↓ = 20 and n↑ = 1000 and sample reactive trajecto-
ries of 1000 time units in length for surface fields hS ≥−0.3J, and
1200 time units for surface fields hS ≤−0.4J. We relax the initial
trajectory with 25000 shooting moves, and then sample 2500 in-
dependent trajectories, one every 100 accepted shooting moves.
In this calculation we are able to analyse more sampled trajecto-
ries than in the TSE simulations, because the latter require ad-
ditional shooting of fleeting trajectories which is computationally
very costly.

Fig. 5 The shape of the circular segment can be conveniently
characterised by two components of the gyration radius with respect to
the coordinate system xOy (with O being the centre of mass). They can
be calculated explicitly and expressed in terms of the angle θ and say,
the radius R. Thus, the ratio of the squared components of the gyration
radius depends only on θ as given by expression (12).

To determine the average contact angle θn of nuclei of size n
we proceed as follows. It is expected, on symmetry grounds, that
the average cluster has the shape of a circular segment, such as
that presented in Fig. 5. The shape of a cluster of size n can
be characterised by the components Rg,x and Rg,y of the gyration
radius, R2

g = R2
g,x +R2

g,y, with

R2
g,x(n) =

1
n ∑

j
(x j− xc)

2, R2
g,y(n) =

1
n ∑

j
(y j− yc)

2, (11)

where x j and y j are the coordinates of j-th spin in the cluster n,
and xc and yc are the coordinates of its centre of mass. The mean
values of these quantities, 〈R2

g,x〉 and 〈R2
g,y〉, obtained by averag-

ing over many different realisations of clusters of given size n, can
be approximated with the squared components of the gyration ra-
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dius of a homogeneous circular segment having a ‘mass’ n. Since
the ratio of the latter components can be calculated directly, we
can write

〈R2
g,y〉

〈R2
g,x〉

[
1− 2cosθn sin3

θn

3(θn− cosθn sinθn)

]
=

1− 16sin6
θn

9(θn− cosθn sinθn)2 +
2cosθn sin3

θn

θn− cosθn sinθn
, (12)

where θn is the average contact angle of clusters of size n. This
expression allows us to determine θn as a function of the ratio
〈R2

g,y〉/〈R2
g,x〉 measured in simulations.
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Fig. 6 Average contact angle θn as a function of cluster size n for
various surface fields hS.

The change of contact angle with cluster size for various sur-
face fields hS is shown in Fig. 6. While for small cluster sizes
the angle changes rapidly, it saturates for larger cluster sizes and
converges towards a value which depends on the surface field hS.
Note that, for neutral surfaces, hS = 0, one indeed gets a contact
angle of 90◦ as predicted24. As the surface field decreases, the
contact angle increases, reaching a value of approximately 120◦

for hS = −0.5J. For even smaller surface fields hS, it turns out
to be difficult to measure the contact angles, because the sam-
pled reactive trajectories connecting the spin-down and spin-up
phase do not always exhibit nucleation on the surface – a signif-
icant number of trajectories follows a homogeneous nucleation
pathway in the bulk.

4 Nucleation from neutral pores
Before considering nucleation from hydrophobic pores, it is help-
ful to briefly examine the case of neutral pores, hS = 0. Nucleation
in neutral pores was investigated by Page and Sear25, who found
that it often occurs as a two-step process. The first of two acti-
vated processes is nucleation in the pore, followed by nucleation
out of the filled pore. The authors calculated the two nucleation
rates using a forward flux sampling method42,43. They found
that the nucleation rate in a pore increases with decreasing pore
width, while the nucleation rate out of the filled pore grows with
increasing pore width.

We keep the same values of T and h as in Section 3, and choose
the pore depth d = 30 (Fig. 1). We use umbrella sampling to
calculate the free energy barriers for nucleation for various pore
widths, and compare our results with the findings of Ref. [25]. An
example of the dependence of the free energy profile on the clus-
ter size n for two-step nucleation, obtained for w = 10, is shown in
Fig. 7. The nucleation always starts in one of the bottom corners
of the pore. From a corner a small nucleus grows until it reaches
some critical size, which corresponds to the left maximum of ∆G
in Fig. 7. The nucleus then proceeds to grow without any free
energy cost until the whole pore is filled with +1 spins. Note that
there is a minimum in the free energy at n≈ 300 which is equal to
d×w. Once the pore is full, there is a second barrier against nucle-
ation of the spin-up phase outside the pore indicated by the right
maximum of ∆G in Fig. 7. Nucleation barriers with two max-
ima are not uncommon in heterogeneous nucleation situations –
for example, Valencia and Lipowsky44 found that nucleation on a
chemically patterned flat surface can occur via two steps.
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Fig. 7 Free energy profile as a function of nucleus size n for a neutral
pore (hS = 0) of size d = 30, w = 10.

However, the nucleation need not always occur via two steps.
Nucleation barrier heights for nucleation in the pore and out of
the filled pore for a range of pore widths w are shown in Fig. 8.
The blue curve shows that the nucleation barrier in a pore is neg-
ligibly small for small pore widths, but grows and eventually satu-
rates with the increase of w. This is because the nucleation always
starts in one of the bottom corners and, for small pore widths, the
nucleus feels the presence of the other corner, which speeds up
the nucleation, whereas for wider pores the corners act indepen-
dently. This result is in a good qualitative agreement with the
findings of Ref. [25], because the increase of barrier heights man-
ifests itself as a decrease of nucleation rates in the pore.

Looking at the barriers for nucleation outside a filled pore (red
curve in Fig. 8), one observes that for small w the barrier height
approaches that for nucleation on a flat surface. With the increase
of pore width the barrier heights decrease until they eventually
become negligibly small. Again, this agrees well with the results
of Page and Sear25, who found that the rates for nucleation out
of a filled pore grow with w. In addition, these authors found that
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there is a maximum in the overall nucleation rate from the pore
for w = 12, which is the point where the nucleation rates in the
pore and out of the filled pore are approximately equal. In our
umbrella sampling simulations the two barriers are found to be
the same at w = 11. The small discrepancy is most likely due to
other (subdominant) factors affecting the nucleation rates29.

Our Fig. 8 can be compared with Fig. 3(b) of Ref. [26]. While
the two curves for nucleation out of the pore are in very good
agreement with each other, the curves for nucleation in the pore
appear to be different. This difference is due to the fact that the
barrier for nucleation in the pore depends on the ‘origin’ of free
energy for small clusters. Two things affect this origin: One is
the sampling method (whether one tracks only the size of the
largest cluster, or all clusters in each system configuration), and
the other is a choice to impose an ‘offset’ or not (that is to set ∆G
in the first bin to a particular value). In our paper and Ref. [26]
both things are done differently, and so our barriers for nucleation
in the pore can only be related by sliding them vertically with
respect to each other. Once this sliding is done, one finds a good
agreement between the two curves45.
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Fig. 8 Nucleation barrier heights for nucleation in (blue) and out (red) of
the neutral pores as a function of w; pore depth is d = 30. The nucleation
barrier height for a neutral flat surface is marked with a black point.

5 Nucleation from hydrophobic pores
Having verified that our method works well for neutral pores, we
move to the case of hydrophobic pores, which have walls with
surface fields hS < 0. In what follows, we keep the same values of
T , h and d, and choose hS = −0.5J, which corresponds to nuclei
with a contact angle of θ ≈ 120◦ on a flat surface (see Fig. 6).
We apply umbrella sampling to calculate free energy barriers for
nucleation for various pore widths w. We find that there are three
different dynamical pathways to nucleation, which are realised
for three different w intervals.

The simplest nucleation pathway is found for w≤ 5. In this case
small pre-critical nuclei grow and shrink both in the pore and on
the surface outside the pore, but eventually the critical nucleus
is formed on the surface outside the empty pore. This nucleation
pathway has already been observed26 in simulations of 3D pores.

As expected, the free energy barrier for nucleation looks very sim-
ilar to that on a flat surface: A comparison for w = 5 is shown in
Fig. 9. Although the vast majority of critical nuclei are formed on
the surface outside the pore (Fig. 10a), one occasionally finds a
nucleus spanning the pore (Fig. 10b).
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Fig. 9 Free energy barrier for nucleation on a flat surface (black), and in
a pore of size d = 30, w = 5 (red). In both cases hS =−0.5J.

Fig. 10 Typical examples of critical nuclei for the pore of size d = 30,
w = 5: (a) nucleus on the surface outside the pore, (b) nucleus spanning
the pore.

The most interesting behaviour emerges in the range of pore
widths 6 ≤ w ≤ 16. Typical free energy barriers are shown in
Fig. 11. The nucleation mechanism for w = 6 (blue curve) sig-
nificantly differs from that encountered for widths w ≤ 5. A pre-
critical nucleus starts to appear in one of the bottom corners of
the pore. The nucleus continues to grow and eventually the whole
pore is filled with +1 spins. However, on this growth pathway
the nucleus does not attain a critical value, which manifests it-
self as the absence of a maximum in the free energy in the re-
gion of cluster sizes between n = 0 and n = 30×6 = 180. The full
pore state, n = 180 corresponds to the left dashed vertical line in
Fig. 11. At this point there is a noticeable change in the slope
of the free energy curve. The nucleus then starts to grow out-
side the filled pore and does so until it reaches n ≈ 195 (marked
with the right dashed vertical line). Inspection of the cluster con-
figurations shows that at this point the nucleus is expelled from
the pore and ends up spanning the pore (Fig. 10b); during the
ejection the cluster size remains approximately unchanged. Thus
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the pre-critical nucleus exhibits a pore emptying transition. The
pre-critical nucleus then continues to grow outside the pore, fol-
lowing the free energy curve for nucleation on a flat surface, and
reaching the maximum of the free energy curve corresponding to
its critical size at n≈ 450. This dynamical pathway is qualitatively
similar for all pore widths 6≤ w≤ 11.
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Fig. 11 Free energy barriers for nucleation from hydrophobic pores of
depth d = 30 and widths w = 6 (blue), w = 12 (red) and w = 16 (green).
The free energy barrier for nucleation on a flat surface is shown in black.

For w = 12 (red curve in Fig. 11) there is a small change in be-
haviour. The full pore state, corresponding to a change in the rate
of increase of the free energy with n, is marked by the left dotted
vertical line at n = 360. For this pore width the free energy maxi-
mum n≈ 555 (marked by the right dotted vertical line) coincides
with the point where the nucleus is expelled from the pore; typi-
cal cluster configurations during the ejection are shown in Fig. 12.
Thus the nucleus attains its critical size immediately after expul-
sion, and then continues to grow following the free energy bar-
rier for nucleation on a flat surface (black curve in Fig. 11). A
qualitatively similar dynamical pathway is also found for larger
pore widths up to w = 16. The emergence of the pore emptying
transition has also been verified with brute force simulations (MC
simulations with no bias potential imposed).

This regime ends at w = 16 (green curve in Fig. 11). For this
pore width the point on free energy curve corresponding to the
full pore, n ≈ 480, becomes a minimum, while at the same time
a maximum appears for smaller cluster sizes. However, the free
energy difference between the maximum and minimum is negli-
gibly small (smaller than the typical error bars), and the nucleus
again empties the pore during nucleation. For w = 17 the mini-
mum becomes more pronounced (blue curve in Fig. 13) and the
system crosses over to a new regime, where it follows a two-step
nucleation pathway. As before pre-critical nuclei appear in one of
the bottom corners of the pore, and then continue to grow. How-
ever the nuclei now achieve a critical size for a value of n smaller
than the pore size. This critical size corresponds to the left maxi-
mum of the blue curve in Fig. 13. After attaining the critical size,
the nuclei grow further without any free energy cost until they
fill the pore. The minimum in the free energy curves is located

����������

Fig. 12 Snapshots of the pore emptying transition for the pore of size
d = 30, w = 12. In all snapshots the size of the nucleus is n∗ ≈ 555.

at approximately n = 30× 17 = 510, the pore size. Finally, there
is a second nucleation barrier for growth outside the filled pore,
which corresponds to the right maximum in Fig. 13 (blue curve).
Snapshots of the growing cluster for w = 17 are shown in Fig. 14.
This nucleation process is reminiscent of the two-step nucleation
from neutral pores analysed in Section 4.
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Fig. 13 Free energy barriers for nucleation from hydrophobic pores of
depth d = 30 and widths: w = 17 (blue), w = 20 (red) and w = 24 (green).

The barrier to nucleation within the pore increases with the
pore width w and eventually saturates, while the barrier to nucle-
ation outside the filled pore decreases with w. The two-step nucle-
ation is observed for pore widths 17 ≤ w ≤ 23. At w = 24 (shown
in green in Fig. 13) the right maximum disappears and the nucle-
ation occurs in one step. There is a critical nucleus smaller than
the pore size, after which the cluster continues to grow, both in
and out of pore, without any additional free energy cost.

One can understand the emergence of the pore emptying tran-
sition with the help of a simple argument. Using the Hamiltonian
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Fig. 14 A two-step nucleation process for the pore of size d = 30,
w = 17. The size of the nucleus in the three snapshots is n = 178, 496
and 873 respectively.

(1), one can compute the energy difference ∆E = E↓−E↑ between
the pore states having all spins pointing down (E↓) and all spins
pointing up (E↑). As we are at a temperature well below the crit-
ical temperature Tc, one can neglect the corresponding change
in entropy to a first approximation. For a deep pore (ignoring
end effects) one gets ∆E = 2dwh+ 4dhS. The pore emptying is
favourable for ∆E < 0, that is for w < −2hS/h. In our studies
h = J/16 and hS = −J/2, leading to w < 16, which is in remark-
ably good agreement with the simulations.

6 Summary
To summarise, we have used umbrella sampling and transition
path sampling Monte Carlo simulations performed on a simple
model system, the 2D Ising model, to provide generic picture of
nucleation in hydrophobic nanopores. We find three regimes. For
narrow pores, the nucleation occurs on the flat surface, almost
unaffected by the presence of the pores. For wide pores the pores
fill and then act as a seed for nucleation of a critical cluster on the
surface. For pores of intermediate widths nucleation commences
in the pores but, as the cluster grows across the surface, there is a
sudden pore emptying transition before the nucleus has reached
its critical size.

Our results suggest that the nanoscale tomography of a sur-
face will be key in controlling its water-repellency. In particular,
narrower pores will more readily empty during nucleation to give
the Cassie-Baxter configuration, associated with fast droplet shed-
ding, and relevant to the enhanced performance of condensers,
anti-icing substrates and self-cleaning materials. Extensions to 3D
and to more realistic liquid models are needed to help to quantify
these effects, but will be extremely demanding of computational
resources.
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